BAB II TINJAUAN PUSTAKA 2.1 Arus Netral pada Sistem Tiga Fasa Empat Kawat Jaringan distribusi tegangan rendah adalah jaringan tiga fasa empat kawat, dengan ketentuan, terdiri dari kawat tiga fasa (R, S, T) dan satu kawat netral. Jika beban seimbang tidak ada arus netral. Namun, pada kenyataannya, beban tidak seimbang karena kebanyakan jaringan menyuplai seperangkat peralatan dengan beban satu fasa. Ketidakseimbangan tersebut menyebabkan timbulnya arus netral dan meningkatnya rugi-rugi pada jaringan [3]. Arus netral dalam sistem distribusi tenaga listrik dikenal sebagai arus yang mengalir pada kawat netral di sistem distribusi tegangan rendah tiga fasa empat kawat. Arus yang mengalir pada kawat netral yang merupakan arus balik untuk sistem distribusi tiga fasa empat kawat adalah penjumlahan vektor dari ketiga arus fasa dalam komponen simetris. Perkembangan jaringan distribusi ditandai dengan pemakaian sebagian besar peralatan non linier. Dengan meningkatnya sejumlah peralatan non linier menyebabkan adanya distorsi harmonik pada arus beban dan menyebabkan meningkatnya rugi-rugi pada jaringan dan transformator [3]. 2.2 Sistem Simetris dan Seimbang [4] Dengan menggunakan transformasi fourier, arus fasa yang simetris dan seimbang pada sistem dapat dituliskan. Arus pada penghantar netral dapat dicari dengan penjumlahan arus dari ketiga fasa (R, S, dan T). Adapun bentuk persamaannya yaitu : (t) =
sin(
+
)+
sin(3
+
) + I5 sin(5
+
) + ...
(2.1)
4 Universitas Sumatera Utara
(t) =
−
sin +
(t) =
−
sin
0
sin 3
+
−
+
+
sin 5
+ ...
+ (t) =
+
(2.2)
+
sin 3
+
−
+
+ ... +
3*
−
+
sin 5
− (2.3)
sin(3
+
)
+
0
+ ...
(2.4)
dimana : IR = arus pada fasa R IS = arus pada fasa S IT = arus pada fasa T IN = arus pada kawat netral Dapat dilihat bahwa harmonisa pertama (i = 6k + 1), dengan i adalah urutan harmonisa dan k = 0,1,2....) di arus fasa dibentuk langsung dari sistem, harmonisa ketiga (i = 6k + 3) merupakan komponen urutan nol dan harmonisa kelima (i = 6k + 5) adalah komponen urutan negatif. Dimana arus pada kawat netral hanya terdiri dari harmonisa ketiga. Secara grafis, sistem simetris dan seimbang ditunjukkan pada Gambar 2.1.
