BAB II TINJAUAN PUSTAKA
2.1. Energi Angin Energi yang tersedia pada angin pada dasarnya adalah energi kinetik dengan massa yang besar bergerak diseluruh permukaan bumi. Blade/sudu pada turbin angin menyerap energi kinetik ini, yang kemudian di transformasikan dalam bentuk mekanikal atau elektrik, tergantung pada akhir penggunaan energi tersebut. Efisiensi mengubah angin ke bentuk energi lain yang berguna sangat bergantung pada efisiensi dimana rotor saling berhubungan dengan aliran angin. Angin merupakan massa udara yang bergerak. Pergerakan massa udara ini diakibatkan oleh perbedaan tekanan udara antara satu tempat dengan tempat yang lain, hal ini dapat diakibatkan karena perbedaan distribusi energi radiasi matahari, tutupan awan serta dinamika disekitarnya. Energi angin dapat dikonversi atau ditransfer ke dalam bentuk energi lain seperti listrik atau mekanik dengan menggunakan turbin atau turbin angin. Oleh karena itu, turbin angin sering disebut sebagai Sistem Konversi Energi Angin (SKEA). Energi kinetik dari aliran angin dengan massa m dan bergerak dengan kecepatan V dapat diberikan dengan: πΈπΈ =
1 ππ ππ 2 (Lit. 6 hal. 20) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (1) 2
Mempertimbangkan rotor angin melewati area A terbuka pada aliran angin ini. Energi kinetic aliran angin yang tersedia untuk turbin dapat dihitung dengan: πΈπΈ =
1 ππ π£π£ππ 2 (Lit. 6 hal. 20). . β¦ β¦ . β¦ β¦ β¦ β¦ β¦ β¦ (2) 2 ππ
Dimana ππππ adalah massa jenis udara dan v adalah volume udara yang tersedia untuk rotor. Udara saling berinteraksi dengan rotor per satuan waktu di daerah yang sama pada rotor (AT) dan ketebalan sama dengan kecepatan angin (V).
Universitas sumatera utara
Karena energi per satuan waktu itu adalah daya, dapat ditunjuk dengan: 1 ππ = ππππ π΄π΄ππ ππ 3 (Lit. 6 hal. 23) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (3) 2 Dapatdilihat bahwa faktor yang mempengaruhi kekuatan tersedia pada aliran angin adalah kepadatan udara, daerah rotor angin dan kecepatan angin.
Gambar 2.1 Skema udara bergerak ke arah turbin angin (Sumber : Mathew, 2006)
2.2. Daya Turbin Angin Dan Torsi Daya teoritis yang tersedia pada angin ditunjukkan pada persamaan (3). Akan tetapi, turbin tidak bisa mengekstrak sepenuhnya daya dari angin. Ketika angin melewati turbin, sebagian energi kinetiknya dialihkan ke rotor dan membawa sisa energi jauh dari turbin.Daya aktual dihasilkan oleh rotor akan di putuskan oleh efisiensi dimana energi yang ditransfer dari angin menuju rotor berada pada posisinya. Efisiensi ini dikenal sebagai koefisien daya (Cp). Jadi, koefisien daya rotor dapat didefinisikan sebagai rasio daya aktual yang dikembangkan oleh rotor dengan daya teoritis pada angin. Karenanya: πΆπΆππ =
2ππππ (Lit. 6 hal. 23) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (4) ππππ π΄π΄ππ ππ 3
Dimana PT adalah daya turbin. Koefisien daya turbin tergantung pada banyak faktor seperti profil sudu turbin, susunan sudu, dudukan dan lain - lain. Perancang akan berusaha menetapkan parameter β parameter ini pada tingkat
Universitas sumatera utara
optimum supaya mencapai Cp maksimum pada cakupan luas kecepatan angin. Gaya dorong pada rotor (F) dapat dinyatakan dengan: πΉπΉ =
1 ππ π΄π΄ ππ 2 (Lit. 6 hal. 23) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (5) 2 ππ ππ
Oleh karena itu dapat ditunjukan torsi rotor (T) dinyatakan dengan: ππ =
1 ππ π΄π΄ ππ 2 π
π
2 ππ ππ
(Lit. 6 hal. 23) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (6)
Dimana R adalah radius rotor. Rasio torsi aktual yang dikembangkan oleh rotor dan daya torsi teoritis dikenal sebagai koefisien torsi (CT). jadi koefisien torsi dinyatakan dengan: πΆπΆππ =
2 ππππ (Lit. 6 hal. 23) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (7) ππππ π΄π΄ππ ππ 2 π
π
Diman TT adalah torsi aktual yang dikembangkan oleh rotor. Daya yang terdapat pada rotor pada kecepatan angin tertentu sangat bergantung pada kecepatan relative diantara ujung rotor dan angin. Sebagai contoh, anggap situasi dimana rotor berputar dengan kecepatan rendah dan angin mendekati rotor dengan kecepatan sangat tinggi. Dengan kondisi ini, sudu bergerak lambat, sebagian aliran udara mengalir mendekati rotor mungkin menerobos tanpa saling berinteraksi dengan sudu dan tanpa pemindahan daya. Dengan cara yang sama, jika rotor berputar cepat dan kecepatan angin rendah, aliran udara mungkin membelok dari turbin dan energi mungkin hilang dalam kaitan dengan tubulensi dan pergantian pusaran (vortex shedding). Pada kedua peristiwa diatas, interaksi antara rotor dan aliran udara tidak efisien dan akan menghasilkan koefisien daya yang rendah. Rasio antara kecepatan pada ujung rotor dan kecepatan angin dikenal sebagai Tip Speed Ratio (Ξ»). Jadi: ππ =
π
π
Ξ© 2ππππππ (Lit. 6 hal. 24) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (8) = ππ ππ
Dimana Ξ© adalah kecepatan sudut, dan N adalah kecepatan putaran rotor.
