BAB IV ANALISIS DATA DAN PEMBAHASAN 4.1 Analisis Jawaban Siswa Setelah memeriksa hasil jawaban siswa maka peneliti mengelompokkan kesalahan-kesalahan yang di lakukan siswa dalam setiap nomor soal. Tabel 5 Hasil Jawaban Siswa No
Responden
Nomor Soal 1
2
3a
3b
4
5
6
√
KP
TM
KK
KK
1.
Abd. Fahmi Damba’o
KK KP
2.
Abd. Latif Talipi
KK
√
√
√
TM
KK
KK
3.
Andri Wontami
KK
√
√
√
KK
KK
KK
4.
Ansar Noma
√
√
√
√
KK
√
KK
5.
Arifin Antula
KK
√
√
KP
KK
KK
TM
6.
Aswin Idris Usman
KK
√
√
KP
KK
KK
KK
7.
Hamzah I. Toiyo
KK
√
√
√
KK
KK
TM
8.
Rival Ahmad
KK
√
√
KP
KK
KK
KK
9.
Romi Lamatenggo
KK
√
√
√
KK
KP
KK
10.
Roslan Salehe
KK
√
√
√
KK
KK
KK
11.
Ervina Supu
KK
√
√
√
KK
KP
KK
12.
Eryunita Samudu
KK
√
√
KK
KK
√
KK
13.
Iska Imran
KK
√
√
√
KK
KK
KK
14.
Nova Afriani Abas
KK
√
√
√
KK
KP
KK
15.
Novi Ulitoto
KK
√
√
√
KK
KK
KK
16.
Rita Samsi
KK
√
√
KP
KK
KK
KK
17.
Sagita A. Azis
KK
√
√
√
KK
KP
KK
18.
Siska Kadjim
KK
√
√
√
TM
TM
TM
19.
Sri Yulan Dusa
KK
√
√
√
KK
KP
KK
20.
Trisnawati Iskandar
KK
√
√
KP
TM
KK
KK
31
√
√
KK
KK
KK
√
√
√
KK
KP
KK
√
√
√
KK
KK
KK
21.
Vindyawati Indara
KK KP
22.
Yunita Tilahunga
KK
23.
Zein Libunelo
KK
Keterangan: √ = Benar
TM = Tidak Menjawab
KK = Kesalahan Konsep dan tekhnik perhitungan KP = Kesalahan Perhitungan Dari tabel di atas dapat di ketahui persentase siswa yang melakukan kesalahan dalam tiap-tiap soal. Untuk itu penulis melakukan perhitungan dengan menggunakan rumus:
Keterangan: P = Persentase F = Frekuensi N = Banyak responden Sehingga
hasil persentase yang di peroleh dapat di lihat pada tebel
berikut: Tabel 6 Persentase Kesalahan Siswa Dalam Tiap-Tiap Soal No.Soal 1
Jenis Kesalahan Kesalahan Konsep dan tekhnik
Frekuensi Peresentase 22
95,7 %
Kesalahan Perhitungan
-
-
Kesalahan dalam memahami soal
-
-
Kesalahan menggunakan notasi
-
-
Kesalahan Konsep dan tekhnik
-
-
perhitungan
2
perhitungan
32
3a
Kesalahan Perhitungan
2
8,7 %
Kesalahan dalam memahami soal
-
-
Kesalahan menggunakan notasi
-
-
Kesalahan Konsep dan tekhnik
-
-
Kesalahan Perhitungan
-
-
Kesalahan dalam memahami soal
-
-
Kesalahan menggunakan notasi
-
-
Kesalahan Konsep dan tekhnik
1
4,3 %
Kesalahan Perhitungan
6
26,1 %
Kesalahan dalam memahami soal
-
-
Kesalahan menggunakan notasi
-
-
Kesalahan Konsep dan tekhnik
19
82,6 %
Kesalahan Perhitungan
-
-
Kesalahan dalam memahami soal
-
-
Kesalahan menggunakan notasi
-
-
Kesalahan Konsep dan tekhnik
14
60,9 %
Kesalahan Perhitungan
6
26,1 %
Kesalahan dalam memahami soal
14
60,9 %
Kesalahan menggunakan notasi
-
-
Kesalahan Konsep dan tekhnik
20
87 %
Kesalahan Perhitungan
-
-
Kesalahan dalam memahami soal
-
-
Kesalahan menggunakan notasi
-
-
perhitungan
3b
perhitungan
4
perhitungan
5
perhitungan
6
perhitungan
33
Adapun untuk data jumlah kesalahan yang di lakukan siswa dalam mengerjakan soal-soal matriks di tinjau dari: kesalahan konsep dan tekhnik perhitungan, kesalahan perhitungan, kesalahan memahami soal, dan kesalahan menggunakan notasi dapat di lihat pada tabel berikut: Tabel 7 Jumlah Kesalahan Yang Dilakukan Jenis kesalahan
Jumlah
Nomor Soal
Item
1
2
3a
3b
4
5
6
Total
∑B
1
23
23
22
4
9
3
