Bab II Tinjauan Pustaka 2.1 Produksi H2 Sampai saat ini, bahan bakar minyak masih menjadi sumber energi yang utama. Karena kelangkaan serta harganya yang mahal, saat ini orang-orang berlomba untuk mencari sumber energi alternatif, dan di antaranya adalah H2. Hingga saat ini, berbagai cara produksi H2 terus dikembangkan. Berikut merupakan beberapa penjelasan mengenai metode produksi H2 yang telah banyak dikembangkan.
2.1.1 Elektrolisis air Elektrolisis air merupakan penguraian air menjadi H2 dan O2 dengan cara mengalirkan arus listrik. Gas hidrogen dan oksigen yang dihasilkan dari reaksi elektrolisis ini akan membentuk gelembung pada elektroda dan kemudian dapat dikumpulkan untuk dimanfaatkan sebagai bahan bakar. Sumber energi listrik dihubungkan dengan dua buah elektroda. Reaksi yang terjadi pada anoda saat elektrolisis berlangsung adalah terurainya dua molekul air menjadi O2 dan melepaskan empat ion H+ serta mengalirkan elektron ke katoda. 2H2O Æ O2 + 4H+ + 4e Pada katoda, elektron ditangkap oleh dua molekul air menghasilkan H2 dan OH-. 2H2O + 2e Æ H2 + 2OHSecara keseluruhan, reaksi elektrolisis air adalah sebagai berikut. 2H2O(l) Æ 2H2(g) + O2(g) Proses elektrolisis ini membutuhkan energi yang tinggi sehingga biaya yang diperlukan cukup mahal dibandingkan dengan nilai energi yang diperoleh.
2.1.2 SRM (Steam Reforming of Methanol) Steam Reforming of Methanol merupakan reaksi metanol dengan uap air pada suhu tinggi dengan bantuan katalis untuk menghasilkan H2. Reaksi yang terjadi adalah sebagai berikut. CH3OH + H2O Æ CO2 + 3H2 SRM biasanya dilakukan pada suhu 200-3000C, tekanan 1 bar, dan perbandingan metanol air yang biasa digunakan adalah 1:1 sampai 1:3. Katalis yang digunakan untuk SRM pada umumnya adalah katalis CuO/ZnO dengan menggunakan alumina sebagai penyangga. Hanya saja, reaksi bersifat endotermik sehingga untuk menjalankan reaksi diperlukan panas dari luar. Berbagai katalis telah dikembangkan untuk SRM, dan saat ini telah ditemukan katalis yang memiliki nilai konversi dan selektivitas mencapai lebih dari 90%. Produk utama dari SRM adalah gas H2, karbon dioksida dan sebagian kecil karbon monoksida2, 3.
2.1.3 Gasifikasi biomas Gasifikasi merupakan proses konversi bahan bakar padat (pada umumnya) menjadi bahan bakar gas dengan cara pembakaran. Proses pembakaran yang dilakukan merupakan proses pembakaran tidak sempurna sehingga dihasilkan gas yang masih memiliki nilai bakar (CO, H2, CH4). Gasifikasi biomassa merupakan salah satu metoda untuk merubah bahan bakar padat seperti tandan kelapa sawit , sekam padi, kayu, dan sampah organik lainnya menjadi gas bernilai bakar seperti CO, CH4, dan H2. Selama proses gasifikasi, biomassa mengalami urutan reaksi yang kompleks (pengeringan, pirolisis, pembakaran).) Pembakaran biomassa juga menghasilkan karbon dioksida. Akan tetapi, karbondioksida yang dihasilkan akan distabilkan dengan penyerapan kembali oleh tumbuhan. Hal ini menyebabkan tidak adanya penimbunan gas karbon dioksida dalam atmosfer dan keberadaannya terus seimbang. Selain gasifikasi biomassa, terdapat pula gasifikasi batu bara yang dapat menghasilkan H2. Batu bara adalah bahan bakar padat yang memiliki nilai bakar yang tinggi. Gasifikasi batubara pada prinsipnya adalah proses pengubahan batubara menjadi gas yang mudah terbakar. Batubara bersama-sama oksigen akan dikonversi menjadi H2, CO, dan CH4. Semua gas tersebut memiliki nilai bakar yang sangat tinggi4, 5.