Koefisien daya dan koefisien torsi berbeda dengan tip speed ratio. Tip speed ratio
Universitas sumatera utara
optimum ditentukan rotor dimana pindahan energi yang paling efisien dan koefisien daya maksimum (CP max).
Gambar 2.2 Variasi Tip Speed Ratio Dan Koefisien Daya CP Pada Berbagai Jenis Turbin Angin (Sumber : Hau, 2006) Hubungan antara koefisien daya dan tip speed ratio: πΆπΆππ =
2 ππππ 2 ππππ Ξ© (Lit. 6 hal. 24) β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (9) = ππππ π΄π΄ππ ππ 3 ππππ π΄π΄ππ ππ 2 π
π
Perbangdingan persamaan 2.1 dan 2.2, didapat: πΆπΆππ π
π
Ξ© = = ππ πΆπΆππ ππ
(Lit. 6 hal. 24) β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (10)
Jadi, tip speed ratio adalah perbandingan rasio antara koefisien daya dan koefisien torsi dari rotor.
Universitas sumatera utara
2.3. Turbin Angin Sejak permulaan teknologi energi angin, mesin dengan berbagai jenis tipe dan bentuk telah didesain dan dikembangkan hampir diseluruh dunia. Sebagian dari desain inovatif ini tidak diterima secara komersial. Meskipun beberapa cara menggolongkan turbin angin, maka pada saat ini hanya digolongakan berdasarkan sumbu rotasi turbin angin tersebut yaitu turbin angi poros horizontal dan turbin angin poros vertikal.
2.3.1. Tubin Angin Sumbu Horizontal (TASH) Turbin angin dengan sumbu horizontal mempunyai sudu yang berputar dalam bidang vertikal seperti halnya propeler pesawat terbang. Turbin angin biasanya mempunyai sudu dengan bentuk irisan melintang khusus di mana aliran udara pada salah satu sisinya dapat bergerak lebih cepat dari aliran udara di sisi yang lain ketika angin melewatinya. Fenomena ini menimbulkan daerah tekanan rendah pada belakang sudu dan daerah tekanan tinggi di depan sudu. Perbedaan tekanan ini membentuk gaya yang menyebabkan sudu berputar. Karena sebuah menara menghasilkan turbulensi di belakangnya, turbin biasanya diarahkan melawan arah anginnya menara. Bilah-bilah turbin dibuat kaku agar mereka tidak terdorong menuju menara oleh angin berkecepatan tinggi. Sebagai tambahan, bilah-bilah itu diletakkan di depan menara pada jarak tertentu dan sedikit dimiringkan. Karena turbulensi menyebabkan kerusakan struktur menara, dan realibilitas begitu penting, sebagian besar TASH merupakan mesin upwind (melawan arah angin). Meski memiliki permasalahan turbulensi, mesin downwind (menurut arah angin) dibuat karena tidak memerlukan mekanisme tambahan agar mereka tetap sejalan dengan angin, dan karena di saat angin berhembus sangat kencang, bilah-bilahnya bisa ditekuk sehingga mengurangi wilayah tiupan mereka dan dengan demikian juga mengurangi resintensi angin dari bilah-bilah itu
Universitas sumatera utara
Gambar 2.3 Turbin angin jenis upwind dan downwind (Sumber : Mathew, 2006) ο Kelebihan Turbin Angin Sumbu Horizontal β Dasar menara yang tinggi membolehkan akses ke angin yang lebih kuat di tempat-tempat yang memiliki geseran angin (perbedaan antara laju dan arah angin antara dua titik yang jaraknya relatif dekat di dalam atmosfir bumi. Di sejumlah lokasi geseran angin, setiap sepuluh meter ke atas, kecepatan angin meningkat sebesar 20%. ο Kelemahan Turbin Angin Sumbu Horizontal β Menara yang tinggi serta bilah yang panjangnya bisa mencapai 90 meter sulit diangkut. Diperkirakan besar biaya transportasi bias mencapai 20% dari seluruh biaya peralatan turbin angin. β TASH yang tinggi sulit dipasang, membutuhkan derek yang sangat tinggi dan mahal serta para operator yang terampil. β Konstruksi menara yang besar dibutuhkan untuk menyangga bilahbilah yang berat, gearbox, dan generator. β TASH yang tinggi bisa memengaruhi radar airport. β Ukurannya yang tinggi merintangi jangkauan pandangan dan mengganggu penampilan lansekap. β Berbagai varian downwind menderita kerusakan struktur yang disebabkan oleh turbulensi. β TASH membutuhkan mekanisme kontrol yaw tambahan untuk membelokkan turbinke arah angin.
Universitas sumatera utara
2.3.2. Turbin Angin Sumbu Vertikal (TASV) Turbin angin sumbu vertikal/tegak (atau TASV) memiliki poros/sumbu rotor utama yang disusun tegak lurus. Kelebihan utama susunan ini adalah turbin tidak harus diarahkan ke angin agar menjadi efektif.Kelebihan ini sangat berguna di tempat-tempat yang arah anginnya sangat bervariasi.VAWT mampu mendayagunakan angin dari berbagai arah. Dengan sumbu yang vertikal, generator serta gearbox bisa ditempatkan di dekat tanah, jadi menara tidak perlu menyokongnya dan lebih mudah diakses untuk keperluan perawatan.Tapi ini menyebabkan sejumlah desain menghasilkan tenaga putaran yang berdenyut. Drag (gaya yang menahan pergerakan sebuah benda padat melalui fluida (zat cair atau gas) bisa saja tercipta saat turbinberputar. Karena sulit dipasang di atas menara, turbin sumbu tegak sering dipasang lebih dekat ke dasar tempat ia diletakkan, seperti tanah atau puncak atap sebuah bangunan. Kecepatan angin lebih pelan pada ketinggian yang rendah, sehingga yang tersedia adalahenergi angin yang sedikit. Aliran udara di dekat tanah dan obyek yang lain mampumenciptakan aliran yang bergolak, yang bisa menyebabkan berbagai permasalahan yangberkaitan dengan getaran, diantaranya kebisingan dan bearing wear yang akanmeningkatkan biaya pemeliharaan atau mempersingkat umur turbin angin. Jika tinggipuncak atap yang dipasangi menara turbin kira-kira 50% dari tinggi bangunan, inimerupakan titik optimal bagi energi angin yang maksimal dan turbulensi angin yangminimal.