85
∑S
22
0
0
1
19
14
20
76
Kesalahan
∑B
23
21
23
17
23
17
23
147
Perhitungan
∑S
0
2
0
6
0
6
0
14
Kesalahan dalam
∑B
23
23
23
23
23
9
23
147
memahami soal
∑S
0
0
0
0
0
14
0
14
Kesalahan
∑B
23
23
23
23
23
23
23
161
menggunakan notasi
∑S
0
0
0
0
0
0
0
0
Kesalahan Konsep dan tekhnik perhitungan
Dari jumlah kesalahan itu akan dihitung rata-rata persentase tiap aspek kesalahan yang di lakukan siswa dengan menggunakan rumus (Sri Sutarni dkk, 2013: 112): ∑ ∑
∑
Keterangan: P = Persentase kesalahan yang di cari ∑ = jumlah soal yang dijawab salah dari total semua soal ∑ = jumlah soal yang dijawab benar dari total semua soal 34
Sehingga di peroleh hasil perhitungan sebagai berikut: (1) Untuk keslahan konsep dan tekhnik perhitungan adalah 47,2 %, (2) Untuk kesalahan perhitungan adalah 8,7 %, (3) Untuk kesalahan dalam memahami soal adalah 8,7 %, dan (4) untuk keslahan dalam menggunakan notasi adalah 0 %. 4.2 Hasil Wawancara Untuk lebih memastikan letak kesalahan dan penyebab kesalahan siswa dalam menyelesaikan soal matriks, maka peneliti melakukan wawancara. Dalam wawancara ini, peneliti memilih beberapa orang siswa saja untuk di wawancarai sebagai perwakilan dari siswa-siswa yang lain. Dalam memilih siswa yang akan di wawancarai, peneliti melihat dari hasil skor perolehan siswa, sehingga di bagi dalam tiga kategori, yakni siswa kategori tinggi (SKT), siswa kategori sedang (SKS), dan siswa kategori rendah (SKR). 1. Siswa Kategori Tinggi (SKT) - Responden 4 (Ansar Noma) Peneliti: Sekarang lihat hasil jawabanmu, apakah kamu yakin dengan hasil jawabanmu? Siswa : Hhmm, kalau sebatas pengetahuan saya, saya kurang yakin dengan jawaban nomor 4 dan nomor 6 bu. Peneliti : iya, setelah saya periksa hasil jawabanmu, ternyata ada dua soal yang kamu jawab salah yakni soal nomor 4 dan nomor 6. Kira-kira apa kesulitanmu dalam menyelesaikan soal nomor 4 tentang mencari invers dan determinan matriks ordo 3 x 3, serta soal nomor 6 yaitu
35
menentukan penyelesaian system persamaan linear tiga variable dengan matriks yang melibatkan determinan ? Siswa
: kalau nomor 4, saya memang belum terlalu paham untuk mencari invers dari matriks 3 x 3, karena materi invers matriks 3 x 3 yang di jelaskan tidak terlalu mendalam. Begitu juga dengan nomor 6 bu, materi yang di berikan tidak terlalu mendalam.
- Responden 9 (Romi Lamatenggo) Peneliti : Sekarang lihat hasil jawabanmu, apakah kamu yakin dengan hasil jawabanmu ? Siswa : yang lain yakin, yang lain tidak yakin bu. Peneliti : ok, jawaban yang kamu yakin benar nomor berapa ? Siswa : nomor 1, nomor 2, nomor 3 dan nomor 5 Peneliti : Coba kamu perhatikan jawaban kamu yang nomor 1, di sini kamu menjawab
sebagian
pengerjaan
sudah
benar,
tapi
perhatikan
pengerjaanmu yang ini: 16 = 4p + 0 -4p = -16 + 0 …………………(Langkah ke-1) p = -16/4 ……………………(langkah ke-2) p = -4 …………………………(langkah ke-3) bisakah kamu jelaskan mengapa hasilnya -4 ? Siswa
: pada langkah ke-1, saya memindahkan 4p dari ruas kanan ke ruas kiri dengan mengubah tandanya. Begitu juga dengan angka 16, saya memindahkan ruasnya dengan mengubah tanda.
