BAB IV PENGUJIAN DAN ANALISIS Bab ini akan membahas pengujian dan analisis setiap modul dari sistem yang dirancang. Tujuan dari pengujian ini adalah untuk mengetahui apakah sistem yang dirancang sudah sesuai dengan yang diharapkan. Pengujian dilakukan pada setiap modul yang telah direalisasikan dan pada sistem secara keseluruhan. Berikut ini akan dijelaskan mengenai pengujian dari setiap bagian.
4.1.
Pengujian Modul Mikrokontroler, LCD dan RTC Pengujian modul mikrokontroler dilakukan dalam dua tahap, tahap pertama
yaitu melakukan pengecekan port-port pada mikrokontroler dengan cara memberikan program flip-flop sederhana untuk menyalakan lampu LED. START
Isi PB-PD dengan 00h
Beri waktu tunda 1 detik
Isi PB-PD dengan FFh
Beri waktu tunda 1 detik
SELESAI
Gambar 4.1 Diagram Alir Pengujian Port Mikrokontroler
Diagram alir pengujian menggunakan program flip-flop sederhana ditunjukkan pada Gambar 4.1. Jika data yang dihasilkan oleh semua port sama dengan data yang dikirimkan, maka mikrokontroler dikatakan bekerja dengan baik. Tahap kedua yaitu melakukan pengujian pengiriman data secara serial menggunakan perangkat serial RS232. Berikut adalah potongan program yang dikerjakan menggunakan bantuan compiler software CodeVisionAVR v2.04.4 untuk menguji koneksi serial : 38
39
… { printf("TEST SERIAL BRAKE TESTER PROJECT!\r"); delay_ms(1000); }; …
Mikrokontroler mengirimkan data teks “TEST SERIAL BRAKE TESTER PROJECT” ke hyper terminal pada komputer, dan jika data yang diterima oleh komputer sama dengan data yang dikirimkan, maka mikrokontroler dinyatakan bekerja dengan baik. Hasil yang diperoleh hyper terminal ditunjukkan pada Gambar 4.2.
Gambar 4.2. Penerimaan Data Serial pada Komputer
Untuk pengujian LCD dan RTC, pada LCD ditampilkan jam, hari dan tanggal. Ketika catu daya dimatikan, maka pada LCD masih tertampil jam, hari dan tanggal yang telah ter-update, sehingga dapat diartikan untuk LCD dan RTC bekerja dengan baik. Gambar 4.3 adalah tampilan jam, hari dan tanggal yang tertampil pada LCD.
Gambar 4.3
Pengujian LCD dan RTC
40
4.2.
Pengujian Sensor Accelerometer Pengujian sensor accelerometer dibagi menjadi dua bagian yaitu pengujian
accelerometer dalam kondisi diam dan dalam kondisi bergerak. Pengujian accelerometer dalam kondisi diam bertujuan untuk menguji accelerometer untuk mengukur
percepatan
accelerometer
dalam
gravitasi kondisi
bumi bergerak
(kondisi
diam),
bertujuan
untuk
sedangkan
pengujian
menguji
percepatan
accelerometer saat digerakkan.
4.2.1. Pengujian Accelerometer Dalam Kondisi Diam Pengujian accelerometer dalam kondisi diam dilakukan dengan mengubah posisi vektor sumbu x, y dan z dalam berbagai posisi. Sebagai contoh, untuk pengujian accelerometer pada posisi x = -1g, y = 0 g dan z = 0g, maka perlu diatur sudut Axr = 180°, Ayr = 90° dan Azr = 90°. Perhitungannya adalah sebagai berikut :
Rx =Rcos(Axr) = Rcos(180) = -1
Ry =Rcos(Ayr) = Rcos(90) = 0
Rz =Rcos(Azr) = Rcos(90) = 0 √
=√
Nilai Rx,Ry dan Rz inilah yang digunakan untuk acuan posisi vektor x, y dan z pada accelerometer. Dari hasil perhitungan, didapatkan nilai Rx = -1, Ry = 0 dan Rz = 0, sehingga pada accelerometer harus menunjukkan posisi vektor akibat pengaruh gravitasi bumi yaitu x = -1 g, Y = 0 g dan Z = 0 . Gambar 4.4 adalah salah satu contoh hasil pengujian accelerometer pada posisi x = -1g, y = 0g dan z = 0g. Variasi pengujian lainnya
dilakukan dengan berbagai posisi sudut yang
berbeda-beda. Tabel 4.1 menunjukkan hasil percobaan dengan variasi sudut yang berbeda-beda.