Gambar 2.1 Sistem tiga fasa simetris dan seimbang dimana tidak ada arus urutan nol [5] 5 Universitas Sumatera Utara
2.3 Sistem Tidak Simetris dan Tidak Seimbang [4] Dengan menggunakan transformasi fortescue, sistem tidak simetris dan tidak seimbang dapat dituliskan sebagai penjumlahan dari komponen urutan positif, negatif dan nol. Adapun persamaannya adalah sebagai berikut : ̅
,
̅, ̅
,
1 = 1 1
̅, ̅, = ̅,
1 1 1
1
1
̅, ̅,
(2.5)
̅, 1
̅
1
,
̅
̅,
(2.6)
,
dimana a = exp ̅
,
= arus harmonisa orde ke-i pada fasa R
̅ , = arus harmonisa orde ke-i pada fasa S ̅
,
= arus harmonisa orde ke-i pada fasa T
̅ , = arus urutan nol orde ke-i ̅ , = arus urutan positif orde ke-i ̅ , = arus urutan negatif orde ke-i Sebagai penjumlahan dari komponen urutan positif dan juga penjumlahan dari komponen urutan negatif adalah nol (1+a+a2=0), maka hanya penjumlahan dari komponen urutan nol saja yang ada pada penghantar arus netral. ̅
,
= (1 +
+
) ̅ , + (1 +
+
) ̅, + 3 ̅,
= 3 ̅,
(2.7)
6 Universitas Sumatera Utara
Arus netral hanya memiliki komponen urutan nol dari arus fasa. Pada sistem yang simetris dan seimbang, komponen urutan nol ini memiliki korespondensi dengan harmonisa kelipatan tiga. Dari Persamaan 2.7, sebagaimana hukum kirchoff dapat dituliskan menjadi: ̅
̅
=3 ̅, =3*
,
Misalkan
̅
= ̅
,
+ ̅, + ̅
,
+ ̅, + ̅
,
, ̅, = ̅,
,
,
= ̅
,
,
,
(2.8)
,
̅
,
= ̅
kemudian
,
,
̅ , didapat : ̅
=
,
cos
,
,
sin
+
,
,
+
,
,
cos
sin
,
,
+
cos
,
+j
,
,
sin
,
+
)
(2.9)
Dari persamaan diatas, amplitudo IN,i dan sudut phasa φN,i dari harmonisa ke-i pada arus netral dapat dihitung. Amplitudo dari IN,i dari harmonisa arus pada penghantar netral adalah: =
,
,
cos
+
,
,
cos
,
+
,
cos
,
+
,
sin
,
+
,
sin
,
+
,
sin
,
(2.10) dimana : IN,i : amplitudo dari urutan harmonisa ke i pada arus pada penghantar netral IR,i, IS,i, IT,i, : amplitudo dari harmonisa dari arus pada fasa R,S,T ΦR,i, φS,i, φT,i : sudut fasa dari harmonisa dari arus pada fasa R,S,T Sudut fasa dari harmonisa ke-i di arus konduktor netral adalah: ,
=
, ,
(2.11)
Jika harmonisa di arus fasa diketahui, maka harmonisa pada konduktor arus netral juga dapat dihitung dengan menggunakan Persamaan 2.9 dan
7 Universitas Sumatera Utara
Persamaan 2.10. Secara grafis sistem yang tidak seimbang ditunjukkan pada Gambar 2.2 [5].
Gambar 2.2 Sistem tiga fasa tidak simetris dan tidak seimbang dimana ada arus urutan nol 2.4 Rasio RMS dari Penghantar Netral dan Arus Fasa pada Sistem Simetris dan Seimbang [4] Untuk sistem yang simetris dan seimbang, rasio rms dari arus penghantar netral dan arus fasa naik dengan meningkatnya harmonisa ketiga dan dengan menurunnya harmonisa pertama dan kelima pada arus fasa. Arus pada penghantar netral tidak mungkin melebihi tiga kali dari arus fasanya. Rasio maksimum mungkin saja dapat terjadi jika harmonisa ketiga pada arus fasa adalah tak hingga dibandingkan dengan harmonisa pertama dan kelima pada arus fasa. =
∑(
)
∑(
)
∑(
)
∑(
(2.12)
)
dimana : IN : nilai rms dari total arus pada penghantar netral I fasa : nilai rms dari total arus pada penghantar fasa I6k+1, I6k+3, I6k+5 : nilai rms dari harmonisa pertama, ketiga, dan kelima
