BAB II TINJAUAN PUSTAKA
2.1. Pengelasan Kira-kira 5000 tahun yang lalu, orang sudah dapat melakukan penyambungan logam dengan cara memanasi dua buah logam tersebut sampai suhu kritis kemudian keduanya ditumpangkan dan setelah itu dipalu yang akhirnya membentuk ikatan yang kuat. Api pemanasnya diperoleh dari pembakaran kayu atau arang kayu. Dapat dibayangkan, berapa lama waktu yang dibutuhkan untuk mencapai suhu yang dapat memasakan logam sampai suhu kritis...tentu cara semacam ini tidaklah efektif untuk digunakan dalam pengerjaan pengelasan yang sangat banyak dan berfariasi. Tahun 1892 gas asetilen ditemukan oleh Thomas Leopard Wetson. Campuran gas asetilen dan oksigen dengan perbandingan dan tekanan tertentu bila dibakar akan menghasilkan suhu yang cukup tinggi yang dapat mencairkan logam. Gas oksigen ini dapat diproduksi dengan cara mencairkan udara sehingga oksigen murninya dapat diambil. Cara ini dapat dilakukan oleh Brins bersaudara yaitu orang Perancis pada tahun 1886. Sebagai alat pembakar gas asetilen dan oksigen yang dinamakan brander, ditemukan oleh Fouche
dan
Picord.
Alat
ini
mulai
digunakan
pada
tahun
1901.
Setelah energi listrik ditemukan maka perkembangan proses pengelasan berjalan dengan pesat. Pada tahun 1885 alat-alat las busur listrik ditemukan oleh Bernardes. Tahun 1886 Thomas menemukan sistem las dengan tahanan listrik. Kemudian pada tahun 1926 las hidrogen ditemukan oleh Lungumir dan las busur listrik dengan pelindung gas mulia ditemukan oleh Hobart dan Dener. Tahun 1936 Wasserman menemukan cara-cara prmbrasingan yang mempunyai kekuatan tinggi. Dari tahun 1950 sampai sekarang telah ditemukan cara-cara las baru antara lain las tekan dingin, las listrik terak, las busur dengan pelindung gas CO2, las gesek, las ultrasonik, las sinar elektron, las busur plasma, las laser, dan masih banyak lagi lainnya.
Universitas Sumatera Utara
Definisi pengelasan menurut DIN (Deutsche Industrie Normen) adalah ikatan metalurgi pada sambungan logam atau logam paduan yang dilaksanakan dalam keadaan lumer atau cair. Dengan kata lain, pengelasan adalah suatu proses penyambungan logam menjadi satu akibat panas dengan atau tanpa pengaruh tekanan atau dapat juga didefinisikan sebagai ikatan metalurgi yang ditimbulkan oleh gaya tarik menarik antara atom. Pada tahap-tahap permulaan dari pengembangan teknologi las, biasanya pengelasan hanya digunakan pada sambungan-sambungan dari reparasi yang kurang penting. Tapi setelah melalui pengalaman dan praktek yang banyak dan waktu yang lama, maka sekarang penggunaan proses-proses pengelasan dan penggunaan konstruksi-konstruksi las merupakan hal yang umum di semua negara di dunia. Terwujudnya standar-standar teknik pengelasan akan membantu memperluas ruang lingkup pemakaian sambungan las dan memperbesar ukuran bangunan konstruksi yang dapat dilas. Dengan kemajuan yang dicapai sampai saat ini, teknologi las memegang peranan penting dalam masyarakat industri modern. 2.2. Klasifikasi Pengelasan Dalam Industri Ditinjau dari sumber panasnya. Pengelasan dapat dibedakan menjadi: 1. Mekanik 2. Listrik 3. Kimia Sedangkan menurut cara pengelasan, dibedakan menjadi dua bagian besar: 1. Pengelasan tekanan (Pressure Welding) 2. Pengelasan Cair (Fusion welding)
Universitas Sumatera Utara
Gambar 2.1. Diagram Temperatur Cair Material. Sumber: Haynes Techbook Welding Manual, Jay Storer And John Haynes. 2.3. Pengelasan Cair (Fusion Welding) Pengelasan cair adalah proses penyambungan logam dengan cara mencairkan logam yang tersambung. Jenis-jenis pengelasan cair adalah sebagai berikut:
Universitas Sumatera Utara
1. Oxyacetylene Welding 2. Electric Arc Welding 3. Shield Gas Arc Welding - TIG - MIG - MAG - Submerged Welding 4. Resistance Welding - Spot Welding - Seam Welding - Upset Welding - Flash Welding -Electro Slag Welding - Electro Gas Welding 5. Electron Beam Welding 6. Laser Beam Welding 7. Plasma Welding
Universitas Sumatera Utara
2.4. Las Busur Listrik Las busur listrik atau umumnya disebut dengan las listrik adalah suatu proses penyambungan logam dengan menggunakan tenaga listrik sebagai sumber panas. Jenis sambungan dengan las Iistrik ini adalah merupakan sambungan tetap dengan menggunaan busur listrik untuk pemanasan. Panas oleh busur listrik terjadi karena adanya loncatan elektron dari elektroda melalui udara ke benda kerja. Elektron tersebut bertumbukan dengan udara/gas serta memisahkannya menjadi elektron dan ion positif. Daerah di mana terjadi loncatan elektron disebut busur (Arc). Menurut Bernados (1885) bahwa busur yang terjadi di antara katoda karbon dan anoda logam dapat meleburkan logam sehingga bisa dipakai untuk penyambungan 2 buah logam.