Gambar 2.4 Jenis turbin angin sumbu vertikal (Sumber : Mathew, 2006)
Universitas sumatera utara
ο Kelebihan Turbin Angin Sumbu Vertikal β Tidak membutuhkan struktur menara yang besar β Karena bilah-bilah rotornya vertikal, tidak dibutuhkan mekanisme yaw. β Sebuah TASV bisa diletakkan lebih dekat ke tanah, membuat pemeliharaan bagian-bagiannya yang bergerak jadi lebih mudah β TASV memiliki sudut airfoil (bentuk bilah sebuah baling-baling yang terlihat secara melintang) yang lebih tinggi, memberikan keaerodinamisan yang tinggi sembari mengurangi drag pada tekanan yang rendah dan tinggi β Desain TASV berbilah lurus dengan potongan melintang berbentuk kotak atau empat persegi panjang memiliki wilayah tiupan yang lebih besar untuk diameter tertentu daripada wilayah tiupan berbentuk lingkarannya TASH β TASV tidak harus diubah posisinya jika arah angin berubah. β Turbinpada TASV mudah dilihat dan dihindari burung. β TASV memiliki kecepatan awal angin yang lebih rendah daripada TASH. Biasanya TASV mulai menghasilkan listrik pada 10km/jam (6 m.p.h.) β TASV bisa didirikan pada lokasi-lokasi dimana struktur yang lebih tinggi dilarang dibangun. β TASV biasanya memiliki tip speed ratio (perbandingan antara kecepatan putaran dari ujung sebuah bilah dengan laju sebenarnya angin) yang lebih rendah sehingga lebih kecil kemungkinannya rusak di saat angin berhembus sangat kencang. β TASV yang ditempatkan di dekat tanah bisa mengambil keuntungan dari berbagai lokasi yang menyalurkan angin serta meningkatkan laju angin (seperti gunung atau bukit yang puncaknya datar dan puncak bukit)
Universitas sumatera utara
ο Kelemahan Turbin Angin Sumbu Vertikal β Kebanyakan TASV memproduksi energi hanya 50% dari efisiensi TASH karena drag tambahan yang dimilikinya saat turbinberputar β TASV tidak mengambil keuntungan dari angin yang melaju lebih kencang di elevasi yang lebih tinggi β Kebanyakan TASV mempunyai torsi awal yang rendah, dan membutuhkan energi untuk mulai berputar β Sebuah TASV yang menggunakan kabel untuk menyanggahnya memberi tekanan padabantalan dasar karena semua berat rotor dibebankan pada bantalan. Kabel yang dikaitkanke puncak bantalan meningkatkan daya dorong ke bawah saat angin bertiup
2.4. Karakteristik Rotor Angin
CP
Tip Speed Ratio (Ξ») Gambar 2.5 Karakteristik performance rotor angin (Sumber : Mathew, 2006)
Efisiensi dimana sebuah
rotor dapat mengekstrak
daya dari angin
bergantung pada kesamaan dinamik antara rotor dan aliran angin. Karenanya,
Universitas sumatera utara
penampilan dari suatu rotor angin adalah biasanya dikarakterisasi oleh variasivariasi dalam koefisien daya nya dengan Tip Speed Ratio. Hubungan antara CP Ξ» bisa disimpulkan untuk suatu desain rotor yang khas, itu dapat lebih lanjut diterjemahkan pada kurva daya kecepatan dari rotor untuk penerapan praktis. Kurva CP β Ξ» tertentu untuk rotor yang berbeda ditunjukakn pada gambar 2.5 Secara umum, awalnya koefisien daya turbin bertambah dengan tip speed ratio yang mencapai puncak pada Ξ» tertentu dan selanjutnya berkurang dengan peningkatan dalam rasio kecepatan puncak. Variasi dalam Cp dengan Ξ» tergantung pada beberapa ciri disain rotor.Rotor dengan multibilah Amerika menunjukkan koefisien daya yang paling rendah dan bekerja pada rasio kecepatan rendah dengan angin. Nilai tertentu untuk koefisien daya puncaknya adalah 14% pada rasio kecepatan puncak 0.8. Namun, hal tersebut memiliki soliditas yang tinggi sehingga getaran awal yang tinggi membuatnya menjadi menarik untuk memompa air. Turbin dengan baling-baling dua dan tiga bilah serta desain Darrieus bekerja pada tip speed ratio yang lebih tinggi dan menunjukkan efisiensi yang lebih baik. Dengan demikian, hal tersebut sesuai untuk generator elektrik tenaga angin. Rotor Savonius dengan soliditas yang tinggi bekerja pada rasio kecepatan puncak yang lebih rendah. Walaupun secara teoritis diperlihatkan bahwa efisiensi puncak dari rotor tersebut tidak dapat melewati batas 20%, namun Savonius dilaporkan memiliki efisiensi puncak 31% dalam test wind tunnel dan 37% di udara bebas. Efisiensi mulai dari 25-35% dilaporkan dalam beberapa penelitian tentang rotor. Nilai ini cukup impresif karena rotor lebih mudah dibuat dan biaya yang lebih murah. Albert Betz, ahli Fisika Jerman pada tahun 1962 sudah menentukan batasan untuk koefisien daya maksimum untuk gulungan rotor yang ideal. Dia menggunakan teori aksial momentum dalam bentuknya yang paling sederhana untuk analisanya dan menyatakan bahwa koefisien daya teoritis maksimum dari turbin angin, terutama di operasikan oleh gaya angkat yakni 16/27 (59.3 %). Hal ini disebut dengan batasan bets. Pada sisi lain, koefisien daya yang diharapkan dari hambatan mesin tersebut adalah 8/27. Oleh karena itu, mesin angkat lebih dipilih daripada mesin hambat untuk konversi energi angin. Perlu dicatat bahwa
Universitas sumatera utara
hal ini merupakan nilai teoritis dan beberapa turbin hambat seperti rotor Savonius yang menunjukkan efisiensi yang tinggi dalam evaluasi lapangan.