8 Universitas Sumatera Utara
Jika kita tinjau pada suatu kasus ini dimana arus fasa adalah harmonisa ganjil I2n+1 dimana I2n+1 = qn x I1 (0 ≤q ≤1, n = 1,2,...) atau I3 = q x I1, I5 = q² x I1, I7 = q3 x I1, I9 = q4 x I1,… Nilai rms dari arus fasa adalah: I fasa =
1+
+
+
+ …* =
(2.13)
Maka nilai rms dari arus pada penghantar netral sebanding dengan : = 3*
+
+
+ …* =
∗
(2.14)
Rasio rms dari arus pada penghantar netral dan arus fasa adalah: =3
=3
(
)(
)
=
(2.15)
Nilai maksimum dari rasio rms dari arus pada penghantar netral dan arus fasa dapat dicari saat q = 1 (seluruh harmonisa pada arus fasa memiliki besar yang sama) dan sebanding dengan √3 2.5 Triplen Harmonisa [6] Triplen harmonisa adalah kelipatan ganjil dari harmonisa ketiga (h = 3, 9, 15, 21, 27, …). Hal ini penting diperhatikan khususnya pada sistem bintang yang ditanahkan (grounded wye systems) karena adanya arus yang mengalir pada kawat netral. Arus pada kawat netral akan menjadi overload karena arus antar fasanya tidak saling menghilangkan. Gambar 2.3 menunjukkan suatu sistem yang seimbang dan diasumsikan komponen fundamental dan komponen harmonisa ketiga hadir dalam sistem tersebut. Diharapkan penjumlahan vektor dari ketiga arus fasa R, S, dan T bernilai nol, sehingga tidak ada arus yang mengalir pada konduktor netral. Akan tetapi
9 Universitas Sumatera Utara
pada konduktor netral mengalir arus triplen harmonisa dari ketiga fasa yang saling menjumlahkan yang besarnya tiga kali dari arus triplen pada setiap fasanya.
Gambar 2.3 Arus netral pada grounded wye system akibat triplen harmonisa 2.6 Beban Non Linear Harmonisa bisa muncul dari beban yang terhubung ke sistem distribusi. Beban-beban pada sistem tenaga listrik dikelompokkan menjadi dua bagian yaitu beban linier dan beban non linier. Namun yang menjadi sumber harmonisa adalah beban non linier. Beban non linier adalah beban yang memberikan bentuk gelombang keluaran yang tidak sama dengan gelombang masukan. Artinya arus yang mengalir tidak sebanding dengan perubahan tegangan dan hal ini tentunya tidak sesuai lagi dengan hukum ohm. Beban non linier merupakan peralatan yang didalamnya terdapat komponen semikonduktor seperti thyristor, dioda, dan lainlain. Adapun hubungan tegangan dan arus pada beban non linear ditunjukkan pada Gambar 2.4.
10 Universitas Sumatera Utara
Gambar 2.4 Hubungan tegangan dan arus pada beban non linier Beban non linier dikatakan menjadi sumber harmonisa dikarenakan adanya komponen semikonduktor yang dalam proses kerjanya berlaku sebagai saklar yang bekerja pada setiap setengah siklus gelombang atau beban yang membutuhkan arus yang tidak tetap pada setiap periode waktunya seperti yang ditunjukkan pada Gambar 2.5. Proses kerja ini akan menghasilkan gangguan/ distorsi gelombang arus yang tidak sinusoidal. Contoh beban non linier ini adalah : UPS (Uninterruptible Power Supplies), printer, komputer, televisi, lampu hemat energi, dan sebagainya [7].
