BAB III PENGAMBILAN DATA Didalam pengambilan data pada skripsi ini harus di perhatikan beberapa hal sebagai berikut : 3.1 PEMILIHAN TRANSFORMATOR Pemilihan transformator kapasitas trafo distribusi berdasarkan pada beban yang akan dilayani, diusahakan presentasi pembebanan trafo distribusi mendekati 80 %. Trafo distribusi umumnya mencapai efesiensi maksimum. Bila beban terlalu besar maka akan dilakukan pergantian trafo atau mutasi trafo. Mutasi antar trafo dapat dilakukan setelah hasil pengukuran beban yang diperoleh. Maka didapatkanlah rumus rating trafo distribusi πΎππ΄ π΅ππππ (πΎππ΄)
(3.1)
0,8
Dimana : KVA : rating trafo yang ada pada trafo (KVA) Pilih rating trafo distribusi yang sebenarnya mendekati hasil perhitungan dengan rumus diatas. Apabila perhitungan diluar rating trafo distribusi yang tersedia, maka diupayakan penyeimbangan beban. Beban yang ada atau pengalihan beberapa beban sampai tercapai rentangan tersebut. 3.2 PEMBEBANAN TRANSFORMATOR Untuk menghitung besarnya pembebanan pada trafo distribusi, terlebih dahulu harus dihitung besarnya arus beban penuh dari sisi tegangan primer melalui persamaan daya berikut ini. S = β3 x V x I
(3.2)
Dimana : S
: Daya Trafo (KVA)
V : Tegangan Sisi Primer (kV) I
: Arus Jala jala (A)
31 http://digilib.mercubuana.ac.id/
32
Sehingga untuk menghitung arus beban penuh (full load) dapat menggunakan : πΌ ππ’ππ ππππ =
π β3 π₯ π
(3.3)
Dimana : S
: Daya Transformator (KVA)
V
: Tegangan (kV)
I full load
: Arus (A)
Kemudian dapat dihitung besarnya presentase pembebanan dengan menggunakan persamaan berikut : %b =
IPH πΌπΉπΏ
π 100 %
(3.4)
Dimana : %b
: presentasi pembebanan (%)
IPH
: arus fasa (A)
IFL
: arus beban penuh (A)
Sehingga dapat menentukan presentasi rata rata pembebanan dengan menggunakan persamaan : Ir
(3.5)
Is
(3.6)
%IR = πΌπΉπΏ π 100 % %IS = πΌπΉπΏ π 100 % %IT =
It πΌπΉπΏ
π 100 %
(3.7)
Sehingga nilai rata rata pembebanan di anataranya : %I rata rata =
Ir+Is+It 3
Dimana: % IR/S/T
: presentase beban per fasa (%)
% Irata rata
: presentase rata rata trafo (%)
http://digilib.mercubuana.ac.id/
(3.8)
33
3.3 BEBAN SEIMBANG DAN TIDAK SEIMBANG Beban seimbang adalah suatu keadaan dimana ketiga vektor arus atau tegangan sama besar dan membentuk sudut 1200 satu sama lain, sedangkan beban tidak seimbang adalah dimana keadaan salah satu syarat keadaan seimbang tidak terpenuhi. Dapat dilihat pada gambar 3.1
(a)
(b)
Gambar 3.1 vektor diagram beban seimbang dan tidak seimbang Gambar 3.1 (a) menunjukkan vektor diagram aeus dalam keadaan seimbang. Terlihat juga bahwa ketiga vektor arusnya adalah sama dengan nol. Sedangkan pada gambar 3.1 (b) menunjukkan vektor diagram arus yang tidak seimbang, terlihat bahwa penjumlahan ketiga vektor arusnya tidak sama dengan nol sehingga muncul sebuah besaran yaitu arus netral yang bergantung dari seberapa besar faktor ketidak seimbangan Beban tiga fasa yang tidak seimbang akan dipikul oleh dua fasa yang sehat, sehingga arus primer dari fasa yang sehat akan mengalami kenaikan(dapat mencapai 1,5 kali arus nominal). Pembebanan transformator yang tidak seimbang selain menambah besar rugi rugi akan memperngaruhi umur transformator itu sendiri. Pembebanan transformator yang tidak seimbang di batasi, 25 % dari rata rata beban fasa.