2.5. Teori Momentum Elementer Betzβ Teori momentum elementer Betz sederhana berdasarkan pemodelan aliran dua dimensi angin yang mengenai rotor menjelaskan prinsip konversi energi angin padaturbin angin. Kecepatan aliran udara berkurang dan garis aliran membelok ketika melalui rotor dipandang pada satu bidang. Berkurangnya kecepatan aliran udara disebabkan sebagian energi kinetik angin diserap oleh rotor turbin angin. Pada kenyataannya, putaran rotor menghasilkan perubahan kecepatan angin pada arah tangensial yang akibatnya mengurangi jumlah total energi yang dapat diambil dari angin. Walaupun teori elementer Betz telah mengalami penyederhanaan, namun teori ini cukup baik untuk menjelaskan bagaimana energi angin dapat dikonversikan menjadi bentuk energi lainnya. Energi kinetik dari suatu massa udara m bergerak pada kecepatan v dapat dinyatakan sebagai: πΈπΈ =
1 ππ π£π£ 2 (Lit. 4 hal. 81) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . . (11) 2
mempertimbangkan suatu luas daerah tertentu A, dimana udara lewat dengan kecepatan v, volume V melalui selama suatu satuan waktu yang tertentu, jadi yang disebut dengan volume aliran adalah: ππΜ = π£π£π£π£
(Lit. 4 hal. 81) β¦ . β¦ β¦ β¦ β¦ β¦ β¦ β¦ (12)
ππΜ = ππππππ
(Lit. 4 hal. 82). β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (13)
dan laju aliran massa dengan density Ο adalah:
persamaan yang menyatakan energi kinetik melalui penampang A pada setiap satuan waktu dapat dinyatakan sebagai daya yang melalui penampang A adalah: ππ =
1 3 πππ£π£ π΄π΄ 2
(Lit. 4 hal. 82) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (14)
Universitas sumatera utara
Energi dapat diambil dari angin dengan mengurangi kecepatannya. Artinya kecepatan udara dibelakang rotor akan lebih rendah daripada kecepatannya. Berarti kecepatan udara di belakang rotor akan lebih rendah daripada kecepatan udara didepan rotor. Energi mekanik yang diambil dari angin satuan waktu didasarkan pada perubahan kecepatannya dapat dinyatakan dengan persamaan : ππ =
1 1 1 πππ΄π΄1 π£π£1 3 β πππ΄π΄2 π£π£2 3 = ππ(π΄π΄1 π£π£1 3 β π΄π΄2 π£π£2 3 )(Lit. 4 hal. 82) β¦ β¦ (15) 2 2 2
Gambar 2.6 Model Aliran dari Teori Momentum Beltz (Sumber:Hau, 2006) Maka: ππ =
1 ππΜοΏ½π£π£1 2 β π£π£2 2 οΏ½(Lit. 4 hal. 83) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (16) 2
dari persamaan (16) dapat disimpulkan bahwa daya terbesar yang diambil dari angin adalah jika bernilai nol, yaitu angin berhenti setelah melalui rotor, namun hal ini tidak dapat terjadi karena tidak memenuhi hukum kontinuitas. Energi angin yang diubah akan semakin besar jika semakin kecil, atau dengan kata lain rasio harus semakin besar. Persamaan lainnya yang diperlukan untuk mencari besarnya daya yang dapat diambil adalah persamaan momentum : πΉπΉ = ππΜ(π£π£1 βπ£π£2 )(Lit. 4 hal. 83) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (17) sesuai dengan hukum kedua Newton bahwa gaya aksi akan sama dengan gaya reaksi, gaya yang diberikan udara kepada rotor akan sama dengan gaya hambat
Universitas sumatera utara
oleh rotor yang menekan udara kearah yang berlawanan dengan arah gerak udara. Daya yang diperlukan untuk menghambat aliran udara adalah : ππ = πΉπΉπ£π£ β² = ππΜ(π£π£1 βπ£π£2 )π£π£ β² (Lit. 4 hal. 83) β¦ β¦ β¦ β¦ β¦ β¦ β¦ . . (18) kedua persamaan diatas digabungkan menunjukkan hubungan : 1 ππΜ(π£π£1 2 β π£π£2 2 ) = ππΜ(π£π£1 β π£π£2 )π£π£ β² (Lit. 4 hal. 83) β¦ β¦ β¦ β¦ β¦ β¦ β¦ (19) 2
Sehingga:
1 π£π£ β² = (π£π£1 β π£π£2 )(Lit. 4 hal. 83) β¦ β¦ β¦ β¦ β¦ β¦ β¦ (20) 2 Maka kecepatan aliran udara ketika melalui rotor adalah: π£π£ β² =
π£π£1 + π£π£2 (Lit. 4 hal. 83) β¦ β¦ β¦ β¦ β¦ β¦ β¦ (21) 2
