BAB II TINJAUAN KEPUSTAKAAN
A. Umum Baja merupakan sauatu bahan konstruksi yang lazim digunakan dalam struktur bangunan sipil. Karena kekuatan yang tinggi dan ketahanan terhadap gaya luar yang besar maka baja ini juga telah menjadi bahan pilihan untuk konstruksi menara air rangka baja. Struktur baja bisa dibagi atas tiga kategori umum : a. Struktur rangka (framed structure), yang elemennya bisa terdiri dari batang tarik, kolom, balok dan batang yang mengalami gabungan lenturan dan beban aksial b. Struktur gantung (suspension), yang sistem pendukung utamanya mengalami tarikan aksial yang dominan. c. Struktur selaput (sheel), yang tegangan aksialnya dominan.
B. Karakteristik Baja Pengetahuan mengenai karakteristik baja merupakan keharusan apabila seorang insinyur menggunakan baja sebagai pilihan untuk merencanakan suatu bagian struktur. Sifat mekanisme yang sangat penting pada baja diperoleh berdasarkan hukum eksperimental tegangan dan regangan yang didapatkan oleh Robert Hooke pada tahun 1678. jika benda mengalami pembebanan, didapatkan bahwa untuk bahan tertentu perpanjangannya berbanding lurus dengan beban yang dipasang. Jika bahan terbuat dari bahan terbuat dari bahan elastic yang penampangnya sama dibebani menurut sumbunya, tegangannya sama pada
Universitas Sumatera Utara
seluruh penampang dan besarnya sama dengan besar beban dibagi dengan luas penampangnya. Regangan sumbu sama dengan pertambahan panjang dibagi dengan panjang semula, sehinggga dapat ditulis: σ=
P A
…………………………………………………… (2.1)
ε=
Lo - L Lu
…………………………………………………… (2.2)
σ = ε.E
dimana :
................................................................................ (2.3)
P = gaya aksial yang bekerja pada penampang A = luas penampang Lo = panjang mula – mula L = panjang batang setelah mendapatkan beban E = modulus elastisitas
Berdasarkan persentase zat arang yang dikandung, baja dapat dikategorikan sebagai berikut : 1. Baja dengan persentase zat arang rendah ( low carbon steel ) Yakni lebih kecil dari 0.15 % 2. Baja dengan persentase zat arang ringan ( mild carbon steel ) Yakni 0.15 % - 0.29 % 3. Baja dengan persentase zat arang sedang ( medium carbon steel ) Yakni 0.30 % - 0.59 % 4. Baja dengan persentase zat arang tinggi ( High carbon steel ) Yakni 0.60 % - 1.7 %
Universitas Sumatera Utara
Baja untuk bahan struktur termasuk kedalam baja yang persentase zat arang yang ringan ( mild carbon steel ), semakin tinggi kadar zat arang yang terkandung didalamnya, maka semakin tinggi nilai tegangan lelehnya. Sifat-sifat bahan struktur yang paling penting dari baja adalah sebagai berikut : 1. Modulus Elastisitas ( E ) Modulus elastisitas untuk semua baja ( yang secara relative tidak tergantung dari kuat leleh ) adalah 28000 sampai 30000 ksi atau 193000 sampai 207000 Mpa. Nilai untuk desain lazimnya diambil sebesar 29000 ksi atau 200000 Mpa. Berdasarkan Peraturan Perencanaan Bangunan Indonesia ( PPBBI ), nilai modulus elastisitas baja adalah 2,1 x 106 kg/cm² atau 2,1 x 105 MPa. 2. Modulus Geser ( G ) Modulus geser setip bahan elastis dihitung berdasarkan formula :
G=
E 2(1 + μ )
Dimana µ = perbandingan poisson yang diambil sebesar 0,3 untuk baja. Dengan menggunakan µ = 0,3 maka akan memberikan G = 11000 ksi atau 77000 MPa. Berdasarkan Peraturan Perencanaan Bangunan Baja Indonesia ( PPBBI ), nilai modulus geser ( gelincir ) baja adalah 0,81 x 106 kg/cm² atau 0,81 x 105 MPa. 3. Koefisien Ekspansi ( α ) Koefisien ekspansi adalah koefisien pemuaian linier. Koefisien ekspansi baja
diambil sebesar 12 x 10-6 per 0C.