http://digilib.mercubuana.ac.id/
34
Untuk menghitung besarnya ketidak seimbangan beban pada trafo distribusi dapat dilihat dari persamaan berikut : I rata rata =
Ir+Is+It
(A)
3
(3.9)
Dimana besar arus fasa dalam keadaan seimbang sama dengan besarnya arus rata rata maka koefisien a , b, dan c diperoleh dengan a =
Ir
b =
Is
c =
It
(3.10)
πΌ
(3.11)
πΌ
(3.12)
πΌ
dimana : I : I rata rata (A) Pada keadaan seimbang besar koefsien a,b,c adalah 1 dengan demikian rata rata ketidak seimbangan beban dalam presentase melalui persamaan dibawah ini : %ITata rata =
{|aβ1|+|πβ1|+|πβ1| 3
π 100 %
(3.13)
3.4 PENEMPATAN TRANSFORMATOR Bila jarak antar trafo terlalu jauh dengan beban yang akan dilayani, maka mennyebabkan voltage drop yang besar. Pada waktu pendataan KVA trafo harus diperhatikan jarak maksimum dari trafo distribusi ke konsumen. 3.5 KONDISI LINGKUNGAN Batas suhu ambient normal transformator desain SPLN(mengadopsi ketentuan IEC 6000-76-1) adalah -250 C sampai 400 C. Namun untuk transformator pasang dalam suhu ruangan gardu berpotensi melebihi 40 0 C dan tidak efektifnya sistem pendinginan gardu.
http://digilib.mercubuana.ac.id/
35
3.6 PENEMPATAN POSISI SADAPAN Faktor yang harus diperhatikan pada penempatan posisi sadapan adalah perbedaan antara tegangan SUTM pada beban rendah beban puncak. Bila posisi sadapan semua transformator ditempatkan pada posisi nominalnya (sadapan 3). Tegangan di sepanjang penyulang pada saat beban puncak digambarkan dengan kurva biru ; dengan tegangan pada ujung penyulang sebesar 18,86 kV. Pada saat beban puncak (kurva merah), tegangan pada ujung penyulang berkurang menjadi 17,68 kV Pengaturan posisi sadapan transformator untuk sadapan ketentuan standar 2 x 5 % (SPLN 50 : 1997) pada gambar 3.2 dan untuk sadapan 2 x 2,5 % (SPLN D3.002-1 : 2007) pada gambar 3.3.
Gambar 3.2 Pengaturan sadapan pada SPLN 50: 1997 .
http://digilib.mercubuana.ac.id/
36
Gambar 3.3 Pengaturan sadapan pada SPLN D3.002-1 : 2007 3.7 KRITERIA KONDISI TRAFO DISTRIBUSI Selain akibat resiko dari desain konstruksi trafo, unsur penuaan (aging) yang menjadi kodrat fisik material, ketidak sempurnaan pengendalian operasi atau
pemeliharaan
menjadikan
transformator
beresiko
mengalami
kerusakan saat beroperasi. Guna menghindari ini, maka perlu dilakukannya proses identifikasi kondisi trafo yang sedang beroperasi
dengan
membandingkan hasil pengukuran terhadap kriteria trafo distribusi dari berbagai segi. Adapun dari segi kelistrikan dan manajemen operasi, segi instalasi dan sistem proteksi
http://digilib.mercubuana.ac.id/
37
3.7.1 Segi kelistrikan dan manajemen operasi Kriteria trafo dari segi kelistrikan dan manajemen operasi dapat dilihat pada tabel 3.1 dibawah ini Tabel 3.1 kriteria trafo dari segi kelistrikan dan manajemen operasi No
Rincian Pengukuran
1
pengukuran beban tiap fasa dan arus netral
2 3
4
Kriteria Sehat
ketidakseimbangan Temperatur terminasi pada beban puncak temperatur trafo
I β€ I nominal fasa trafo I netral β€ I fasa pembebanan maksimum 80 % (ketetapan PLN) maksimum 25 % (ketetapan PLN) βt β€ 50 (IEC 694 tahun 1996) β€ 90 oC pada thermoter terpasang trafo (OTI) atau 85 oC pengukuran suhu dinding tangki bagian atas trafo pada beban puncak dengan yearly ambient normal (30 oC) atau dt < 50 oC (SPLN D3.002-1 : 2007)
3.7.2 Segi instalasi dan sistem proteksi Kriteria trafo dari segi instalasi dan sistem proteksi dapat dilihat pada tabel 3.2 dan 3.3 dibawah ini Tabel 3.2 kriteria trafo dari segi instalasi No 1 2 3 4