Gambar 2.2. Prinsip Kerja Perpindahan Logam Pada Proses SMAW. Sumber: Teknik Pengelasan Kapal; Heri Sunaryo.
Las Busur Listrik dapat dibagi menjadi: 1). Las Elektroda Karbon 2). Las Elektroda Terbungkus
Universitas Sumatera Utara
3). Las Busur Rendam 4). Las Busur CO2 5). Las TIG 6). Las MIG 7). Las Busur dengan elektroda berisi fluks Prinsip Kerja Las Listrik. Pada dasarnya las listrik yang menggunakan elektroda karbon maupun logam, menggunakan tenaga listrik sebagai sumber panas. Busur listrik yang terjadi antara ujung elektroda dan benda kerja dapat mancapai temperatur tinggi yang dapat melelehkan sebagian bahan merupakan perkalian antara tegangan listrik (E) dangan kuat arus (I) dan waktu (t) yang dinyatakan dalam satuan panas joule, atau kalori seperti rumus dibawah ini : H=ExIxt dimana : H = Panas Dalam Satuan Joule. E = Tegangan Listrik Dalam Volt. I = Kuat Arus Dalam Amper. t = Waktu Dalam Detik. 1). Las Listrik Dengan Elektroda Karbon Carbon Arc Welding mungkin adalah proses las listrik yang dikembangkan pertama kali menurut catatan, eksperimen las listrik pertama kali dilakukan pada tahun 1881, ketika Auguste de Meritens (Perancis) menggunakan busur karbon sebagai sumber pengelasan dengan aki sebagai sumber listriknya. Dalam eksperimennya, dia menghubungkan benda kerja dengan kutub positif. Walaupun kurang efisien, proses ini berhasil menyatukan timah dengan timah. Carbon Arc Welding adalah proses untuk menyatukan logam dengan menggunakan panas dari busur listrik, tidak memerlukan tekanan dan batang pengisi (filler metal) dipakai jika perlu. Carbon Arc Welding banyak digunakan dalam
pembuatan
aluminium
dan
besi.
Mula-mula
elektroda
Universitas Sumatera Utara
kontak/bersinggungan dengan logam yang dilas sehingga terjadi aliran arus listrik, kemudian elektroda diangkat sedikit sehingga timbullah busur. Panas pada busur o
bisa mencapai 5.500 C. Sumber arusnya bisa DC maupun AC. Dengan menggunakan DC/AC, proses Carbon
Arc
Welding
bisa
dipakai
secara
manual
ataupun
otomatis.