Laju aliran massa menjadi: 1 ππΜ = πππππ£π£ β² = ππππ(π£π£1 + π£π£2 )(Lit. 4 hal. 83). . β¦ β¦ β¦ β¦ β¦ β¦ . (22) 2
maka besarnya keluaran daya mekanik yang telah diubah adalah : ππ =
1 ππππ(π£π£1 2 β π£π£2 2 )(π£π£1 + π£π£2 )(Lit. 4 hal. 84) β¦ β¦ β¦ β¦ β¦ β¦ β¦ (23) 4
Untuk melengkapi uraian dari besarnya keluaran daya mekanik ini, harus dibandingkan dengan daya yang terkandung pada aliran angin yang melewati luasan area A yang sama, yaitu persamaan (13), besarnya rasio perbandingan antara keluaran daya mekanik yang telah diubah dari energi angin dengan daya yang terkandung pada angin Po disebut dengan βpower coefficientβ Cp dengan persamaan : 1
2 2 ππ 4 πππποΏ½π£π£1 β π£π£2 οΏ½(π£π£1 + π£π£2 ) (Lit. 4 hal. 84). . β¦ β¦ β¦ β¦ β¦ β¦ (24) πΆπΆππ = = 1 ππππ πππππ£π£1 3 2
Koefisien daya tersebut dapat diubah menjadi fungsi dari perbandingan kecepatan U2/U1, yaitu :
Universitas sumatera utara
πΆπΆππ =
π£π£2 2 ππ 1 π£π£2 = οΏ½1 β οΏ½ οΏ½ οΏ½ οΏ½1 + οΏ½ (Lit. 4 hal. 84) β¦ β¦ β¦ β¦ β¦ β¦ (25) π£π£1 π£π£1 ππππ 2
Koefisien daya hasil dari konversi daya angin ke daya mekanis turbin tergantung pada perbandingan dari kecepatan angin sebelum dan sesudah dikonversikan. Jikaketerkaitan ini di plot ke dalam grafik, secara langsung solusi analitis juga dapat ditemukan dengan mudah. Dapat dilihat bahwa koefisien daya mencapai maksimum pada rasio kecepatan angin tertentu seperti pada terlihat pada gambar.
Gambar 2.7 Koefisien Daya Berbanding Dengan Rasio Kecepatan Aliran Sebelum dan Setelah Konversi Energi (Sumber :Hau, 2006) Dengan U2/U1 = 1/3, besarnya effisiensi teoritis atau ideal atau maksimum dari turbin angin Cp adalah : πΆπΆππ =
16 = 0,593 27
(Lit. 4 hal. 85) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (26)
Denga kata lain, turbin angin dapat mengkonversikan tidak lebih dari 60% tenaga total angin menjadi tenaga berguna. Betz adalah orang pertama yang menemukan nilai ini, untuk itu nilai ini disebut juga dengan Betz factor. Mengetahui bahwa koefisien daya maksimum yang ideal dicapai pada U2/U1=1/3, kecepatan angin yang melalui rotor menjadi :
Universitas sumatera utara
π£π£ β² =
2 π£π£ (Lit. 4 hal. 85) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (27) 3 1
dan kecepatan setelah melewati turbin U2 menjadi : 1 π£π£2 = π£π£1 (Lit. 4 hal. 85) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (28) 3
Gambar berikut menunjukkan asumsi bahwa roda turbin mempunyai ketebalan a-b , tekanan masuk PO dan V1 dan pada bagian keluar P2 dan V2. V2 lebih kecil dari pada V1 karena energi kinetiknya telah diambil oleh sudu turbin.
Gambar 2.8Kondisi aliran udara melalui satu disk ideal membentuk konverter tenaga dengan kemungkinan ekstraksi maksimum dari gaya mekanis (Sumber : Hau, 2006)
2.6. GAYA AERODINAMIK PADA ROTOR Teori momentum betzβs menunjukkan nilai yang ideal untuk daya yang di ekstrak dari aliran udara tanpa mempertimbangkan desain dari rotor turbin itu sendiri. Gaya aerodinamis yang digunakan rotor sangat mempengaruhi daya mekanik yang dihasilkan. Ada dua macam gaya yang menggerakan rotor pada turbin angin, yaitu gaya lift dan drag. Gaya lift adalah gaya pada arah tegak lurus
Universitas sumatera utara
arah aliran yang dihasilkan ketika fluida bergerak melalui benda yang berpenampang airfoil. Jika penampang airfoil menyapu udara dengan kecepatan tertentu maka tekanan udara pada bagian atas sayap akan lebih kecil dari bagian bawah sayap, hal ini menyebabkan adanya gaya angkat pada sayap tersebut yang disebut gaya lift. Sedangkan gaya drag adalah gaya hambat yang arahnya berlawanan dengan arah gerak benda.