Rincian Pengukuran pemeriksaan Visual instalasi pembumian instalasi kabel TR / TM terminasi
Kriteria Sehat tidak terjadi kebocoran minyak trafo, isolator utuh dan baik secara fisik serta aksesoris trafo baik terpasang benar dengan nilai pembumian β€ 5β¦ untuk tegangan rendah dan β€ 1,73 β¦ untuk tegangan menengah sesuai standar konstruksi, rapi dan terpasang kuat pada kabel tray bersih, tidak tampak crack / alur retakan
http://digilib.mercubuana.ac.id/
38
Tabel 3.3 kriteria trafo dari segi sistem proteksi No 1 2
3
Rincian Pengukuran arrester fuse link tegangan menengah Fuse Peralatan hubung bagi (PHB) TR
Kriteria Sehat instalasi arrester terpasang sesuai konstruksi dengan tahanan pentanahan arrester β€ 1,73 β¦, arus bocor arrester β€30 mA (disesuaikan dengan masing masing standar pabrikan) rating fuse link sesaui dengan kapasitas trafo (tidak terlalu besar atau kecil) rating Fuse sesuai dengan besaran maksimum proteksi arus maksimum tiap jurusan
3.7.3 Segi kualitas minyak trafo Minyak trafo sebagai bahan isolasi utama setelah kertas, volumenya harus selalu dalam kondisi diatas batas minimum yang diijinkan. Apabila sampai terjadi kondisi minyak berada dibawah kondisi yang diijinkan, maka fungsi utama minyak sebagai isolasi trafo dan sebagai mediator pendingin, tidak akan berfungsi secara optimal sehingga hal ini memungkinkan terjadinya kegagalan pada trafo, baik itu karena stress tegangan ataupun karena stress panas yang ditimbulkan oleh winding. Dapat dilihat pada tabel 3.4 Tabel 3.4 kriteria trafo dari segi kualitas minyak No
Rincian pengukuran
Kriteria sehat
1
Tegangan tembus / 2,5 mm
baik >40 kV;sedang 30 β 40 kV; buruk < 30 kV
2
Kadar air
baik <10; sedang10-25; buruk >25 ppm
3
Warna minyak
baik =clear; buruk= dark
4
Kadar keasaman
Baik < 0,1; sedang 0,1-0,2; buruk >0,2 mg KOH/g
http://digilib.mercubuana.ac.id/
39
5
Faktor kebocoran dielektrik (tan delta)
Baik < 0,1; sedang 0,1-0,5; buruk >0,5
3.8 INSPEKSI TRANSFORMATOR Inspeksi adalah suatu pekerjaan yang dimaksudkan yntuk mendapatkan suatu data dari sistem suatu peralatan untuk mencegah kegagalan operasi peralatan pada sistem atau jaringan distribusi. Dalam melakukan inspeksi terdapat dua metode diantaranya : 3.5.1. Inspeksi dalam keadaan bertegangan (ONLINE) Inspeksi trafo distribusi online adalah bagian dari kegiatan inspeksi prediktif yang merupakan kegiatan pemeriksaan kondisi peralatan trafo distribusi yang dilakukan dalam keadaan bertegangan dan berbeban. Melalui kegiatan ini akan diperoleh data data awal kondisi kesehatan trafo distribusi yang kemudian digunakan sebagai bahan pertimbangan dalam proses analisa penentuan kondisi trafo hingga rekomendasi perbaikan atau pemeliharan. Adapun kegiatan inspeksi online diantranya : a. Pendataan asset trafo Kegiatan inspeksi diawali dengan pendataan asset pada peralatan yang terpasang pada gardu distribusi b. Pemeriksaan kondisi visiual dan konstruksi bagunan gardu Untuk mengetahui kelayakan dan kondisi peralatan terhadap standar konstruksi dan ketentuan ketenagalistrikan c. Pengukuran temperature peralatan dan suhu ruangan Pengukuran temperature peralatan untuk mengetahui kondisi ketidak normalan peralatan yang teridentifikasi melalui titik titik thermal yang diperoleh pada saat pengukuran. Sedangkan pengukuran
suhu
ruangan
untuk
menentukan
kondisi
temperature suhu ruangan pada gardu distribusi. Dengan menggunakan alat yang dinamakan Thermovision dengan prinsip gelombang infrared dengan jarak objek atau peralatan Β± 60 cm, suhu dapat dilihat dari warna gradasi warna.