Pendinginannya tergantung besarnya arus, bila penggunaan arus di atas 200 Ampere digunakan air pendingin (Water Cooled). Dan sebaliknya bila di bawah 200 Ampere digunakan pendingin dengan udara bebas (Air cooled). Jenis bahan elektroda yang banyak digunakan adalah elektroda jenis logam walaupun ada juga jenis elektroda dari bahan karbon namun sudah jarang digunakan. Elektroda berfungsi sebagai logam pengisi pada logam yang dilas sehingga jenis bahan elektroda harus disesuaikan dengan jenis logam yang dilas. Untuk las biasa mutu lasan antara arus searah dengan arus bolak-balik tidak jauh berbeda, namun polaritas sangat berpengaruh terhadap mutu lasan. Elektroda yang digunakan pada pengelasan jenis ini ada 3 macam yaitu : elektroda polos, elektroda fluks dan elektroda berlapis tebal. Elektroda polos adalah elektroda tanpa diberi lapisan dan penggunaan elektroda jenis ini terbatas antara lain untuk besi tempa dan baja lunak. Elektroda fluks adalah elektroda yang mempunyai lapisan tipis fluks, dimana fluks ini berguna melarutkan dan mencegah terbentuknya oksida-oksida pada saat pengelasan. Kawat las berlapis tebal paling banyak digunakan terutama pada proses pengelasan komersil. Lapisan pada elektroda berlapis tebal mempunyai fungsi : 1. Membentuk lingkungan pelindung. 2. Membentuk terak dengan sifat-sifat tertentu untuk melindungi logam cair. 3. Memungkinkan pengelasan pada posisi diatas kepala dan tegak lurus. Kecepatan pengelasan dan keserbagunaan mesin las arus bolak-balik dan arus searah hampir sama, namun untuk pengelasan logam/pelat tebal, las arus bolakbalok lebih cepat.
Universitas Sumatera Utara
2). Las Elektroda Terbungkus (Coated Electrode Welding) Cara Pengelasan dimana elektrodanya dibungkus dengan fluks merupakan pengembangan lebih lanjut dari pengelasan dengan eletroda logam tanpa pelindung (Bare Metal Electrode). Dengan elektroda logam tanpa pelindung, busur sulit dikontrol dan mengalami pendinginan terlalu cepat sehingga O2 dan N2 dari atmosfir diubah menjadi oksida dan nitrida, akibatnya sambungan menjadi rapuh dan lemah. Prinsip Las Elektroda Terbungkus adalah akibat dari busur listrik yang terjadi antara elektroda dan logam induk yang mengakibatkan logam induk dan ujung elektroda mencair dan kemudian membeku bersama-sama. Lapisan (Pembungkus) elektroda terbakar bersama dengan meleburnya elektroda. Fungsi Fluks ini antara lain: -
Melindungi logam cair dari lingkungan udara.
-
Menghasilkan gas pelindung
-
Menstabilkan busur
-
Sumber unsur paduan (V, Zr, Cs, Mn).
3). Las Busur Rendam (Submerged Arc Welding) Dalam pengelasam busur rendam otomatis, busur dan material yang diumpankan untuk pengelasan tidak diperlukan seorang operator yang ahli. Pengelasan otomatis ini pertama kali diusulkan oleh Bernardos dan N. Slavianoff dan las busur rendam dipraktekkan pertama kali oleh D. Dulchevsky. Las busur rendam adalah pengelasan dimana logam cair tertutup dengan fluks yang diatur melalui suatu penampung fluks dan logam pengisi yang berupa kawat pejal diumpankan secara terus menerus. Dalam pengelasan ini busur listriknya terendam dalam fluks. Karena dalam pengelasan ini, busur listriknya tidak kelihatan, maka sangat sukar untuk mengatur jatuhnya ujung busur. Di samping itu karena mempergunakan kawat elektroda yang besar maka sangat sukar untuk memegang alat pembakar dengan tangan tepat pada tempatnya. Karena kedua hal
Universitas Sumatera Utara
tersebut maka pengelasan selalu dilaksanakan secara otomatis penuh. Mesin las ini dapat menggunakan sumber listrik AC yang lamban dan DC dengan tegangan tetap. Bila
menggunakan
listrik
AC
perlu
adanya
pengaturan
kecepatan
pengumpanan kawat las yang dapat diubah-ubah untuk mendapatkan panjang busur yang diperlukan. Bila menggunakan sumber listrik DC dengan tegangan tetap, kecepatan pengumpanan dapat dibuat tetap dan biasanya menggunakan polaritas balik (DCRP). Mesin las dengan listrik DC kadang-kadang digunakan untuk mengelas pelat tipis dengan kecepatan tinggi atau untuk pengelasan dengan eletroda lebih dari satu. 4). Tungsten Inert Gas (TIG) Pengelasan ini pertama kali ditemukan di Amerika Serikat (1940), berawal dari pengelasan paduan untuk bodi pesawat terbang. Prinsipnya : Panas dari busur terjadi diantara elektrode tungsten dan logam induk akan meleburkan logam pengisi ke logam induk di mana busurnya dilindungi oleh gas mulia (Ar atau He). Las ini memakai elektroda tungsten yang mempunyai titik lebur yang sangat tinggi (3260 C) dan gas pelindungnya Argon/Helium. Sebenarnya masih ada gas lainnya, seperti xenon. Tetapi karena sulit didapat maka jarang digunakan. Dalam penggunaannya tungsten tidak ikut mencair karena tungsten tahan panas melebihi dari logam pengisi. Karena elektrodanya tidak ikut mencair maka disebut elektroda tidak terumpan. Keuntungan : Digunakan untuk Alloy Steel, Stainless Steel maupun paduan Non Ferrous: Ni, Cu, Al (Air Craft). Disamping itu mutu las bermutu tinggi, hasil las padat, bebas dari porositas dan dapat untuk mengelas berbagai posisi dan ketebalan. Dibandinkan dengan Carbon Arc Welding, tungsten memiliki beberapa keunggulan. Pada umumnya Tungsten Arc Welding hampir sama dengan Carbon Arc Welding. Persamaannya: -
Sumber arusnya sama (Power Supply/Welding Circuit)
-
Memakai elektroda kawat
Universitas Sumatera Utara
-
Dikhususkan hanya untuk las.