36
Peneliti : Perhatikan ya, jawaban kamu sudah benar, tetapi sebenarnya tanpa kamu memindahkan ruas, kamu sudah bisa melakukan operasi 4p + 0 = 4p secara langsung sehingga kamu peroleh persamaan 16 = 4p. coba sekarang kamu lihat jawabanmu pada langkah ke dua, mengapa persamaan -4p = -16 + 0 menghasilkan p = -16/4.? Siswa
: hasil dari langkah ke-2 ini, untuk memperoleh nilai p, maka saya memindahkan koefisien p yakni -4 dari ruas kiri ke ruas kanan dengan mengubah tanda dari -4 menjadi 4. karena di ruas kiri merupakan operasi perkalian maka ketika koefisien -4 berpindah ruas, angkanya menjadi pembagi untuk angka -16.
Peneliti :
Sebenarnya untuk pernyataan kamu bahwa “ruas kiri merupakan operasi perkalian maka ketika koefisien -4 berpindah ruas, angkanya menjadi pembagi untuk angka -16” itu sudah benar tahapannya. Akan tetapi perlu untuk saya tekankan, bahwa keliru bila kita menggunakan konsep pindah ruas, sebab konsep pindah ruas tidak ada dalam aturan matematika. Konsep pindah ruas itu hanya merupakan cara praktis guru-guru di sekolah agar siswa cepat paham. Sehingganya akibat cara praktis pindah ruas ini, kamu melakukan kesalahan yang sangat keliru pada saat koefisien dari variabel p berpindah ruas. karena -4p merupakan operasi perkalian -4 x p, maka ketika pindah ruas, tidak seharusnya kamu mengubah tanda dari -4 menjadi angka 4, kecuali operasi aljabar untuk penjumlahan atau pengurangan. Jadi aturan matematika sebenarnya, untuk mendapatkan nilai p dari persamaan “-4p
37
= -16”, maka kamu harus mengalikan kedua ruas dengan -1/4. mengapa -1/4 ? karena ketika kamu mengalikannya dengan ruas kiri yakni koefisien -4 dari variabel p, maka kamu akan memperoleh operasi perkalian -1/4 x 4p, akibatnya kamu peroleh 1p atau biasa di sebut p. sehingga akan diperoleh juga langkah ke-2 itu adalah p = -16/-4, dan langkah ke-3 p = 4. Akibat pindah ruas ini, jawaban kamu yaitu p = -4 itu keliru. sehingga pada tahap akhir ketika mensubtitusi nilai p = -4 hasil terakhirnya juga salah. Siswa : oh, iya bu. Peneliti : baiklah, tadi kamu mengatakan bahwa jawaban yang kamu yakini benar itu adalah nomor 1, 2, 3, dan 5. berarti untuk nomor 4 dan 6 kamu yakin salah, coba berikan alasanmu ! Siswa
: nomor 4, sebenarnya saya memang tidak paham untuk menyelesaikan invers dari matriks 3 x 3, karena materi invers matriks 3 x 3 yang di jelaskan tidak terlalu detail. Begitu juga dengan nomor 6 bu, materi yang di berikan tidak terlalu detail.
2. Siswa Kategori Sedang (SKS) - Responden 12 ( Eryunita Samudu) Peneliti : Sekarang lihat hasil jawabanmu, apakah kamu yakin dengan hasil jawabanmu ? Siswa : kurang yakin bu, Peneliti : Nomor berapa yang kamu kurang yakin ? Siswa : Kayaknya nomor 3b saya bingung bu,
38
Peneliti : Bingung kenapa ? padahal untuk nomor 3b penyelesaiannya sama dengan nomor 3a, sementara untuk nomor 3a hasil jawabanmu benar tapi kenapa 3b jawabanmu salah ? Siswa
: Saya masih bingung dengan perkalian antar dua matriks, apalagi jika matriksnya sudah berordo 3 x 3 atau lebih
Peneliti : Baiklah, selain nomor 3b, nomor berapa lagi yang kamu kurang yakin benar ? Siswa : nomor 4 dan 6 bu, Peneliti : alasannya kenapa ? Siswa
: Saya tidak paham cara untuk menyelesaikan invers dari matriks 3 x 3, karena materi invers matriks 3 x 3 yang di jelaskan tidak terlalu detail. Begitu juga dengan nomor 6 bu, materi yang di berikan tidak terlalu detail.