Gambar 2.5 Karakteristik gelombang tegangan dan arus pada beban non linier 2.7 Pengurangan Arus Netral [8] Prinsip dasar yang diterapkan pada pengurangan harmonisa arus di jalajala sistem dengan cara mengeleminir komponen arus harmonisa yang mendominasi arus sistem. Pada sistem distribusi tenaga listrik tiga fasa empat
11 Universitas Sumatera Utara
kawat umumnya harmonisa arus didominasi oleh komponen arus harmonisa orde kelipatan tiga atau harmonisa arus urutan nol yang dibangkitkan dari beban-beban non linier satu fasa, arus ini mengalir melalui kawat konduktor netral dan merupakan arus netral sistem. Untuk mengurangi harmonisa arus pada sistem ini, maka komponen arus harmonisa urutan nol inilah yang dieleminir. Pengeleminiran arus harmonisa urutan nol ini dilakukan dengan cara mengalirkan arus netral sistem langsung kembali ke beban-beban non linier menggunakan pelalu arus urutan nol. Sehingga arus harmonisa urutan nol ini tidak mengalir ke jala-jala sistem. Dengan pelaluan arus netral ini, maka arus netral sistem menjadi sangat berkurang. Pelalu arus urutan nol secara sederhana dapat dibuat dari rangkaian elektromagnetik berupa trafo zero passing dan trafo zero blocking. Karena pada pelalu arus urutan nol ini tidak terdapat komponen kapasitor, maka resonansi pada sistem tidak mungkin terjadi [8]. 2.7.1 Pengurangan Arus Netral Menggunakan Zero Passing [8] Zero passing adalah suatu rangkaian elektromagnetik yang berfungsi untuk melalukan arus harmonisa urutan nol. Oleh karena itu, suatu zero passing mempunyai impedansi yang rendah terhadap arus harmonisa urutan nol dan impedansi yang tinggi terhadap arus urutan lainnya. Suatu zero passing bisa didapatkan dari beberapa konfigurasi rangkaian elektromagnetik multi belitan seperti trafo Y-Δ, autotrafo zigzag dan autotrafo scott. Metoda pelaluan arus harmonisa urutan nol atau arus netral sistem secara sederhana dapat dilakukan dengan menggunakan sebuah pelalu arus urutan nol yang dinamakan"zero passing”. Pada sistem pengurangan arus harmonisa ini, zero
12 Universitas Sumatera Utara
passing dipasang secara paralel, sehingga suatu zero passing hanya boleh melalukan arus harmonisa urutan nol saja, oleh karena itu suatu zero passing harus mempunyai impedansi yang rendah untuk arus urutan nol dan impedansi yang tinggi untuk arus urutan lainnya. Konsep pelaluan arus netral atau arus harmonisa urutan nol menggunakan zero passing pada sistem distribusi tiga fasa empat kawat diperlihatkan pada Gambar 2.6.
Gambar 2.6 Model pengurangan harmonisa arus sistem menggunakan zero passing Untuk penyederhanaan analisis pengurangan arus harmonisa di jala-jala sistem maka digunakan rangkaian ekivalen urutan nol perfasa dari rangkaian pengurangan harmonisa arus seperti yang ditunjukkan pada Gambar 2.7. Dalam analisis ini, sumber tegangan tidak mengandung harmonisa dan hanya terdiri dari komponen fundamental saja atau komponen urutan positif. Karenanya sumber tegangan pada rangkaian pengganti urutan nol ini dapat dianggap sebagai suatu rangkaian hubung singkat. Sedangkan beban-beban non linier dimodelkan sebagai sumber arus harmonisa dengan suatu impendasi urutan nol paralel sangat besar
13 Universitas Sumatera Utara
sehingga impedansi urutan nolnya dapat diabaikan. Karena impedansi urutan nol sumber arus harmonisa relatif sangat besar terhadap impedansi urutan nol zero passing dan impedansi urutan nol sumber tegangan serta impedansi urutan nol jala-jala sistem, maka impedansi urutan nol sumber arus harmonisa ini pada rangkaian pengganti urutan nol dapat dianggap sebagai rangkaian terbuka. Dengan demikian, rangkaian ekivalen urutan nol per fasa dari rangkaian pengurangan arus harmonisa di jala-jala sistem tiga fasa empat kawat dapat digambarkan seperti pada Gambar 2.7.