Universitas Sumatera Utara
4. Tegangan Leleh ( σ1 ) Tegangan leleh ditentukan berdasarkan mutu baja. 5. Sifat – sifat lain yang penting. Sifat – sifat ini termasuk massa jenis baja, yang sama dengan 490 pcf atau 7,850 t/m3, atau dalam berat satuan, nilai untuk baja sama dengan 490 pcf atau 76, 975 kN/m³, berat jenis baja umumnya adalah sebesar 7,85 t/m3. Untuk mengetahui hubungan antara tegangan dan regangan pada baja dapat dilakukan dengan uji tarik di laboratorium. Sebagian besar percobaan atas baja akan menghasilkan bentuk hubungan antara tegangan dan regangan seperti tergambar di bawah ini.
σ
M
A’ A B
0
C
ε
Gambar 2.1 Hubungan tegangan - regangan untuk uji tarik pada baja lunak.
Keterangan gambar : σ
= tegangan baja
ε
= regangan baja
A = titik proporsional A’ = titik batas elastis B
= titik batas plastis
M = titik runtuh C
= titik putus
Universitas Sumatera Utara
Dari gambar diatas dapat dilihat bahwa sampai titik A hubungan antara tegangan dan regangan masih linier atau keadaan masih mengikuti hukum Hooke. Kemiringan garis OA menyatakan besarnya modulus elastisitas E. Diagram regangan untuk baja lunak memiliki titik leleh atas ( upper yield point ), σyu dan daerah leleh datar. Secara praktis, letak titik leleh atas ini, A’ tidaklah terlalu berarti sehingga pengaruhnya sering diabaikan. Titik A’ sering juga disebut sebagai titik batas elastis ( elasticity limit ). Sampai batas ini bila gaya tarik dikerjakan pada batang baja maka batang tersebut akan berdeformasi. Selanjutnya bila gaya itu dihilangkan maka batang akan kembali ke bentuk semula. Dalam hal ini batang tidak mengalami deformasi permanen. Bila beban yang bekerja bertambah, maka akan terjadi pertambahan regangan tanpa adanya pertambahan tegangan. Sifat pada daerah AB inilah yang disebut sebagai keadaan plastis. Lokasi titik B, yaitu titik batas plastis. Daerah BC merupakan daerah strain hardening, dimana pertambahan regangan akan diikuti dengan sedikit pertambahan tegangan. Disamping itu, hubungan tegangan dengan regangannya tidak lagi bersifat linier. Kemiringan garis setelah titik B ini didefenisikan sebagai Ez. Di titik M, yaitu regangan berkisar antara 20 % dari panjang batang, tegangannya mencapai nilai maksimum yang disebut sebagai tegangan tarik batas ( Ultimate tensile strength ). Akhirnya bila beban semakin bertambah besar lagi maka titik C batang akan putus.
Universitas Sumatera Utara
Tegangan leleh adalah tegangan yang terjadi pada saat baja mulai meleleh. Dalam kenyataannya, sulit untuk menentukan besarnya tegangan leleh, sebab perubahan dari elastisitas menjadi plastis seringkali besarnya tidak tetap.sebagai standar menentukan besarnya tegangan leleh dihitung dengan menarik garis sejajar dengan sudut kemiringan modulus elastisitasnya, dari regangan sebesar 0.2 %. Harga konstanta – konstanta diatas untuk baja structural adalah : •
Modulus Elastisitas E = 2,1 x 106 kg/cm²
•
Modulus Geser
G = 0,81 x 106 kg/cm²
•
Angka Poison
μ = 0,30
•
Koefisien Muai
α1 = 12 x 10-6 per º C