Perbedaannya: -
Carbon Arc Welding memakai fluks (Coating), TIG memakai gas pelindung.
-
Elektroda pada Carbon Arc Welding ikut mencair sebagai logam pengisi, TIG elektrodanya tidak ikut mencair.
-
Carbon Arc Welding tidak perlu filler metal, TIG diperlukan filler metal.
2.5. Parameter Pengelasan Kestabilan dari busur api yang terjadi pada saat pengelasan merupakan masalah yang paling banyak terjadi dalam proses pengelasan dengan SAW, oleh karena itu kombinasi dari Arus listrik (I) yang dipergunakan dan Tegangan (V) harus benar-benar sesuai dengan spesifikasi kawat elektroda dan fluksi yang dipakai. 1). Pengaruh dari Arus Listrik (I) Setiap kenaikan arus listrik yang dipergunakan pada saat pengelasan akan meningkatkan penetrasi serta memperbesar kuantiti lasnya. Penetrasi akan meningkat 2 mm per 100 A dan kuantiti las meningkat juga 1,5 Kg/jam per 100 A.
Gambar 2.3. Pengaruh Arus Listrik. Sumber: Dasar-dasar pengelasan, W. Keynyon terjemahan Dines Ginting. Sedangkan pengaruhnya terhadap kawat elektroda dengan diameter yang dipergunakan pada saat proses pengelasan adalah diammeter (mm) x (100-200) (A). 2). Pengaruh dari Tagangan Listrik (V) Setiap peningkatan tegangan listrik (V) yang dipergunakan pada proses pengelasan akan semakin memperbesar jarak antara tip elektroda dengan material
Universitas Sumatera Utara
yang akan dilas, sehingga busur api yang terbentuk akan menyebar dan mengurangi penetrasi pada material las. Konsumsi fluksi yang dipergunakan akan meningkat sekitar 10% pada setiap kenaikan 1 volt tegangan. 3). Pengaruh Kecepatan Pengelasan Jika kecepatan awal pengelasan dimulai pada kecepatan 40 cm/menit, setiap pertambahan kecepatan akan membuat bentuk jalur las yang kecil (Welding Bead), penetrasi, lebar serta kedalaman las pada benda kerja akan berkurang. Tetapi jika kecepatan pengelasannya berkurang dibawah 40 cm/menit cairan las yang terjadi dibawah busur api las akan menyebar serta penetrasi yang dangkal, hal ini dikarenakan over heat. 4). Pengaruh Polaritas arus listrik (AC atau DC) Pengelasan dengan kawat elektroda tunggal pada umumnya menggunakan tipe arus Direct Current (DC), elektroda positif (EP), jika menggunakan elektroda negatif (EN) penetrasi yang terbentuk akan rendah dan kuantiti las yang tinggi. Pengaruh dari arus Alternating Curret (AC) pada bentuk butiran las dan kuantiti pengelasan antara elektroda positif dan negatif adalah sama yaitu cenderung porosity, oleh karena itu dalam proses pengelasan yang menggunakan arus AC harus memakai fluks yang khusus. 5). Heat input Heat input atau energi per unit length pada proses pengelasan akan berpengaruh pada microstruktur lasan dan HAZ terutama nilai hardness dan impact. Heat input yang terlalu tinggi akan menyebabkan hot cracking, dan yang terlalu rendah akan menyebabkan cold cracking apalagi ditunjang dengan adanya hydrogen. Heat input yang ideal untuk pengelasan bergantung pada banyak factor, diantaranya jenis material, ketebalan material, jenis kampuh las, welding proses dll. Kadang -kadang untuk mempercepat proses pengelasan, diberikan heat input yang tinggi.Namun ada beberapa hal yg harus diperhatikan berkaitan dengan heat input, diantaranya menjaga preheat dan temperature cooling time. Untuk menentukan preheat dan cooling time bisa dilihat dari berbagai standar. Satu parameter yang bagus untuk menentukan cooling time ini yang disebut T(8/5),