41
Gambar 4.4 Hasil Pengujian Accelerometer X= -1g,Y=0g,Z=0g
Tabel 4.1 Pengujian Accelerometer Dalam Kondisi Diam NO
Posisi Sudut
Posisi Accelerometer
θx
θy
θz
gX
gY
gZ
1
90°
90°
0°
0
0
0,99
2
90°
0°
90°
0
1,00
0
3
0°
90°
90°
1,00
0
0
4
90°
90°
180°
0
0
-1,00
5
90°
180°
90°
0
-1,01
0
6
180°
90°
90°
-1,00
0
0
7
45°
90°
90°
0,707
0
0
8
90°
45°
90°
0
0,707
0
42
4.2.2. Pengujian Accelerometer Dalam Kondisi Bergerak Pengujian pada kondisi ini dilakukan untuk menguji sensor accelerometer akibat percepatan ketika benda bergerak. Yang diuji dalam pengujian ini adalah kecepatan dan jarak. Pengujian dilakukan dengan percobaan pada bidang miring. Gambar ilustrasinya dapat dilihat pada Gambar 4.5.
Gambar 4.5 Ilustrasi Pengujian Accelerometer Pada Bidang Miring θ=30°, s=1,4m
Pada percobaan ini, permukaaan dibuat selicin mungkin sehingga gaya gesek diabaikan . Dari Gambar 4.5 bisa didapat bahwa : ⃗
⃗
⃗
⃗ Keterangan :
⃗
⃗
⃗
⃗
∫⃗
∫ ∫ ⃗) ) ⃗
= kecepatan accelerometer (m/s)
⃗
= percepatan(m/s²)
t
= waktu (s)
Gambar percobaan pada bidang miring dapat dilihat pada Gambar 4.6.
43
Gambar 4.6 Percobaan Pada Bidang Miring
Langkah-langkah percobaannya adalah sebagai berikut : 1.
Menentukan sudut kemiringan (θ), dalam percobaan ini sudutnya adalah θ=30°.
2.
Mengukur percepatan, kecepatan dan posisi accelerometer ketika dilepas dari kemiringan sebesar θ. Untuk menghitung kecepatan dan posisi, digunakan metode penghitungan luas area trapezoidal.
3.
Mencari nilai faktor pengali untuk memperkecil error dengan melakukan percobaan berulang-ulang hingga menunjukkan kecepatan dan posisi yang sesuai dengan perhitungan.
4.
Waktu yang digunakan adalah waktu yang didapat dari timer mikrokontroler (0,024s), dan waktu totalnya adalah 0,024s x 25 sample data (data ke 88 s.d data ke 113 = 0,6023s. Gambar 4.7 s.d Gambar 4.9 adalah gambar hasil percobaan nilai a (percepatan),
kecepatan dan posisi saat accelerometer dilepas pada bidang miring (belum dikalikan faktor pengali). Sample yang dihitung adalah saat accelerometer dilepas pada bidang
44
miring sampai dengan sebelum accelerometer menabrak lantai.(data ke 88 s.d. data ke
6 5 4 3 2 1 0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116
a saat s =1.4 m
jumlah sample
3 2.5 2 1.5 1 0.5 0
2.820890595
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116
kecepatan (m/s)
Gambar 4.7 Grafik Percepatan Sebelum Dikalikan Faktor Pengali
jumlah sample
Gambar 4.8 Grafik Kecepatan Sebelum Dikalikan Faktor Pengali
1 8.23E-01
0.8 0.6 0.4 0.2 0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116
posisi (m)
percepatan m/s2)
113). Data ke 114 dan seterusnya dianggap nol.