2.6.1. Aerodinamik Hambatan (drag) Menurut Hau (2006) jenis yang paling sederhana dalam mengkonversi energi dapat dicapai dengan cara penerapan hambatan atau drag murni pada suatu permukaan seperti pada gambar. Udara yang mengenai permukaan A dengankecepatan Uw, maka daya yang dapat ditangkap P, dapat dihitung dari aerodinamis hambatan D, luas penampang A dan kecepatan U adalah : ππ = π·π· β ππππ (Lit. 4 hal. 86) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (29)
Gambar 2.9 Kondisi aliran dan Gaya Aerodinamis pada Turbin Jenis Drag (Sumber : Hau, 2006)
Mesin drag ideal terdiri dari alat dengan permukaan penghalang digerakkan angin atau flaps bergerak paralel terhadap aliran angin merata dengan kecepatan Uo. Perbedaan tekanan jarak lintas stasioner flap dijaga tegak lurus terhadap kecepatan angin. Untuk flap dengan luas sapuan A bergerak dengan kecepatan v, gaya drag penggerak maksimum adalah: πΉπΉππππππ
ππππ(π’π’ππ β π£π£)2 (Lit. 4 hal. 86) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (30) = 2 Universitas sumatera utara
Koefisien hambat (drag) CD tak berdimensi adalah digunakan untuk menggambarkan alat dilihat dari yang ideal, sehingga gaya hambat menjadi: πΉπΉπ·π· =
πΆπΆπ·π· β ππππ(π’π’ππ β π£π£)2 (Lit. 4 hal. 87) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . . (31) 2
Daya yang ditangkap flap adalah: π£π£ πππ·π· = πΉπΉπ·π· π£π£ = πΆπΆπ·π· β ππππ(π’π’ππ β π£π£)2 (Lit. 4 hal. 87) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (32) 2
Daya maksimum pada nilai v saatπ£π£ = π’π’ππ β3, sehingga: πππ·π·ππππππ
4 πππππ’π’ππ 3 (Lit. 4 hal. 87) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (33) = πΆπΆ 27 π·π· 2
Koefisien daya CPdidefenisikan dari persamaan (23) didapat: πππ·π·ππππππ =
πΆπΆππ πππππ’π’ππ 3 (Lit. 4 hal. 87) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (34) 2
Sehingga πΆπΆππππππππ =
4 πΆπΆ (Lit. 4 hal. 87) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (35) 27 π·π·
Nilai CD dari mendekati nol sampai titik maksimum, maksimum kira β kira 1,5 untuk bentuk cekung yang digunakan pada anemometer standard. Dengan demikian, koefisien daya maksimum untuk drag machine adalah: πΆπΆππππππππ β οΏ½
4 6 οΏ½ (1,5) = = 22% 27 27
(Lit. 4 hal. 85). . β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (36)
Hal ini dibandingkan dengan kriteria Betzβ untuk turbin βidealβ dengan 16 27
πΆπΆππ =
= 59 % . Ditunjukkan bahwa turbin tipe lift memiliki koefisien daya 30% lebih
besar dari perhitungan yang mungkin dicapai berdasarkan pendekatan kriteria Betzβ. Daya ekstraksi dari drag
machine dapat ditingkatkan
dengan
penggabungan flap atau dengan memperbaiki konsentrasi aliran angin. Cara memperbaiki drag machine memiliki hal yang sama dengan rotor turbin Savonius.
Universitas sumatera utara
Tabel 2.1 Koefisien β koefisien Hambat yang Khas Bagi Berbagai Silinder Dalam Aliran Dua Dimensi (sumber:Alvian, 2011)
Menurut Reksoatmodjo (2005), untuk penerapan teori Betz pada turbine angin Savonius perlu memperhatikan penyimpangan-penyimpangan dari asumsiasumsi yang digunakan oleh Betz.
Pertama, Betz mengansumsikan jumlah sudu-sudu turbin tak terhingga, sedangkan pada turbin Savonius jumlah sudu-sudu hanya dua. Kedua, Betz mengasumsikan aliran udara laminar, sedangkan dalam kenyataannya terutama pada kecepatan angin pada bilangan Beaufort Bn β₯10 atau β₯26 m/s aliran udara diperkirakan tidak
Universitas sumatera utara
sepenuhnya laminar sehingga pengaruh bilangan Reynold akan menentukan besar-kecilnya koefisien hambatan Cd. Jika sudu-sudu berbentuk setengah bola Cd = 1.42 kalau angin berhembus pada sisi cekung dan Cd = 0.34 jika angin berhembus pada sisi cembung (Bilangan Reynold 104 < NR <106) (Hughes dan Brighton, 1967:85 dalam Reksoatmodjo, 2005). Untuk sudu β sudu berbentuk setengah silinder harga-harga itu sama dengan 2.3 dan 1.2 (Bilangan Reynold 4 x 104) (Streeter, 1996).
2.6.2. Aerodinamik Angkat (lift) Jika bentuk sudu rotor memungkinkan pemanfaatan aerodinamis lift, koefisien daya yang lebih tinggi dapat dicapai. Analog dengan kondisi yang ada dalam kasus pesawat airfoil, pemanfaatan gaya lift sangat meningkatkan efesiensi (gambar 2.12).
Gambar 2.10 Gaya aerodinamis rotor turbin angin ketika dilalui aliran udara. (Sumber: manwell. 2002)
2.7 Wind Pump (Pompa Tenaga Angin) Sumber energi terbarukan yang paling umum digunakan untuk pemompaan adalahangin.Tenaga angin dapat dimanfaatkan secara mekanik atau elektrik untuk system pemompaan.Sejak lama energi angin telah dimanfaatkan untuk menggerakkan perahu. Sejakawalabad ke-13 energi angin mulai digunakan untuk
Universitas sumatera utara
menguras air dari lahan pertaniandiBelanda.Salah satu aplikasi dari energi angin adalah pemompaan air. Di Eropa, pompa air tenaga angin skala kecil yang terbuat dari kayu telah lamajuga digunakan untuk memompa air laut dalam pembuatan garam. Kemudian yangmenjadi sangat populer hingga saat ini adalah pompa air tenaga angin mekanikβyangsekarang kita kenal dengan American typeyang terbuat dari besi dengan jumlah sudubanyak. Ulasan ringkas mengenai sistem pompa air tenaga angin dibahas di bawah ini Pompa tenaga angin secara luas dapat digolongkan dengan 2 sistem yaitu system mekanik dan system elektrik.