Universitas Sumatera Utara
artinya waktu yang dibutuhkan untuk menurunkan temparatur lasan dari 800°C500 °C,untuk beberapa jenis steel (fine grained,quenched and tempered) T(8/5) adalah10-25s. Jika T(8/5) terlalu kecil hardness pada HAZ terlalu tinggi (ada nilai maksimum) dan Jika terlalu besar impact strength terlalu rendah (ada nilai minimum). Siklus termal yang terjadi selama pengelasan dipengaruhi oleh masukan panas ( heat input ) yang diberikan. Besarnya masukan panas yang terjadi pada proses pengelasan tergantung pada factor-faktor seperti : 1. Daya hantar ( heat conductivity ) dari logam yang disambung. 2. Geometri seperti tebal logam yang disambung. 3. Janis sambungan dan bentuk alur. 4. Teknik pengelasan termasuk parameter las yang diterapkan.
Besarnya masukan panas per satuan panjang las untuk pengelasan busur listrik diberikan oleh persamaan berikut : E = 0.5 CV2 Dimana : E = Energi atau masukan panas ( joule ) C = Kapasitas ( Farads ) V = Tegangan listrik ( Volt ) Tidak seluruhnya energy panas yang diberikan itu digunakan untuk menyambung logam, tetapi sebagian akan hilang ke udara luar. Pada proses pengelasan masukan panas yang dapat diberikan tergantung pada kerapatan energy (energy density) dari teknik pengelasan tersebut. Semakin besar kerapatan energinya maka semakin rendah masukan panas yang diberikan untuk suatu proses pengelasan. Jenis logam dan kerapatan yang diberikan akan menentukan kecepatan pemanasan ( heating rate ) dari logam yang dilas. Masukan panas akan menentukan temperature tinggi yang terjadi pada logam las dan berarti mempengaruhi terhadap struktur mikro serta sambungan las.
Universitas Sumatera Utara
2.6. Klasifikasi Kawat Elektroda Dan Fluksi 1. Fluksi Fluksi merupakan pembungkus elektroda yang sangat diperlukan untuk meningkatkan mutu sambungan karna fluksi bersifat melindungi metal cair dari udara bebas serta menstabilkan busur. Terdapat 2 macam Fluksi sesuai dengan pembuatannya : - Fused Fluksi. - Bonded Fluksi. A). Fused Fluksi Fused Fluksi terbuat dari campuran butir-butir material seperti mangan, kapur, boxit, kwarsa dan fluorpar didalam suatu tungku pemanas. Cairan terak yang terbentuk akan diubah ke dalam bentuk fluksi dengan jalan : - Dituang di suatu cetakan dalam bentuk beberapa lapis / susun yang tebal kemudian dipecah serta disaring sesuai dengan ukuran butiran yang diinginkan. - Dari kondisi panas dituang ke dalam air, sehingga timbul percikan – percikan yang kemudian disaring sesuai ukurannya. Metode ini lebih effisien, tetapi kualitas fluksi yang dihasilkan mengandung hidrogen yang cukup tinggi yang memerlukan prose lebih lanjut untuk mengurangi kadar hidrogen tersebut. B). Bonded Fluksi Bonded Fluksi ini dibuat di pabrik dengan jalan mencampur butiran-butiran material yang ukurannya jauh lebih halus seperti mineral, ferroalloy, water glass sebagi pengikat dalam suatu pengaduk (mixer) yang khusus. Campuran tersebut kemudian akan dikeringkan dalam suatu pengering yang berputar pada temperatur 600–800 0C. 2. Kawat Elektroda Elektroda baja lunak dan baja paduan rendah untuk las busur listrik manurut klasifikasi AWS (American Welding Society) dinyatakan dengan tanda E XXXX yang artInya sebagai berikut :
Universitas Sumatera Utara
E menyatakan elaktroda busur listrik.