jumlah sample
Gambar 4.9 Grafik Posisi Sebelum Dikalikan Faktor Pengali
45
Gambar 4.7 s.d. Gambar 4.9 (sebelum dikalikan faktor pengali) bila dibandingkan dengan perhitungan kecepatan dan posisi adalah sebagai berikut :
Keterangan : velo0
velo1
= velo0+((time/2)*(acc1+acc0));
pos1
= pos0+((time/2)*(velo1+velo0));
= kecepatan sebelumnya
velo1
= kecepatan saat ini
pos0
= posisi sebelumnya
pos1
= posisi saat ini
Nilai variable time didapat dari waktu sample pada mikrokontroler yaitu sebesar 0,024s. Untuk pengujian kecepatan, kecepatan puncak (jumlah total area) sesungguhnya dapat dirumuskan : ⃗ ⃗
∫⃗ )
)
ample = 2,95 m/s
Dilihat dari gambar grafik hasil percobaan sebelum dikalikan faktor pengali, kecepatan puncak (jumlah total area) = 2,82m/s. Dalam hal ini diperlukan faktor pengali agar kecepatan yang didapat sebesar 2,95m/s. Nilai faktor pengalinya adalah sebesar 1,04. Nilai ini sebagai pengali dalam persamaan penghitungan kecepatan dengan metode trapezoidal. Angka ini didapat dari :
Dari hasil percobaan sebelum dikalikan faktor pengali posisi menunjukkan 0,82m, padahal jarak sesungguhnya adalah sebesar 1,4 m, dalam hal ini berarti dalam perhitungan kecepatan dan posisi perlu dikalikan faktor pengali. Faktor pengali untuk posisi adalah
46
Faktor pengali ini dimasukkan dalam persamaan :
Keterangan : cal1 cal2
velo1
= velo0+(ca1l*(time/2)*(acc1+acc0));
pos1
= pos0+(cal2*(time/2)*(velo1+velo0));
= faktor pengali kecepatan = 1,04 = faktor pengali posisi =1,70
Gambar 4.10 s.d. Gambar 4.12 adalah gambar percepatan, kecepatan dan posisi
6 5 4 3 2 1 0
116
111
106
96
101
91
86
81
76
71
66
61
56
51
46
41
36
31
26
21
16
11
6
1
a saat s =1,4 m
jumlah sample
4 3
2,950651562
2 1 0 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116
kecepatan(m/s)
Gambar 4.10 Grafik Percepatan Sesudah Dikalikan Faktor Pengali
jumlah sample
Gambar 4.11 Grafik Kecepatan Sesudah Dikalikan Faktor Pengali
2
1,46E+00
1.5 1 0.5 0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116
posisi (m)
percepatan m/s2)
yang sudah dikalikan faktor pengali.
jumlah sample
Gambar 4.12 Grafik Posisi Sesudah Dikalikan Faktor Pengali
47
Langkah percobaan seperti di atas dilakukan beberapa kali percobaan dengan variasi sudut yang berbeda-beda yaitu pada sudut kemiringan θ=10°, θ=25°θ=30°, θ=40°dan θ=50°. Hasil percobaan dapat dilihat pada lembar lampiran. Dari hasil percobaan dapat diketahui bahwa nilai perhitungan kecepatan dengan nilai error kecil ada pada percobaan pada sudut kemiringan θ=30° (6%), θ=40° (4%) dan θ=50° (5%). Error besar terjadi pada sudut θ=25° (64%). Hal ini terjadi karena sudut kemiringan yang kecil akan menyebabkan benda akan meluncur kebawah lebih pelan dibandingkan dengan sudut kemiringan yang besar (gaya gravitasi yang bekerja lebih kecil), sehingga percepatan yang dihasilkan juga kecil. Padahal sensor accelerometer telah diterapkan discrimination window untuk meredam error yang terjadi saat accelerometer dalam kondisi diam agar saat kondisi diam, accelerometer dapat menunjukkan 0g. Namun penerapan discrimination window ini akan menyebabkan sebagian nilai percepatan yang mendekati nol dianggap nol oleh sensor sehingga ketika terjadi percepatan mendekati nol (laju benda lambat) , maka akan banyak data percepatan yang hilang, akibatnya akan terjadi banyak error untuk perhitungan kecepatan dan posisi. Sedangkan pada sudut lebih kecil dari θ=25º, massa benda diam di tempat (tidak dapat meluncur pada bidang miring). Hal ini terjadi karena gaya gesek bekerja lebih besar daripada gaya yang menyebabkan benda meluncur ke bawah, sehingga sensor percepatan akan mendeteksi percepatannya sama dengan nol. Tabel 4.2 dan Tabel 4.3 menunjukkan nilai error terbesar pada beberapa kali percobaan pada tiap variasi sudut kemiringan.