http://digilib.mercubuana.ac.id/
40
d. Pengukuran beban Untuk mengetahui kualitas tegangan, faktor day, presentasi pembebanan trafo, ketidakseimbangan beban. Kesesuaian rating fuse yang terpasang dengan beban yang mengalir pada masing masing jurusa atau jalur. e. Pengukuran pentanahan Untuk mengetahui nilai tahanan dari sistem pentanahan gardu sebagai salah satu proteksi gardu dengan menggunakan Earth Tester (Megger). Nilai pentanahan peralatan yagn sangat besar diatas standar merupakan gambaran kondisi sistem pembumian peralatan yang tidak baik. 3.5.2. Inspeksi dalam keadaan tidak bertegangan (OFFLINE) Adapun kegiatan inspeksi trafo dalam keadaan offline, diantaranya: a. Pemeriksaan visual Pemeriksaan visual sama halnya dengan pemeriksaan visual yang dilakukan pada saat inspeksi dan pengukuran secara online, outputnya dari pengujian ini adalah untuk mengidentifikasi kerusakan kerusakan yang terjadi pada komponen transformator tanpa melepas dan membuka tangki. b. Pengujian tahanan isolasi Untuk mengetahui kondisi internal transformator dalam hal ini apakah fungsi utama transformator untuk mengisolasi tegangan antar belitan masih berada dalam kondisi baik saat dioperasikan. Dalam pelaksanaan pengujian ini dilakukan dengan alat Megger. Jika hasil pengujian tahanan isolasi tidak baik, sering kali menggambarkan kertas isolasi yang sudah terdegradasi (rusak) atau kualitas dari minyak isolasi yang sudah tidak baik. Besar nilai tahanan isolasi transformator minimum yang dikatakan baik ditentukan oleh kapasitas trafo dengan menggunakan rumus dibawah ini : R Isolasi Min =
πΆπ₯πΈ βπΎππ΄ + πΎπ
http://digilib.mercubuana.ac.id/
(3.14)
41
Dimana : C
: faktor belitan yang terendam isolasi minyak: 0,8
E
: tegangan primer (volt)
KVA
: daya transformator
KS
: faktor koreksi suhu belitan 20o : 1 Tabel 3.5 Nilai tahanan isolasi tahanan isolaso minimum (Mβ¦)
No
Kapasitas Transformator (KVA)
TM - BODY
TR β BODY
TM - TR
Megger 5000 V
Megger 1000 V
Megger 5000 V
1
100
1600 Mβ¦
1600 Mβ¦
1600 Mβ¦
2
160
1265 Mβ¦
1265 Mβ¦
1265 Mβ¦
3
250
1012 Mβ¦
1012 Mβ¦
1012 Mβ¦
4
315
902 Mβ¦
902 Mβ¦
902 Mβ¦
5
400
800 Mβ¦
800 Mβ¦
800 Mβ¦
6
630
637 Mβ¦
637 Mβ¦
637 Mβ¦
7
1000
506 Mβ¦
506 Mβ¦
506 Mβ¦
PENGUKURAN TAHANAN ISOLASI TM -TM DAN TR - TR HARUS NOL (ZERO) c. Pengujian Trun Transformator Ratio (TTR) Pengujian ini dilakukan untuk mengetahui normal tidaknya rasio antara belitan primer dan sekunder transformator pada setiap fasa pada masing masing sadapan. Dalam pelaksanaan pengujian ratio di lakukan dengan alat TrunTransformator Ratio melalui alat ini akan didapatkan besaran nilai rasio belitan transformator yang diukur. Hasil pengujian TTR yang tidak baik akan ditandai dengan nilai pengukuran rasio belitan yang berbeda dengan kondisi normalnya (perbedaan Β±0,5%) pada masing masing fasa. Nilai rasio belitan transformator dalam keadaan normal untuk berbagai jenis sadapan pada trafo
http://digilib.mercubuana.ac.id/
42
mengacu pada SPLN 20 :1997 (kenaikan tegangan ssadapan 5%) dan SPLN D3.002-1:2007 (kenaikan tegangan sadapan 2,5%) Tabel 3.6 nilai standar rasio belitan menurut SPLN
http://digilib.mercubuana.ac.id/