XX (dua angka) sesudah E menyatakan kekuatan tarik deposit las dalam ribuan Ib/in2 lihat table.
X (angka ketiga) menyatakan posisi pangelasan angka 1 untuk pengelasan segala posisi. angka 2 untuk pengelasan posisi datar di bawah tangan.
X (angka keempat) menyatakan jenis selaput dan jenis arus yang cocok dipakai untuk pengelasan.
Contoh : E 6013 Artinya:
Kekuatan tarik minimum dan deposit las adalah 60.000 Ib/in2 atau 42 kg/mm2
Dapat dipakai untuk pengelasan segala posisi
Jenis selaput elektroda Rutil-Kalium dan pengelasan dengan arus AC atau DC + atau DC –.
2.7. Elektroda Las Listrik 2.7.1. Elektroda Berselaput Elektroda berselaput yang dipakai pada Ias busur listrik mempunyai perbedaan komposisi selaput maupun kawat Inti. Pelapisan fluksi pada kawat inti dapat dengah cara destrusi, semprot atau celup. Ukuran standar diameter kawat inti dari 1,5 mm sampai 7 mm dengan panjang antara 350 sampai 450 mm. Jenisjenis selaput fluksi pada elektroda misalnya selulosa, kalsium karbonat (Ca C03), titanium dioksida (rutil), kaolin, kalium oksida mangan, oksida besi, serbuk besi, besi silikon, besi mangan dan sebagainya dengan persentase yang berbeda-beda, untuk tiap jenis elektroda. Tebal selaput elektroda berkisar antara 70% sampai 50% dari diameter elektroda tergantung dari jenis selaput. Pada waktu pengelasan, selaput elektroda ini akan turut mencair dan menghasilkan gas CO2 yang melindungi cairan las, busur listrik dan sebagian benda kerja terhadap udara luar. Udara luar yang mengandung O2 dan N akan dapat mempengaruhi sifat mekanik dari logam Ias. Cairan selaput yang disebut terak akan terapung dan membeku melapisi permukaan las yang masih panas
Universitas Sumatera Utara
2.7.2. jenis elektroda baja lunak 2.7.2.1. E 6011 Jenis elektroda ini adalah jenis elektroda selaput selulosa yang dapat dipakai untuk pengelasan dengan penembusan yang dalam. Pengelasan dapat pada segala posisi dan terak yang tipis dapat dengan mudah dibersihkan. Deposit las biasanya mempunyai sifat sifat mekanik yang baik dan dapat dipakai untuk pekerjaan dengan pengujian radiografi. E6011 mengandung kalium untuk membantu menstabilkan busur listrik bila dipakai arus AC. 2.7.2.2. E 6012 dan E6013 Kedua elektroda ini termasuk jenis selaput rutil yang dapat menghasilkan penembusan sedang. Keduanya dapat dipakai untuk pengelasan segala posisi, tetapi kebanyakan jenis E 6013 sangat baik untuk posisi pengelasan tegak dan bawah. Jenis E 6012 umumnya dapat dipakai pada ampere yang relatif lebih tinggi dari E 6013. E6013 yang mengandung lebih banyak kalium memudahkan pemakaian pada voltage mesin yang rendah. Elektroda dengan diameter kecil kebanyakan dipakai untuk pengelasan pelat tipis. 2.7.2.3. E6020 Elektroda jenis ini dapat menghasilkan penembusan sedang dan teraknya mudah dilepas dari lapisan las. Selaput elektroda terutama mengandung oksida besi dan mangan. Cairan terak yang terlalu cair dan mudah mengalir menyulitkan pada pengelasan dengan posisi lain dari pada bawah tangan atau datar pada las sudut. 2.7.2.4. E6027, E7014, E7018, E7024, dan E7028 Jenis elektroda ini mengandung serbuk besi untuk meningkatkan efisiensi pengelasan. Umumnya selaput elektroda akan lebih tebal dengan bertambahnya persentase serbuk besi. Dengan adanya serbuk besi dan bertambahnya tebal selaput akan memerlukan ampere yang lebih tinggi.