Tabel 4.2 Nilai Error Kecepatan Terbesar Pada Percobaan Bidang Miring Sudut (°) 10° 20° 25° 30° 40° 50°
Error Kecepatan Terbesar (%) Massa diam Massa diam 64,1 6,1 4,4 0,5
48
Tabel 4.3 Tabel Nilai Error Posisi Terbesar Pada Percobaan Bidang Miring Sudut (°) 10° 20° 25° 30° 40° 50°
Error Posisi Terbesar (%) Massa diam Massa diam 64,1 7,8 6,6 3,9
Dari hasil percobaan pada bidang miring, dapat diketahui bahwa pada sudut kurang dari θ = 25°, massa benda tidak diam di tempat (tidak bisa meluncur ke bawah). Untuk sudut θ = 25°, nilai percepatan maksimalnya adalah sebesar : ⃗
)
⃗
Pada sudut kurang dari θ = 25° nilai error yang dihasilkan untuk perhitungan kecepatan dan posisi menghasilkan error yaitu 64,1 % dan 64,1 %. Oleh sebab itu nilai , algoritma trapezoidal tidak bisa diterapkan untuk
percepatan kurang dari
perhitungan kecepatan dan jarak pengereman. Berbeda ketika sudut diubah menjadi θ=30°, maka nilai percepatan maksimalnya adalah
⃗
⃗
)
Dari Tabel 4.2 dan Tabel 4.3 dapat diketahui bahwa hasil pengujian kecepatan memiliki error kurang dari 6,1% jika sensor digerakkan dengan percepatan lebih dari 0,5 m/s², dan memiliki error lebih dari 64,1% jika sensor accelerometer digerakkan dengan percepatan kurang dari 0,5 m/s². Pengujian jarak pengereman memiliki error kurang dari 7,8% jika sensor digerakkan lebih dari 0,5 m/s² dan memiliki error lebih dari 64,1% jika sensor accelerometer digerakkan dengan percepatan kurang dari 0,5 m/s². Maka untuk percepatan lebih besar dari 0,5 m/s², metode trapezoidal bisa diterapkan untuk perhitungan kecepatan dan jarak pengereman.
49
4.2.3.
Pengujian Accelerometer di Mobil Mobil yang digunakan adalah minibus jenis Isuzu Panther buatan tahun 1998.
Gambar 4.13 adalah gambar mobil Isuzu Panther yang digunakan untuk pengujian alat. Pengujian dilakukan pada malam dini hari pukul 01.00 WIB di jalan lingkar Salatiga pada kondisi jalan rata (bukan tanjakan atau turunan) dan dalam kondisi kering. Untuk pengujian kecepatan dibandingkan dengan speedometer mobil dan Navitel 5.0.0.1069 GPS Software Navigator for android. Pengujian dilakukan dengan berbagai variasi percobaan.
Gambar 4.13. Mobil Isuzu Panther Untuk Pengujian Alat
Percobaan 1 : Data diambil saat mobil melaju dengan kecepatan 30km/jam lalu direm secara mendadak. Percobaan ini untuk mengetahui besarnya perlambatan mobil dan jarak pengereman. Data hasil percobaan digambarkan pada Gambar 4.14 s.d. Gambar 4.16.