Sifat fisik batangan tulangan baja yang paling penting, untuk digunakan dalam perhitungan perencanaaan beton bertulangan adalah tegangan leleh (fc) dan modulus elastiisitas (E). Tegangan leleh (titik leleh) baja ditentukan melalui prosedur pengujian standar sesuai dengan SII 0136-84, dengan ketentuan bahwa tegangan leleh adalah tegangan baja pada saat meningkatnya tegangan tidak disertai lagi dengan peningkatan regangannya. Didalam perencanaan atau analisis beton bertulang pada umumnya nilai tegangan leleh baja tulangan diketahui atau ditentukan pada awal perhitungan. Disamping usaha standarisasi yang telah dilakukan masing – masing negara produsen baja, kebanyakan negara produsen baja pada dewasa ini masih berorientasi pada spesifikasi teknis yang ditetapkan ASTM. Di Indonesia produksi
Universitas Sumatera Utara
baja tulangan dan baja struktur telah diatur sesuai dengan Standard Industri Indonesia. Tabel 2.1 Daftar tegangan dari beberapa jenis baja Jenis Baja
Tegangan Leleh (σ1)
Tegangan Ultimate (σu) (kg/cm²)
Bj 34
(kg/cm²) 2100
Bj 37
2400
3700
Bj 41
2500
4100
Bj 44
2800
4400
Bj 50
2900
5000
Bj 52
3600
5200
3400
Baja merupakan bahan struktur yang sangat luas penggunaannya, sehingga harus memenuhi standar yang telah ditetapkan. Menurut sifatnya baja merupakan bahan yang keseragamannya dari komposisinya sangat baik dan homogenitasnya sangat tinggi terutama Fe (Ferum) dalam bentuk Kristal dan zat arang (C), dalam pembersihan kristalnya melalui panas yang tinggi serta proses selanjutnya, kemudian akan diperoleh besi kasar dari dapur pemroses (tanur tinggi). Untuk menjamin daktilitas dari baja, maka persentase maksimum dari zat arang, posfor dan sulfur dibatasi. Pembatasan komposisi maksimum dari campuran tersebut adalah 1,7 % zat arang(C) ; 1,65 % Mangan (Mn) ; 0,6 % Silikjon ; 0,60 % Tembaga (Cu). Kekuatan baja ini tergantung kepada kadar karbon dan mangan yang dikandungnya. Penambahan persentase karbin meningkatkan tegangan leleh tetapi mengurangi daktilitas, sehingga sukar dilas. Pengelasan akan ekonomis dan memuaskan bila kandungan karbon baja tersebut tidak lebih dari 0,30 %.
Universitas Sumatera Utara
σ
B
D
CD//OB
0
C 0.002
ε
0.004
Gambar 2.2 Penentuan tegangan leleh. Dari titik regangannya 0,2 % ditarik garis sejajar sehingga
memotong
grafik
tegangan
regangan
dan
dengan garis OB memotong
sumbu
tegangan.Tegangan yang diperoleh ini disebut dengan tegangan leleh. Tegangantegangan leleh dari bermacam-macam baja bangunan diperlihatkan pada tabel 2.1 dibawah ini: Kekuatan baja ini tergantung kepada kadar karbon dan mangan yang dikandungnya. Penambahan persentase karbin meningkatkan tegangan leleh tetapi mengurangi daktilitas, sehingga sukar dilas. Pengelasan akan ekonomis dan memuaskan bila kandungan karbon baja tersebut tidak lebih dari 0,30 %. Baja memiliki beberapa kelebihan sebagai bahan konstruksi, diantaranya : •
Nilai kesatuan yang tinggi per satuan berat
•
Keseragaman bahan dan komposit bahan yang tidak berubah terhadap waktu
•
Dengan sedikit perawatan akan didapat masa pakai yang tidak terbatas
•
Daktilitas yang tinggi
Universitas Sumatera Utara
•
Mudah untuk diadakan pengembangan struktur
Disamping itu baja juga mempunyai kekurangan dalam hal : •
Biaya perawatan yang besar
•
Biaya pengadaan anti api yang besar ( fire proofing cost )
•
Dibandingkan dengan kekuatannya kemampuan baja melawan tekuk kecil
•
Nilai kekuatannya akan berkurang, jika dibebani secara berulang / periodik, hal ini biasanya disebut dengan leleh atau fatigue.