Gambar 2.11 Jenis jenis pompa yang digerakkan oleh angin secara mekanikal (Sumber : Mathew, 2006) 2.7.1 Pompa Air Tenaga Angin Mekanik (Mechanical Wind Pumps) Pompa angin mekanik biasanya menggunakan turbinangin tradisional yang dapatberputar pada kecepatan angin yang relatif rendah. Turbinangin seperti ini sering disebutold American windmill atau American type windmill (lihat Gambar 2.10).Pompa air tenaga angin jenis ini mulai digunakan di Amerika pada akhir abad ke 19 untukkebutuhan air rumah tangga dan pembuatan rel kereta api. Selama kurang lebih 100 tahun terakhir ini, sudah lebih dari 8 juta turbin angin
Universitas sumatera utara
seperti ini dibuat di Amerika.Desainnyasudah terbukti berhasil sehingga banyak ditiru di seluruh dunia. Turbin angin jenis inimenggerakkan pompa piston yang dihubungkan dengan gear. Turbin angin tradisional biasanya mempunyai sudu sederhana yang terbuat dari platmelengkung berjumlah banyak, sekitar 15-18. Yang lebih modern sekarang menggunakansudu berbentuk airfoil dan jumlahnya tidak begitu banyak, sekitar 6-8.Salah satu masalah pada penerapan pompa angin mekanik ini adalah lokasi instalasi. Turbin angin harus dipasang langsung di atas borehole atau sumber air.Sedangkan lokasisumber air yang baik belum tentu merupakan lokasi sumber daya angin yang baik pula
Gambar 2.12. Diagram skematik pompa air tenaga angin mekanik. (Sumber: Mathew,2006)
2.7.2 Pompa Air Tenaga Angin Elektrik (Electrical Wind Pumps) Pemompaan air dengan turbin angin secara elektrikal menawarkan teknologi yang lebihmenjanjikan.Turbin angin dapat mengahasilkan listrik baik AC maupun DC, dan pompadapat langsung dihubungkan dengan langsung dengan motor AC atau DC. Pompasentrifugal dapat digunakan karena turbin angin listrik dirancang untuk rotor dengansoliditas rendah (lihat Gambar 2.11). Dengan cara ini beberapa keuntungan yang dapatdiambil adalah sebagai berikut:
Universitas sumatera utara
β’
Tidak
memerlukan
batere
atau
inverter,
karena
pompa
dapat
langsungdihubungkan dengan motor. β’
Lebih mudah untuk menyelaraskan turbin angin dengan pompa air denganmengatur beban secara elektrikal bukan mekanikal.
β’
Memberikan kemudahan dalam penentuan tempat instalasi, karena turbin angina dapat dipasang di mana saja yang anginnya kuat, sementara pompa sendiridapat dipasang dimana sumber air berada. Kemudahan ini tidak akandidapatkan apabila kita menggunakanpompa angin mekanik, karena terkadangsumber daya air dan angin tidak berada ditempatyang sama.
Berbeda dengan kincir angin tradisional, turbin angin elektrikal menuntut kecepatanangin yanglebih tinggi. Misalnya, untuk mulai memompa, turbin angin kecil skala 1.5kW akan memerlukankecepatan angin rata-rata 4-5 m/s sedangkan pompa angin mekanikhanya memerlukan 2.5-3.5m/s. Turbin angin seperti ini mempunyai kinerja yang lebiheffisien pada kecepatan tinggidaripada kecepatan rendah. Turbin angin seperti ini duakali lebih effisien daripada kincir angintradisional, lebih kompetitif dari diesel, system photovoltaic,
dan
kincir
angin
tradisional
itusendiri.Karena
bagian
yangbergerak/berputar lebih sedikit dibandingkan dengan kincir angintradisional, turbin angina seperti ini juga menjanjikan biaya pemeliharaan yang lebih murah.
Universitas sumatera utara
Gambar 2.13. Diagram skematik pompa air tenaga angin elektrikal. (Sumber: Mathew, 2006) Dengan penjelasan tentang pompa tenaga angin diatas yang akan dibahas selanjutnya adalah pompa tenaga angin mekanik yang menggunakan pompa piston.
2.7.3 Turbin Angin Penggerak Pompa Piston. Pompa piston banyak digunakan seperti pompa komersil lainnya. System ini terdiri dari multiblade dengan soliditas tinggi, poros engkol, connecting rod, dan pompa piston. Gerak putar turbin angin diterjemahkan pada gerak batang torak oleh engkol. Batang penghubung mengoperasikan piston pompa naik dan turun melalui silinder selama proses langkah. Dua katup check, membuka dan menutup seiring langkah piston. Ketika batang penghubung menggerakkan piston turun, pada katup sisi keluar tertutup dan air terisi pada silinder. Kemudian pada saat piston bergerak keatas katup sisi masuk tertutup dan mengeluarkan air melalui katup sisi keluar.
Universitas sumatera utara
Gambar 2.14 Turbin angin menggerakkan pompa piston (Sumber : Mathew, 2006)
Volume air yang keluar selama proses langkah dihasilkan dari daerah bagian dalam silinder dan panjang langkah yang dilakukan selama proses langkah. Dengan demikian, jika d adalah diameter dalam silinder dan s adalah panjang langkah lalu, secara teoritis volume air yang di pompakan melalui saluran discharge diberikan oleh: ππ 2 ππ π π 4 Dari gambar, dapat dilihat bahwa: πππ π =
π π = 2ππ
(Lit. 6 hal. 127). β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (37) (Lit. 6 hal. 127) β¦ β¦ β¦ . . β¦ β¦ β¦ β¦ β¦ β¦ β¦ (38)
Dimana r adalah panjang engkol. Debit yang dihasilkan dari katup discharge dapat dihitung dengan:
ππ = ππππ
ππ 2 ππ ππ ππ 2
(Lit. 6 hal. 128) β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (39)
Dimana ππππ adalah efisiensi volumetrik pompa dan N adalah putaran rotor
turbin. Biasanya, efisiensi volumetric pompa piston yang pada umumnya lebih tinggi dari 90%.