2.2 Katalis Katalis merupakan suatu zat yang dapat mempercepat terjadinya reaksi kimia. Katalis bekerja secara spesifik untuk reaksi tertentu dan dapat menurunkan besarnya energi aktivasi 6
suatu reaksi. Penurunan energi aktivasi ini disebabkan oleh aktivitas katalis yang mencari jalur reaksi lain yang memiliki energi aktivasi lebih rendah. Katalis akan bereaksi dengan pereaksi, namun katalis akan diperoleh kembali di akhir reaksi. Katalis terbagi dua jenis, yaitu katalis homogen dan katalis heterogen. Katalis homogen adalah katalis yang memiliki fasa yang sama dengan pereaksi. Keunggulan dari katalis homogen adalah aktivitasnya yang sangat tinggi. Selain itu, reaksi berlangsung pada seluruh bagian katalis sehingga efisiensinya tinggi. Hanya saja, karena fasanya sama dengan pereaksi, setelah reaksi selesai katalis akan bercampur dengan hasil reaksi. Katalis memang dapat diperoleh kembali, namun biaya pemisahan katalis dari produk sangat tinggi sehingga sangat tidak menguntungkan. Jenis katalis yang kedua adalah katalis heterogen. Katalis heterogen memiliki fasa yang berbeda dengan pereaksi sehingga katalis heterogen dapat diperoleh dengan mudah di akhir reaksi. Reaksi pada katalis heterogen hanya berlangsung pada beberapa bagian dari katalis saja. Selain itu, aktivitas katalis heterogen biasanya sangat kecil jika dibandingkan dengan katalis homogen. Oleh karena itu, untuk menutupi kekurangan tersebut, reaksi dijalankan pada pada suhu dan atau tekanan yang sangat tinggi. Katalis heterogen memiliki tiga komponen, yaitu fasa aktif, promotor dan penyangga. Fasa aktif merupakan sisi aktif dari katalis yang merupakan tempat terjadinya reaksi pada katalis. Semakin luas permukaan fasa aktif, maka aktivitas akan semakin baik. Fasa aktif tersebut biasanya disebar dalam suatu penyangga. Dengan kata lain, penyangga berperan dalam hal sebaran fasa aktif. Semakin luas permukaan penyangga, maka fasa aktif akan tersebar lebih banyak sehingga akan meningkatkan aktivitas. Penyangga juga berfungsi untuk menstabilkan katalis. Reaksi dengan menggunakan katalis heterogen biasanya dijalankan pada suhu tinggi. Pada suhu tinggi fasa aktif mudah terdekomposisi sehingga penyangga biasa digunakan untuk mencegah dekomposisi fasa aktif. Komponen lain pada katalis heterogen adalah promotor. Promotor berfungsi untuk memperbaiki kinerja katalis. Misalnya untuk mencegah sintering, untuk mencegah reaksi samping, dan lain-lain. Fasa aktif, penyangga dan promotor merupakan komponen katalis heterogen, namun tidak semua katalis heterogen memiliki ketiga komponen tersebut. Ada juga katalis yang hanya berupa zat aktif dengan penyangga atau zat aktif dengan promotor.
2.3 Fotokatalisis Fotokatalisis berasal dari kata foto dan katalis. Foto didefinisikan sebagai sinar, sedangkan katalis didefinisikan sebagai suatu zat yang mempercepat reaksi. Fotokatalis merupakan 7
percepatan dari reaksi yang berjalan karena adanya cahaya. Salah satu contoh dari reaksi yang berjalan karena adanya cahaya adalah reaksi fotosintesis. Untuk reaksi jenis tersebut, reaksi dapat dipercepat dengan cara menambahkan katalis. Jadi, fotokatalisis adalah suatu proses untuk mempercepat reaksi yang berjalan karena adanya cahaya dengan menggunakan katalis6. Aktivitas fotokatalis bergantung pada kemampuan katalis untuk menghasilkan sepasang electron-hole pada pita valensinya. Holes ini kemudian akan berfungsi sebagai tempat terjadinya oksidasi. Keberadaan electron-hole tersebut akan mempercepat proses transfer elektron yang terjadi. Dengan demikian, keberadaan dari pasangan elektron-hole akan mempercepat reaksi redoks7-10. Mekanisme fotokatalis ditunjukan pada Gambar 2.1. Saat ini, semikonduktor biasa dipilih sebagai fotokatalis karena semikonduktor memiliki energy gap yang relatif kecil antara valence band dan conduction band. Energy gap adalah perbedaan energi antara valence band dan conduction band. Untuk berlangsungnya proses katalisis, semikonduktor memerlukan serapan energi yang sama atau lebih dari energy gap.