Semua bahan bangunan yang telah dikenal dan dipakai dalam konstruksi pada umumnya mempunyai beberapa kekurangan bila dibandingkan dengan bahan baja, seperti misalnya kayu (terlalu lemah), batu (terlalu besar volumenya), tanah liat dan bagian-bagian pohon (terlalu temporer) atau kurang mempunyai daya tahan terhadap kekuatan tarik dan terlalu getas terhadap benturan (batu dan beton). Disamping kekuatannya yang besar untuk menahan kekuatan tarik dan tekan tanpa membutuhkan banyak volume baja juga mempunyai sifat-sifat lain yang menguntungkan sehingga menjadikannya sebagai salah satu bahan bangunan yang sangat umum dipakai dewasa ini. Penjelasan singkat tentang beberapa sifatsifat baja akan diutarakan berikut ini: 1. Kekuatan Tinggi Dewasa ini baja diproduksi dengan berbagai kekuatan yang bisa dinyatakan dengan kekuatan tegangan tekan lelehnya Fy atau oleh tegangan tarik batas Fu. Bahan baja walaupun dari jenis yang paling rendah kekuatannya tetap mempunyai perbandingan kekuatan per volume lebih tinggi bila dibandingkan degan bahan-bahan bangunan lainnya yang
Universitas Sumatera Utara
umum dipakai. Hal ini memungkinkan perencanaan sebuah konstruksi baja bisa mempunyai beban mati yang yang lebih kecil untuk bentang yang lebih panjang, sehingga memberikan kelebihan ruang dan volume yang dapat dimanfaatkan akibat langsingnya profil yang dipakai. 2. Kemudahan Pemasangan Semua bahan-bahan baja bisa dipersiapkan di bengkel. Sehingga satu-satunya kegiatan yang dilakukan di lapangan adalah kegiatan pemasangan bagian-bagian konstruksi yang telah dipersiapkan. Sebagian besar dari komponen-komponen konstruksi mempunyai bentuk standard yang siap dan bisa diperoleh di toko-toko besi, sehingga waktu yang diperlukan untuk membuat bagian-bagian konstruksi baja yang telah ada juga bisa dilakukan dengan mudah karena komponen-komponen baja biasanya mempunyai bentuk standard dan sifat-sifat yang tertentu dan mudah diperoleh dimana-mana. 3. Keseragaman Sifat-sifat dari baja, baik sebagai bahan bangunan maupun dalam bentuk struktur terkendali dengan baik sekali, sehingga dapat diharapkan elemenelemen dari struktur bisa berprilaku sesuai dengan yang diduga dalam perencanaan. Dengan demikian bisa dihindari terdapatnya proses pemborosan yang biasanya terjadi dalam perencanaan akibat adanya berbagai ketidakpastian.
Universitas Sumatera Utara
4. Daktilitas Sifat dari baja yang mengalami deformasi yang besar di bawah pengaruh tegangan tarik yang tinggi tanpa hancur atau putus disebut sifat daktilitas. Adanya sifat ini membuat struktur baja mampu mencegah terjadinya proses
robohnya
bangunan
secara
tiba-tiba.
Sifat
ini
sangat
menguntungkan ditinjau dari sudut keamanan penghuni bangunan bila terjadi suatu goncangan yang tiba-tiba, seperti misalnya pada peristiwa gempa bumi. Disamping itu masih ada juga keuntungan lain yang dapat kita peroleh dari struktur baja, seperti: 1. Proses pemasangan di lapangan berlangsung cepat. 2. Profil baja dapat dilas. 3. Komponen-komponen strukturnya bisa digunakan lagi untuk keperluan lainnya. 4. Komponen-komponen yang sudah tidak dapat digunakan lagi masih mempunyai nilai sebagai besi tua. 5. Struktur yang dihasilkan bersifat permanen dengan cara pemeliharaan yang tidak terlalu sukar. Di samping keuntungan-keuntungan tersebut, bahan baja juga mempunyai kelemahan-kelemahan sebagai berikut: 1. Komponen-komponen struktur yang dibuat dari bahan baja perlu diusahakan supaya tahan api sesuai dengan peraturan yang berlaju untuk bahaya kebakaran.
Universitas Sumatera Utara
2. Diperlukannya suatu biaya pemeliharaan untuk mencegah baja dari bahaya karat. 3. Akibat kemampuannya menahan tekukan pada batang-batang yang langsing, walaupun dapat menahan gaya-gaya aksial, tetapi tidak bisa mencegah terjadinya pergeseran horizontal. Perlu diperhatikan bahwa pada suhu yang tinggi seperti yang terdapat bila terjadi kebakaran pada bangunan, kekuatan dari struktur baja akan menurun secara drastis dan untuk mencegah supaya bangunan tidak roboh secara tiba-tiba, struktur baja harus dilindungi dengan bahan tahan api atau dengan cara-cara perlindungan lainnya yang sejenis. Cara umum untuk melindungi konstruksi baja dari bahaya api adalah dengan melapisinya kurang lebih setebal 1 inchi dengan campuran semen, adukan beton, atau dengan lapisan lain dari bahan yang tahan api seperti gips atau bahan lainnya.