Daya yang tersedia pada pompa (PH) dapat dihitung dengan :
Dimana:
πππ»π» =
ππππ ππ ππ β (Lit. 6 hal. 128) β¦ β¦ β¦ β¦ . β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ β¦ (40) ππππ
ππππ
= Massa jenis air (kg/m3)
g
= Tetapan gravitasi
h
= Head total (m)
ππππ
= Efisiensi pompa (%)
2.7.4 Head total pompa Head total merupakan energi persatuan berat yang harus disediakan oleh pompa untuk mengtasi energi tekan, kecepatan, perbedaan ketinggian, kerugian
Universitas sumatera utara
gesek, dan kerugian-kerugian pada perlengkapan seperti katup (valve), belokan (elbow), perubahan penampang dan lain-lain. Head total pompa yang harus disediakan untuk mengalirkan jumlah air seperti di rencanakan, dapat ditentukan dari kondisi instalasi yang akan dilayani oleh po
Gambar 2.15 Head Pompa (Sumber: Sularso, 2004)
Head pompa dapat ditulis sebagai merikut:
Dimana :
H ha
π»π» = βππ + Ξβππ + βππ +
π£π£ππ2 (Lit. 10 hal 27 ) β¦ β¦ β¦ β¦ β¦ β¦ β¦ . (41) 2ππ
: Head total pompa (m) : Head statis total (m)
Ξhp :Perbadaan head tekanan pada keduapermukaan air (m) hl
: Kerugian head di pipa, katup, belokan, sambungan, dll.
v2/2g : Head kecepatan keluar (m) g
: Percepatan grafitasi ( = 9.8 m/s2)
Head statis total (ha) adalah perbedaan tinggi antara muka air disisi keluar dan sisi isap ; tanda positif (+) dipakai apabila permukaan air pada sisi keluar lebih tinggi daripada sisi isap.Adapun hubungan antara tekanan dan head tekan dapat diperoleh dari rumus: βππ = 10 Γ
ππππ (Lit. 10 hal 27) β¦ β¦ β¦ β¦ β¦ . β¦ β¦ β¦ β¦ . (42) πΎπΎ
apabila tekanan diberikan dalam kPa dapat dipakai rumus berikut:
Universitas sumatera utara
Dimana:
βππ =
1 ππ (Lit. 10 hal 28) β¦ β¦ β¦ β¦ β¦ . β¦ β¦ β¦ β¦ . (43) 9.8 ππ
hp = head tekan (m)
Pa = tekanan permukaan air (Pa) Ο = Rapat massa (kg/l) Ξ³ = Berat jenis air yang di pompa (kgf/l) Head losses (hl) yaitu head untuk mengatasi kerugian-kerugian yang terdiri atas head losses di dalam pipa-pipa, dan head losses di dalam belokan-belokan, katub-katub, dsb. 1. Head losses dalam pipa (kerugian mayor) Untuk menghitung kerugian gesek di dalam pipa dapat dipakai rumus berikut ini:
Dimana:
βππ = ππππ
πΏπΏπ£π£ 2 (Lit. 10 hal 28 ) β¦ . . β¦ β¦ β¦ . β¦ β¦ β¦ β¦ . (44) ππ2ππ
va = Kecapatan rata-rata aliran di dalam pipa (m/s) hf = Head losses dalam pipa (m) Ξ»g = Koefisien kerugian gesek dalam pipa g = Perceptan gravitasi (9,8 m/s2) L = Panjang pipa d = Diameter dalam pipa (m)
Selanjutnya, untuk aliran yang laminer dan yang turbulen, terdapat rumus yang berbeda. Sebagai patokan apakah suatu aliran itu laminer atau turbulen, dipakai bilangan reynold: π£π£ππ ππ (Lit. 10 hal 28) β¦ β¦ β¦ β¦ β¦ . β¦ β¦ β¦ β¦ . (45) ππ ππππππ ππ (Lit. 10 hal 28 ) β¦ . . β¦ β¦ β¦ . β¦ β¦ β¦ β¦ . (46) π
π
ππ = ππ π
π
ππ =
Dimana:
Re = bilangan reynold (tak berdimensi)
v = kecepatan rata-rata aliran di dala pipa (m/s) d = diameter dalam pipa (m) Ο
= visikositas kinematik zat cair (m2/s)
Universitas sumatera utara
Β΅ = viskositas absolut (kgf/m2)
Faktor gesekan tergantung dari bilangan renoldnya. Jika alira dalam pipa tersebut laminar maka harga faktor gesekan (f ) dapat dicari dengan rumus: ππ =
64 (Lit. 10 hal 29) β¦ β¦ . β¦ β¦ . β¦ β¦ β¦ β¦ . (47) π
π
π
π
Untuk aliran laminar, Re mempunyai harga maksimum sebesar 2000. Bila bilangan reynold (Re) >2300 aliran dalam pipa adalah turbulen, maka faktor gesekan f di dapat dari diagram moody. Head losses dalam jalur (kerugian minor).
2.
Head losses pada perlengkapan pipa (kerugian minor) Head losses pada perlengkapan pipa adalah kehilagan tekanan akibat
gesekan yang terjadi pada katub-katub, sambungan (elbow), instrument, dan pada penampang yang tidak konstan. Kerugian head di tempat ini dapat dinyatakan secara umum dengan rumus:
Dimana:
π£π£ππ2 (Lit. 10 hal 32) β¦ β¦ β¦ β¦ . β¦ β¦ β¦ β¦ . (48) βππ = ππ Γ ππ 2ππ
f
= koefisien kerugian
g
= Percepatan grafitasi
hf
= Kerugian head (m)
n
= jumlah perlengkapan pipa
Untuk koefisien kerugian pembesaran penampang pipa secara mendadak, kerugian head dapat dihitung dengan rumus: βππ = ππ Dimana f β 1 v1 D1
(π£π£1 β π£π£2 )2 (Lit. 10 hal 35) β¦ β¦ . β¦ β¦ β¦ . β¦ β¦ β¦ β¦ . (49) 2ππ v1
v2 D2
v2
D2
D1
Gambar 2.16 koefisien kerugian pada pembesaran mendadak
Universitas sumatera utara