Gambar 2.7 Rangkaian urutan nol per fasa untuk pengurangan harmonisa arus sistem menggunakan zero passing dimana : iRS, iSS, iTS adalah arus jala-jala fasa R, S dan T iRB, iSB, iTB adalah arus beban fasa R, S dan T iNB adalah arus netral beban iZP adalah arus zero passing iNS adalah arus netral sistem iRZP, iSZP, iTZP, adalah zero passing R, S dan T ZP0 adalah impedansi urutan nol zero passing per fasa
14 Universitas Sumatera Utara
ZJ0 adalah impedansi urutan nol jala-jala sistem per fasa ZS0 adalah impedansi urutan nol sumber tegangan per fasa iNB0 adalah arus netral beban per fasa iZP0 adalah arus zero passing per fasa iNS0 adalah arus netral sistem per fasa Karena hasil penjumlahan seluruh komponen arus harmonisa urutan positif dan negatif sama dengan nol, maka arus netral beban adalah : iNB = ∑~ [
sin {h0 (ωt) – Φh0}]
(2.16)
dimana : h0 = (3n) dalam bentuk nilai efektifnya dapat dinyatakan sebagai INB = 3 (∑~ [
]2)1/2
(2.17)
Dari rangkaian urutan nol per fasa pada Gambar 2.7 dapat ditentukan besar arus yang mengalir ke zero passing iZp0 adalah sebagai berikut : (
iZp0 = (
) )
iNB0 (t)
(2.18)
Dengan mensubstitusikan iNB0 Persamaan 2.16 ke Persamaan 2.18, maka didapatkan persamaan arus yang mengalir ke zero passing iZp0, yaitu : iZp0 (t) = {KM1} ∑~
√2
sin {h0 (ωt) – Φh0}
(2.19)
dimana : h0 = (3n) KM1 =
( (
) )
; faktor pengurangan arus harmonisa menggunakan zero passing
15 Universitas Sumatera Utara
Total arus netral yang mengalir ke sumber tegangan setelah pengurangan harmonisa arus menggunakan zero passing adalah : iNS (t) = {1-KM1} 3 ∑~
√2
sin {h0 (ωt) – Φh0}
(2.20)
untuk h1 = (3n-2) ; h2 = (3n-1) ; h0 = (3n) 2.7.2 Pengurangan Arus Netral Menggunakan Zero Blocking [8] Zero blocking adalah suatu rangkaian elektromagnetik yang berfungsi untuk menahan arus harmonisa urutan nol, agar arus harmonisa urutan nol tersebut
sebesar-besarnya
dapat
dilalukan
melalui zero
passing
untuk
mendapatkan pengurangan arus harmonisa yang optimal. Oleh karena itu, suatu zero blocking haruslah mempunyai impedansi yang besar terhadap arus harmonisa urutan nol dan impedansi yang rendah terhadap arus urutan lainnya. Untuk memenuhi kriteria tersebut, suatu zero blocking dapat dibentuk dari tiga buah belitan identik pada suatu inti trafo tiga fasa seperti yang diperlihatkan pada Gambar 2.8.
Gambar 2.8 Rangkaian belitan trafo zero blocking Arus netral sistem atau arus harmonisa urutan nol yang mengalir melalui sumber tegangan akan mengalir juga melalui ketiga belitan trafo zero blocking. Karena arus-arus harmonisa urutan nol ini sefasa dan sama besar, maka fluksi magnetik urutan nol yang dibangkitkannya pada masing-masing belitan zero
16 Universitas Sumatera Utara
blocking akan sefasa dan sama besar pula, yaitu ΦOR, ΦOS dan ΦOT. Pembangkitan fluksi magnetik urutan nol pada masing-masing belitan zero blocking diperlihatkan pada Gambar 2.9 (a).