- Responden 13 (Iska Imran) Peneliti : Sekarang lihat hasil jawabanmu, apakah kamu yakin dengan hasil jawabanmu? Siswa : kurang yakin bu, peneliti : nomor berapa yang kamu kurang yakin ? Siswa : nomor 1,4,5, dan 6 Peneliti : Sekarang kamu lihat jawaban nomor 1, pengerjaan kamu yang lain sudah benar, tapi kamu lihat jawaban kamu yang ini: 17 = 3p + q 17 = 3 (4) + q
39
q = 12 – 17 → q = -5 Coba kamu jelaskan alasan kamu menjawab seperti itu ? Siswa : nilai p sudah saya dapat hasilnya 4, jadi saya subtitusikan ke persamaan 17 = 3p + q, sehingga menjadi 17 = 3 (4) + q, 17 = 12 + q. selanjutnya, karena saya akan mencari nilai q maka variabel q saya pidah dari ruas kanan ke ruas kiri, begitu juga 17 saya pidah dari ruas kiri ke ruas kanan menjadi -17 Penelit : Jadi kalau kamu pakai konsep pindah ruas berarti variabel q yang tadinya ada di ruas kanan bernilai positif ketika kamu pidahkan ke ruas kiri akan berubah tanda menjadi –q, tapi kenapa tidak berubah tanda ? Siswa
: Diam
Peneliti : Perhatikan ya, perlu untuk saya tekankan, bahwa keliru bila kita menggunakan konsep pindah ruas, sebab konsep pindah ruas tidak ada dalam aturan matematika. Konsep pindah ruas itu hanya merupakan cara praktis guru-guru di sekolah agar siswa cepat paham. Sehingganya akibat cara praktis pindah ruas ini, banyak siswa yang melakukan kesalahan. kosep yang sebenarnya ketika kamu ingin mencari nilai q, maka kedua ruas harus di tambahkan dengan -12, sehingga menjadi 17 = 12 + q 17 +(– 12) = 12 + (– 12) + q 17 – 12 = 12 – 12 + q 5=0+q 5 = q atau q = 5
40
akibat dari hasil nilai q yang kamu dapat salah maka, hasil akhirnya juga salah Siswa : oh, iya bu Peneliti : Sekarang lihat jawaban kamu nomor 4 dan 6, jawaban yang kamu kurang yakin. alasannya kenapa ? Siswa
: Saya tidak paham cara untuk menyelesaikan invers dari matriks 3 x 3, karena materi invers matriks 3 x 3 yang di jelaskan tidak terlalu detail. Begitu juga dengan nomor 6 bu, materi yang di berikan tidak terlalu detail.
Peneliti : ok, sekarang lihat jawaban kamu nomor 5, apa alasan kamu menjawab seperti itu ? Siswa
: Di soal kan yang di tanyakan nilai ( pertama nilai
, kemudian
)
=…… jadi yang saya cari
, setelah di dapat nilai
dan
,
saya kalikan dengan A. Peneliti : Sebenarnya jawaban kamu hampir benar tapi tidak lengkap dalam menuliskan sistematika penyelesaian masalah dari soal. Untuk lebih memudahkan penyelesaian dari soal ini kamu bisa menggunakan sifatsifat dari invers matriks. Apakah kamu masih ingat sifat-sifat dari invers matriks? Siswa : Tidak bu Peneliti : Baiklah, sifat-sifat dari invers matriks adalah (
)
dan
, jadi sifat-sifat dari matriks ini dapat kamu
gunakan dalam menyelesaikan soal ini, kemudian matriks A jika di cari
41
transposnya hasilnya tetap matriks A, sehingga untuk sifat invers matris 3.
. Kemudian
, bisa kamu buktikan kebenarannya.
Siswa Kategori Rendah (SKR)
- Responden 18 (Siska Kadjim) Peneliti : Setelah saya melihat hasil jawaban kamu ada tiga soal yang tidak kamu jawab, yakni soal nomor 4, 5, dan 6. Apa alasannya kamu tidak menjawab soal ? Siswa : Kehabisan waktu bu. Peneliti : Jika seandainya waktunya belum habis, apakah kamu bisa menyelesaikan soal ini ? Siswa
: kurang yakin bu, soalnya saya juga belum paham dengan materi invers dan Sistem persamaan linear dengan menggunakan matriks.