A -·
ee nn ee rr g g i i
D +·
Gambar 2.1 Mekanisme fotokatalisis
Secara umum, mekanisme fotokatalisis adalah pembentukan radikal OH- dan pembentukan spesi super oksida anion dari oksigen. Ketika fotokatalis mengabsorpsi cahaya dengan panjang gelombang tertentu, maka fotokatalis akan memperoleh energi. Energi tersebut akan digunakan untuk eksitasi elektron dari pita valensi (valence band) menuju pita konduksi (conduction band). Setelah elektron tereksitasi, akan dihasilkan suatu hole pada pita valensi. 8
Hole akan memecah air membentuk suatu hidroksi radikal. Hidroksi radikal tersebut kemudian akan bereaksi dengan molekul organik dan memecah senyawa organik tersebut menjadi senyawa intermediet lain yang akan mengalami reaksi lebih lanjut. Elektron yang tereksitasi akan bereaksi dengan oksigen untuk membentuk spesi anion super oksida. Anion super oksida akan bereaksi dengan senyawa hasil pemecahan molekul organik membentuk produk. Siklus ini akan terus berulang sampai reaksi selesai,11,12. Aplikasi fotokatalitik sangatlah luas. Aplikasi yang telah diterapkan saat ini adalah untuk mendegradasi zat warna, degradasi molekul organik, dan penguraian limbah. Katalis untuk reaksi fotokatalitik yang umum digunakan saat ini adalah senyawa TiO2.
2.4 Reaksi Fotokatalisis Hingga saat ini, sangat banyak reaksi fotokatalisis yang telah diteliti. Sebagian besar menggunakan TiO2 sebagai katalis. Namun, ada juga reaksi fotokatalisis yang menggunakan katalis yang lain, misalnya ZnO. ZnO telah diketahui dapat mengkatalisis reaksi penguraian H2S menjadi H2 dan S 13. Reaksi total yang terjadi adalah : H2S ÆH2 + S Tahapan reaksi yang diperkirakan terjadi adalah13 : Fotokatalis
hv
Æ e- + hole+
hole+ + H2S
Æ 2H+ + S
H2S + 2OH-
Æ S2- + 2H2O
H2S + OH-
Æ HS- + H2O
2HS- + hole+
ÆS2- + H+
2S2- + hole+
Æ S2 -
HS- + OH-
Æ S + 2 e- + H2O
S2- + 2 hole+
Æ 2S
2H+ + 2e-
Æ H2
Contoh lain dari reaksi fotokatalisis adalah fotooksidasi anilin menjadi azobenzen dengan bantuan katalis CdO. Tahapan reaksi yang terjadi adalah14 : CdO + hv Æ hole+ + ePhNH2 + hole+ ÆPhNH2·+ 9
O2 + e- Æ O2·PhNH2·+ + O2·- Æ PhNO + H2O PhNO + PhNH2 Æ PhNNPh + H2O Satu hal yang cukup menarik adalah ternyata selain melalui proses elektrolisis, air juga dapat diurai menjadi H2 dan O2 melalui fotokatalisis dengan menggunakan katalis MTiO3 dan MTaO2N. Hanya saja reaksi fotokatalisis tersebut kurang efektif karena reaksi pembentukan air kembali juga terjadi. Reaksi yang terjadi adalah15 : 2hv Æ 2hole+ + 2e2hole+ + H2O(l) Æ ½ O2(g) + 2H+ 2H+ + 2e- Æ H2(g) Untuk fotokatalisis metanol sendiri telah cukup banyak diteliti, hanya saja katalis yang digunakan adalah TiO2 yang di-doped dengan logam transisi15, 16. Reaksi yang diusulkan adalah sebagai berikut : CH3OH
HCHO + H2
HCHO + H2O HCO2H
HCO2H + H2
CO2 + H2
Sehingga reaksi total yang terjadi adalah : CH3OH + H2O Æ CO2 + 3H2 Pada tahapan tersebut tidak terlihat adanya peran pasangan elektron-hole. Ilustrasi lebih lengkap ditunjukkan pada Gambar 2.2. Pada Gambar 2.2 terlihat dengan jelas peran dari spesi hidroksi radikal dan anion super oksida oksigen. Pada pita valensi maupun pita konduksi terjadi reaksi yang menghasilkan gas H2. Hal tersebut menunjukkan bahwa proses konversi metanol dengan menggunakan metode fotokatalisis dapat memberikan efisiensi yang sangat tinggi dalam produksi H2.