Gambar 2.9 (a) Fluksi magnetik urutan nol (b) Fluksi magnetik urutan lainnya yang dibangkitkan pada zero blocking Fluksi magnetik urutan nol pada masing-masing belitan zero passing adalah sefasa sehingga total fluksi urutan nol yang dihasilkan akan saling menguatkan. Dengan demikian, zero blocking akan mempunyai impedansi urutan nol yang besar untuk dapat menahan arus urutan nol atau arus netral sistem. Sedangkan arus urutan positif dan negatif yang mengalir melalui ketiga belitan zero blocking akan membangkitkan fluksi magnetik urutan positif dan negatif ΦR, ΦS dan ΦT yang sama besar dengan perbedaan fasa masing-masing 1200, seperti yang diperlihatkan pada Gambar 2.9 (b). Akibatnya, total fluksi urutan positif dan negatif yang dihasilkan pada zero blocking sama dengan nol. Dengan demikian, zero blocking mempunyai impedansi urutan positif dan negatif yang sangat kecil sehingga dapat melalukan arus urutan positif dan negatif. Untuk 17 Universitas Sumatera Utara
menentukan impedansi urutan nol dari suatu zero blocking dapat digunakan rangkaian pengganti seperti yang diperlihatkan pada Gambar 2.10.
Gambar 2.10 Rangkaian pengganti magnetik urutan nol zero blocking Dari rangkaian pengganti magnetik zero blocking pada Gambar 2.10, total fluksi magnetik urutan nol yang dibangkitkan pada zero blocking adalah : Φ0 = ∑
(
)Φ
sin{ℎ
}
(2.21)
dan amper-turn pada ketiga kumparan zero blocking yang dibangkitkan oleh arus urutan nol adalah : 3NI0 = H . l = Φ0 [l / (µA)]
(2.22)
dimana: A adalah luas lintasan fluksi magnetik N adalah jumlah belitan I adalah arus yang mengalir pada kumparan N H adalah intensitas medan magnetik l adalah panjang lintasan magnetik Φ0 adalah fluksi magnetik urutan nol µ adalah permeabilitas bahan magnetik Karena reluktansi magnetik R didefenisikan sebagai : R = l / ( µA)
(2.23)
18 Universitas Sumatera Utara
maka fluksi urutan nol zero blocking dapat dinyatakan sebagai : Φ 0 = 3 N I0 R
(2.24)
Dengan demikian induktansi urutan nol zero blocking adalah : L0 =
(
= 9 N2
)
(2.25)
Impedansi urutan nol zero blocking adalah : ZB0 =
+
(
)
(2.26)
Apabila resistansi urutan nol R0 belitan sangat kecil dan dapat diabaikan, maka nilai impedansi urutan nol zero blocking dapat ditentukan sebagai berikut : ZB0 = 9 ω0 N 2
(
)
(2.27)
dimana : ω0 = 2 π f0 f0 adalah frekuensi harmonisa urutan nol 2.8 Autotrafo Zig-zag Autotrafo hubungan zig-zag dapat digunakan sebagai zero passing. Hubungan autotrafo zig-zag dapat juga dihasilkan dari menghubungkan belitan tiga buah transformator satu fasa seperti yang ditunjukkan pada Gambar 2.11. R
S
izr
izs
N T
izt
Gambar 2.11 Hubungan autotrafo zig-zag 19 Universitas Sumatera Utara
Arus urutan nol di masing-masing fasanya yaitu (ir0(t), (is0(t) dan (it0(t) mempunyai amplitudo yang sama dan fasa yang sama pada sistem distribusi tiga fasa empat kawat, dan dapat ditunjukkan sebagai : ir0(t) = is0(t) = it0(t)
(2.28)
Arus netral merupakan penjumlahan dari arus urutan nol ketiga fasanya, dan ditunjukkan sebagai : in(t) = 3 ir0(t)
(2.29)
Arus masukan mengalir ke titik ujung dari belitan primer sama dengan arus yang mengalir keluar dari titik ujung belitan sekunder karena belitan autotrafo zig-zag ini mempunyai perbandingan 1 : 1. Sehingga didapat bahwa : izr (t) = izs (t)
(2.30)
izs (t) = izt (t)
(2.31)
izt (t) = izr (t)
(2.32)
dimana : ir0 : arus urutan nol pada fasa R is0 : arus urutan nol pada fasa S it0 : arus urutan nol pada fasa T in : arus netral izr : arus fasa R pada autotrafo zig-zag izs : arus fasa S pada autotrafo zig-zag izt : arus fasa T pada autotrafo zig-zag Dari Persamaan 2.30, Persamaan 2.31, dan Persamaan 2.32 menyatakan bahwa arus tiga fasa yang mengalir ke belitan autotrafo harus seimbang. Sehingga
20 Universitas Sumatera Utara
komponen arus urutan nol dari arus beban akan mengalir ke dalam autotrafo zigzag [1]. Adapun analisis dari autotrafo zig-zag dapat dijelaskan seperti pada penjelasan berikut ini. Autotrafo zig-zag menyediakan impedansi rendah untuk komponen urutan nol dan impedansi tinggi untuk komponen urutan positif dan negatif. Sumber urutan nol pada autotrafo zig-zag terdiri dari dua yaitu tegangan urutan nol (VS0(t)) dan arus urutan nol (iL0(t)) [9]. Gambar 2.12 menunjukkan rangkaian ekivalen urutan nol [9].