- Responden 16 (Rita Samsi) Peneliti : sekarang lihat hasil jawabanmu, pada soal nomor 3b tentang menghitung perkalian dari dua matriks, coba kamu periksa apakah hasilnya sudah benar? Siswa : (sambil melihat hasil jawabannya) ada yang salah bu Peneliti : di bagian mana yang salah ? Siswa : pada baris ke dua kolom pertama Peneliti : coba di sebutkan kesalahannya apa ? Siswa
: saya keliru dalam menghitung, di sini 3 + 5 + (-10) hasilnya 5, yang seharusnya hasilnya -2
42
Peneliti : ok, sekarang kamu sudah tahu letak kesalahannya, tapi untuk cara dan konsep dalam mencari perkalian antara dua matriks kamu sudah paham kan? Siswa : sudah paham bu 4.3 Pembahasan Berdasarkan analisis data dan wawancara, di peroleh hasil bahwa siswa mengalami kesalahan dalam menyelesaikan soal-soal matriks. Berikut ini akan di paparkan kesalahan-kesalahan siswa pada setiap nomor soal. 1.
Pada soal nomor 1 terlihat pada tabel persentase kesalahan siswa, bahwa ada 95,7 % siswa yang mengalami kesalahan dalam pemahaman konsep dan tekhnik berhitung. Mereka salah dalam melakukan operasi aljabar atas dua matriks, berdasarkan kesalahan tersebut dapat di pahami, bahwa kesalahan itu terjadi, karena mereka kurang menguasai konsep perkalian dan pembagian, penjumlahan dan pengurangan bilangan.
2.
Untuk soal nomor 2 dalam menentukan determinan dari matriks 2 x 2 kesalahan yang di lakuan siswa adalah kesalahan dalam perhitungan. Mereka sudah menguasai konsep tetapi masih salah dalam melakukan perhitungan. Adapuan persentase kesalahannya sebanyak 8,7 %.
3.
Pada soal nomor 3a dan 3b dalam menghitung perkalian dua matriks. siswa salah dalam melakukan perhitungan pada nomor 3b sebanyak 26,1 %, sedangkan siswa yang mengelami kesalahan konsep ada 4,3 %. Pada soal nomor 3a 100 % siswa menjawab benar.
43
4.
Pada soal nomor 4 dalam menentukan invers dan determinan matriks ordo 3 x 3, ada empat orang siswa yang tidak menjawab soal di karenakan siswa kurang bisa membagi waktu dalam mengerjakan soal. Sedangkan siswa yang lain salah karena kurang menguasai konsep dalam menentukan invers dari matriks 3 x 3, hal ini di karenakan pendalaman materi invers matriks 3 x 3 belum maksimal sehingga siswa yang mengalami kesalahan mencapai 82,6 %.
5.
Untuk soal nomor 5 menentukan invers dari matriks 2 x 2, ada 60,9 % siswa yang salah dalam memahami soal sehingga ini berdampak pada kesalahan pangerjaannya dan konsep yang di gunakan juga salah. Sedangkan 26,1 % adalah siswa yang mengalami kesalahan dalam melakukan perhitungan, mereka sudah menguasai konsep tetapi salah dalam melakukan perhitungan.
6.
Sedangkan pada soal nomor 6 dalam menentukan penyelesaian system persamaan linear tiga variable dengan matriks yang melibatkan determinan, ada tiga orang siswa yang tidak menjawab di karenakan siswa kurang bisa membagi waktu dalam mengerjakan soal. Sementara 87 % siswa tidak menguasai konsep di karenakan materi yang di ajarkan tidak terlalu mendalam. Selanjutnya untuk persentase kesalahan siswa di tinjau dari: kesalahan
konsep dan tekhnik perhitungan, kesalahan perhitungan, kesalahan memahami soal, dan kesalahan menggunakan notasi adalah sebagai berikut: 1.
Kesalahan konsep dan tekhnik perhitungan mencapai 47,2 %, kesalahan ini dilakukan pada nomor 1, 4, 5, dan 6
44
2.
Kesalahan perhitungan adalah 8,7 %. kesalahan ini di lakukan pada nomor 2, 3b, dan 5
3.
Kesalahan memahami soal adalah 8,7 %. Kesalahan ini di lakukan pada nomor 5
4.
Kesalahan dalam menggunakan notasi adalah 0 % Berdasarkan uraian diatas dapat di sumpulkan bahwa faktor-faktor
penyebab kesalahan yang dialami siswa dalam menyelesaikan soal matriks adalah: a.
Siswa kurang memahami konsep
b.
Kurang terampil dalam operasi perkalian dan pembagian, penjumlahan dan pengurangan
c.
Kurang teliti
d.
Kurang faham perintah soal
e.
Siswa kurang bisa membagi waktu dalam mengerjakan soal
f.
Tidak maksimalnya pemberian materi dari guru
45