50
Gambar 4.14 Grafik Percepatan Mobil Percobaan 1
Gambar 4.15 Grafik Kecepatan Mobil Percobaan 1
Gambar 4.16 Grafik Posisi Mobil Percobaan 1
51
Hasil posisi yang terukur (dengan menggunakan meteran) yaitu sebesar 5,4 m. berarti masih terdapat error sebesar :
Percobaan 2 :
Percobaan dua dilakukan dengan cara menjalankan mobil
dari kecepatan 0 km/jam (berhenti) hingga kecepatan 30km/jam. (menggunakan gigi satu lalu pindah gigi dua)
Gambar 4.17 Grafik Percepatan Mobil Percobaan 2
Gambar 4.18 Kecepatan Mobil Percobaan 2
52
Gambar 4.19 Grafik Posisi Mobil Percobaan 2
Dari hasil percobaan, kecepatan mobil saat 30 km/jam (speedometer mobil), pada accelerometer menunjukkan 33,60 km/jam. Sehingga error-nya bisa dihitung sebesar :
Percobaan 3
: Percobaan 3 ini dilakukan pengambilan data saat mobil pada
kecepatan 0 km/jam (berhenti) lalu berjalan sampai dengan kecepatan 30km/jam (menggunakan gigi 1 lalu pindah gigi 2), setelah mencapai kecepatan 30km/jam lalu mobil di rem secara mendadak.
Gambar 4.20 Grafik Percepatan Mobil Percobaan 3
53
Gambar 4.21 Grafik Kecepatan Mobil Percobaan 3
Gambar 4.22 Grafik Posisi Mobil Percobaan 3
Pada Percobaan 3 ini, masih terdapat error pada kecepatan mobil yaitu saat 30km/jam. dari grafik yang terukur menunjukkan kecepatan mobil sebelum direm yaitu sebesar 39,54 km/jam. Error yang dihasilkan yaitu sebesar :
Ketiga percobaan tersebut dilakukan beberapa kali dengan mobil yang sama, jalan yang sama , jam yang sama, namun pada hari yang berbeda-beda.
4.3.
Pengujian Sensor Gaya Hasil Pengujian Sensor Gaya Flexiforce dilakukan oleh Badan Kalibrasi PT.
Multi Instrumentasi Semarang. Tabel 4.4 menunjukkan hasil kalibrasi sensor Flexiforce.
54
Tabel 4.4 Nilai Standar (N) 49,03 98,07 147,10 196,17 245,21 294,24 392,36
Hasil Kalibrasi Sensor Flexiforce[17] Penunjukan Alat (N) 49,69 98,56 147,13 196,69 245,49 294,30 392,76
Ketidakpastian (±)
±5,64
Ketidakpastian adalah angka yang menunjukkan ukuran lebar distribusi dari nilai terukur untuk pembacaan alat ukur atau nilai bahan ukur yang telah dikoreksi. Ketidakpastian kalibrasi dinyatakan pada tingkat kepercayaan 95% dengan faktor k=2. Informasi detail teknis tercantum pada sertifikat kalibrasi di lampiran. Gambar 4.23 adalah gambar pemasangan sensor flexiforce pada pedal rem mobil.
Sensor Flexiforce
Pedal Kopling
Pedal Rem
Pedal Gas
Gambar 4.23 Gambar Pemasangan Sensor Flexiforce Pada Pedal Rem
4.4.
Pengujian Alat Secara Keseluruhan Gambar 4.24 adalah gambar alat secara keseluruhan, sedangkan Gambar 4.25
menunjukkan gambar ketika power on dihidupkan. Pada layar LCD tertampil hari, tanggal, waktu dan kecepatan mobil sebelum diinjak pedal rem.
55
charger 120 mm
170mm
Mobile Printer
Modul Kontrol
FlexiForce
Gambar 4.24 Gambar Alat Keseluruhan
Gambar 4.25 Gambar Alat Ketika Power On
Gambar 4.26 menunjukkan informasi setelah penginjakan rem. Data yang ditampilkan yaitu perlambatan kendaraan (g), posisi kendaraan setelah direm (g/posisi), gaya injak rem (N).
56
Arah sumbu x
Arah sumbu y
Posisi kendaraan setelah direm
Jarak pengereman Gaya Injak rem
Gambar 4.26 Gambar Informasi Setelah Penginjakan Rem
Gambar 4.27 adalah gambar cetakan hasil pengukuran.
Gambar 4.27 Gambar Hasil Cetak Portable Printer