Gambar 2.12 Rangkaian ekivalen urutan nol dimana VS0(t) merupakan tegangan urutan nol ZS0 merupakan impedansi urutan nol pada sumber ZZN merupakan impedansi autotrafo zig-zag iL0 merupakan arus urutan nol ZLN merupakan impedansi dari kawat netral diantara beban dan autotrafo zig-zag ZNU merupakan impedansi antara kawat netral dengan sumber Ketidakseimbangan terjadi akibat tidak seimbangnya distribusi dari beban dimasing-masing fasa dan juga diakibatkan variasi tegangan pada fasa. Sumber tegangan urutan nol dihasilkan dari tegangan sumber yang tidak seimbang [9]. 21 Universitas Sumatera Utara
V (t) V (t) = V (t)
1 1 1
1
1
V (t) V (t) V (t)
(2.33)
dimana a = exp Dari Persamaan 2.33, tegangan urutan nol dapat dinyatakan sebagai berikut : VS0(t) = ( Vrn(t) + Vsn(t) + Vtn(t) )
(2.34)
dimana : VS0 adalah tegangan urutan nol VS1 adalah tegangan urutan positif VS2 adalah tegangan urutan negatif Vrn adalah tegangan fasa R ke netral Vsn adalah tegangan fasa S ke netral Vtn adalah tegangan fasa T ke netral iL0(t) merupakan sumber arus urutan nol dan mengandung arus beban fuldamental yang tidak seimbang dan arus harmonisa urutan nol beban. Arus urutan nol dapat dinyatakan sebagai berikut : iL0(t) = ( iLr(t) + iLs(t) + iLt(t) )
(2.35)
dimana : iL0 adalah arus urutan nol iLr adalah arus fasa R iLs adalah arus fasa S iLt adalah arus fasa T
22 Universitas Sumatera Utara
Karena pada Tugas Akhir ini tegangan sumber diasumsikan seimbang dan simetris maka pengaruh dari tegangan urutan nol (VS0(t)) dapat diabaikan. Untuk mempertimbangkan pengaruh dari arus urutan nol (iL0(t)) maka tegangan urutan nol (VS0(t)) harus diasumsikan menjadi hubung singkat seperti pada Gambar 2.13.
Gambar 2.13 Rangkaian ekivalen urutan nol dimana tegangan urutan nol dihubung singkat Dengan menggunakan terorema superposisi, maka arus netral sumber (i’SN) dapat dinyatakan sebagai berikut : i’SN(t) =
iL0(t)
(2.36)
dimana : i’SN adalah arus netral sumber ZZN adalah impedansi autotrafo zig-zag ZS0 adalah impedansi urutan nol pada sumber ZNU adalah impedansi antara kawat netral dengan sumber iL0 adalah arus urutan nol
23 Universitas Sumatera Utara