Universitas Sumatera Utara
2.7.2.5. Elektroda hidrogen rendah Selaput elektroda jenis ini mengandung hidrogen yang rendah ( kurang dari 0,5 % ), sehingga deposit las juga dapat bebas dari porositas. Elektroda ini dipakai untuk pengelasan yang memerlukan mutu tinggi, bebas porositas, misalnya untuk pengelasan bejana dan pipa yang akan mengalami tekanan. Jenisjenis elektroda hidrogen rendah misalnya E7015, E 7016, dan E 7018. 2.8. Kekuatan Tarik (ultimate tensile strength) Adalah beban maksimum dibagi luas penampang lintang awal benda uji. Su
Pmaks A0
Dimana : Su = Tegangan tarik ( N/mm2 ) Pmaks = Tekanan tarik maksimum ( N ) A0 = Luas Penampang ( mm2
Tegangan tarik adalah nilai yang paling sering dituliskan sebagai hasil suatu uji tarik, tetapi segala kenyataanya nilai tersebut kurang bersifat mendasar dalam kaitannya dengan kekuatan bahan.untuk logam–logam yang liat kekuatan tariknya harus dikaitkan dengan kekuatan beban maksimum, dimana logam dapat menahan beban beban sesumbu untuk keadaan yang sangat terbatas.akan ditunjukan bahwa nilai tersebut kaitanya dengan kekuatan logam kecil sekali kegunaanya untuk tegangan yang lebih kompleks, yakni yang bisanya ditemui. Untuk beberapa lama, telah menjadi kebiasaan mendasar kekuatan struktur pada kekuatan tarik, dikurangi dengan faktor keamanan yang sesuai. 2.8.1 Kurva Tegangan –Regangan Rekayasa Uji tarik banyak dilakukan untuk melengkapi informasi kekuatan tarik suatu benda uji tarik sebagai data pendukung bagi spesifikasi bahan.pada uji tari, benda uji diberi beban gaya tarik sesumbu yang bertambah besar secara kontinu,bersamaan dengan itu dilakukan pengamatan mengenai perpanjangan
Universitas Sumatera Utara
yang dialami benda uji. Kurva tegangan regangan dibuat dari pengukuran perpanjangan benda uji. Tegangan yang digunakan pada kurva adalah tegangan rata-rata dari pengujian tarik. Tegangan tersebut diperoleh dengan cara membagi beban dengan luas awal penampang lintang benda uji. σ=F/A Dimana : σ = Tegangan ( N/mm2 ) F = Gaya tarikan ( N ) A = Luas Penampang ( mm2 ) Regangan yang dipergunakan untuk tegangan regangan adalah tegangan linear rata-rata yang diperoleh dengan cara membagi perpajangan panjang ukur (gage length) benda uji, , dengan panjang awal, є = ΔL/L є = Regangan ΔL = Tambahan Panjang L = Panjang Awal Karena tegangan dan regangan diperoleh dengan cara membagi beban dan perpanjangan dengan faktor yang konstan, kurva perjangan akan mempunyai bentuk yang sama seperti kurva tegangan-regangan teknik. Kedua kurva ini sering saling dipergunakan. Bentuk dan besaran pada kurva tegangan-regangan suatu logam tergantung pada perlakuan panas, deformasi plastik yang pernah dialami, laju regangan, suhu, dan keadaan tegangan yang menentukan selama pengujian. Parameter-paremeter yang digunakan menggambarkan kurva tegangan regangan logam adalah kekuatan tarik, kekuatan luluh atau titik luluh,persen perpanjangan. 2.8.2 Modulus Elastisitas Modulus elastisitas adalah ukuran kekakuan suatu bahan. Makin besar modulus, makin kecil regangan elastik yang dihasilkan akibat pemberian
Universitas Sumatera Utara
tegangan.karena modulus elastisitas diperlukan untuk perhitungan nilai rancangan yang penting. Modulus elastisitas ditentukan oleh gaya ikat antar atom.karena gaya-gaya ini tidak dapat di ubah tanpa terjadi perubahan mendasar sifat bahannya, maka modulus elastisitas merupakan salah satu dari banyak sifat mekanik yang tidak mudah diubah. Sifat ini hanya sedikit berubah oleh adanya penambahan paduan, perlakuan panas, atau pengerjaan dingin.modulus biasnya pada suhu tinggi dengan metode dinamik.
Universitas Sumatera Utara