10
Gambar 2.2 Ilustrasi reaksi yang terjadi pada kedua pita semikonduktor
2.5 Senyawa ZnO dan CuO/ZnO Senyawa yang banyak digunakan untuk aplikasi fotokatalisis adalah TiO2. Titanium dioksida (TiO2 ) merupakan salah satu material dasar yang secara luas digunakan sebagai pigmen putih dalam cat, kosmetik, dan bahan makanan. Secara umum, TiO2 merupakan material semikonduktor yang secara kimia dapat diaktivasi oleh sinar. Hal ini memungkinkan karena TiO2 memiliki nilai energy gap yang tidak terlalu besar. Pada tahun 1972, Fujishima dan Honda menemukan splitting dari air pada elektroda TiO2. Hal tersebut menandai awal dari era baru keberagaman fotokatalisis. Meskipun TiO2 menyerap hanya 5% sinar matahari yang sampai ke permukaan bumi, TiO2 merupakan semikonduktor terbaik dalam konversi kimia dan penyimpanan energi matahari. Dalam tahun-tahun terakhir, fotokatalisis menggunakan semikonduktor TiO2 telah diterapkan pada penanganan masalah lingkungan seperti detoksifikasi air dan udara. TiO2 memiliki tiga tipe struktur kristal yaitu rutile, anatase, dan brookite. Ketiga jenis struktur tersebut diekspresikan dengan nama rumus kimia yang sama yaitu TiO2. Akan tetapi, struktur kristal tersebut berbeda. Struktur tipe rutile dapat mengabsorpsi sinar yang lebih dekat dengan sinar tampak. Meskipun faktanya bahwa energy gap untuk jenis rutile sebesar 3,0 eV dan 3,2 eV untuk jenis anatase, keduanya hanya dapat mengabsorpsi sinar UV. Ketiga struktur dari senyawa TiO2, ditunjukkan pada Gambar 2.3.
11
Gambar 2.3 Struktur rutile, anastase, dan brookite Selain TiO2, terdapat senyawa ZnO dengan karakteristik yang mirip namun harganya lebih murah. ZnO merupakan semikonduktor yang telah umum digunakan dalam peralatan elektronik. ZnO memiliki nilai energy gap 3,3 eV pada temperatur ruang, memiliki struktur wurzite (ditunjukkan pada Gambar 2.4), dan titik leleh yang tinggi (2248 K). ZnO merupakan material penting yang biasa diaplikasikan dalam pigmen, aditif, karet, sensor gas, dan peralatan optik. Karakteristik ZnO bergantung pada ukuran dan metode persiapan. Aktivitas fotokatalitik partikel berukuran nanometer lebih besar daripada partikel yang berukuran mikrometer.
Gambar 2.4 Struktur wurzite Penyiapan ZnO berukuran nano dapat dilakukan dengan metoda seperti kopresipitasi, aerosol, micro-emulsion, ultrasonic, sol-gel method, evaporasi larutan dan suspensi, evaporasi dekomposisi larutan, reaksi solid state, dan metode spray pyrolysis17. Dalam penelitian ini, digunakan metode kopresipitasi. Spesi yang diendapkan adalah Zn dan Cu. Pengendapan logam tersebut dilakukan oleh basa yang ditambahkan sehingga mencapai pH pengendapan optimum untuk kedua logam tersebut. Penggunaan CuO sebagai dopan diharapkan mampu meningkatkan aktivitas senyawa ZnO dalam mengkatalisis reaksi penguraian metanol menjadi H2. Penggunaan CuO akan memberikan suatu ketidak murnian pada ZnO. Ketidak murnian tersebut akan menyebabkan proses transfer elektron terjadi lebih mudah sehingga mekanisme pembentukan pasangan hole-elektron akan menjadi lebih mudah. 12
2.6 Fuel Cell Fuel cell adalah salah satu sumber energi alternatif yang menggunakan H2 untuk menghasilkan energi secara kimia. Secara sederhana fuel cell adalah suatu alat elektrokimia yang mampu mengkonversi energi kimia menjadi energi listrik secara kontinu dengan efisiensi yang tinggi dengan emisi yang rendah atau tanpa emisi sama sekali. Terdapat beberapa jenis fuel cell, seperti ditunjukkan pada Tabel 2.1. Klasifikasi fuel cell tersebut berdasarkan tipe elektrolit yang dipakai18, 19. Dari beberapa tipe fuel cell tersebut yang sedang menjadi pusat perhatian adalah PEMFC. PEMFC mampu beroperasi pada suhu yang tidak terlalu tinggi di bawah 1250C. Hal ini memberikan suatu keuntungan operasional. DMFC adalah jenis PEMFC yang langsung menggunakan metanol tanpa adanya proses konversi terlebih dahulu. Jadi, metanol langsung bereaksi pada anoda menghasilkan H+ yang akan dikonversi menjadi energi. Skema dari fuel cell secara umum ditunjukkan pada Gambar 2 5. Tabel 2.1 Jenis-jenis fuel cell Tipe fuel cell
Elektrolit
Suhu kerja (0C)
PEMFC
Polimer penghantar proton
50-125
DMFC
Polimer penghantar proton
50-120
SOFC
Zirconia terstabilkan
900-1000
AFC
Larutan natrium
50-90
13
Gambar 2 5 Skema fuel cell Mekanisme dari fuel cell adalah ketika H2 masuk dan berinteraksi dengan anoda, H2 akan terdisosiasi jadi proton dan elektron. Elektron akan mengalir menuju sirkuit listrik dan menghasilkan energi listrik. Sedangkan proton akan menembus membran dan menuju katoda yang kemudian akan bereaksi dengan O2 membentuk H2O.
14