C. Bentuk – Bentuk Baja Profil Ada 2 macam bentuk profil baja yang berdasarkan cara pembuatannya, yaitu: a. Hot rolled shapes: Disini profil baja dibentuk dengan cara blok-blok baja yang panas diproses melalui rol-rol dalam pabrik. Hot rolled shapes ini mengandung tegangan residu (residual stress). Jadi sebelum batang dibebani pun sudah ada residual stress yang berasal dari pabrik. b. Cold formed shapes: Profil semacam ini dibentuk dari pelat-pelat yang sudah jadi, menjadi profil baja dengan temperatur atmosfir (dalam keadaan dingin, ingat mengenai strain aging). Tebal pelat yang dibentuk menjadi
Universitas Sumatera Utara
profil disini tebalnya kurang dari 3/16 inch. Profil macam ini ringan dan sering disebut sebagai light gage form steel. Terdapat banyak jenis bentuk profil baja struktural yang tersedia di pasaran. Semua bentuk profil tersebut mempunyai kelebihan dan kelemahan tersendiri. Beberapa jenis profil baja yang dipakai dalam penulisan Tugas Akhir ini adalah profil profil siku (L), C dan IWF Profil siku atau profil L adalah profil yang sangat cocok untuk digunakan sebagai bracing dan batang tarik. Profil ini biasa digunakan secara gabungan, yang lebih dikenal sebagai profil siku ganda. Profil ini sangat baik untuk digunakan pada struktur truss. Profil C atau kanal mempunyai karakteristik flens pendek, yang mempunyai kemiringan permukaan dalam sekitar 1 : 6. Aplikasinya biasanya digunakan sebagai penampang tersusun, bracing tie, ataupun elemen dari bukan rangka (frame opening). Profil IWF terutama digunakan sebagai elemen struktur balok dan kolom. Semakin tinggi profil ini, maka semakin ekonomis untuk banyak aplikasi.. 1. Sumbu Utama Sumbu utama adalah sumbu yang menghasilkan inersia maksimum atau minimum. Sumbu yang menghasilkan inersia maksimum dinamakan sumbu kuat, dan yang menghasilkan inersia minimum disebut sumbu lemah. Sumbu simetri suatu penampang selalu merupakan sumbu utama, namun sumbu utama belum tentu sumbu simetri.
Universitas Sumatera Utara
B
Y
X
X
A
Y
A
X
X
X
X
B
Y
(A) Profil Siku
(B) Profil C
(C) Profil IWF
Gambar 2.3. Sumbu Utama Profil Untuk profil siku gambar 2.3 bukan sumbu simetri dan bukan sumbu utama. Sumbu – sumbu utama profil siku adalah sumbu A-A (sumbu kuat) dan sumbu B-B (sumbu lemah). Sumbu X-X dan Y-Y untuk profil C dan profil IWF pada gambar 2.3 adalah sumbu simetri, karenanya sumbu-sumbu tersebut merupakan sumbu utama. Sumbu X-X dan Y-Y. 2. Sumbu bahan dan sumbu bebas bahan Sumbu bahan adalah sumbu yang memotong semua elemen bahan, sedangkan sumbu bebas bahan adalah yang sama sekali tidak memotong elemen bahan atau hanya memotong sebagian elemen bahan. Sumbu X-X untuk gambar 2.4 adalah sumbu bahan. Sedangkan sumbu Y-Y adalah sumbu bebas bahan. Pada profil siku ganda yang disusun saling membelakangi, inersia arah sumbu Y (Iy) dipastikan akan selalu bernilai lebih besar (lebih dominan) daripada inersia arah sumbu X (Ix), berapapun jarak antara dua profil tersebut.
Y
X
X Y
Universitas Sumatera Utara
Gambar 2.4. Sumbu Bahan dan Sumbu Bebas Bahan Profil D. Jenis - Jenis Pembebanan Beban adalah gaya luar yang bekerja pada suatu struktur. Penentuan secara pasti besarnya beban yang bekerja pada suatu struktur selama umur layannya merupakan salah satu pekerjaan yang cukup sulit. Dan pada umumnya penentuan besarnya beban hanya merupakan suatu estimasi saja. Meskipun beban yang bekerja pada suatu lokasi dari struktur dapat diketahui secara pasti, namun distribusi beban dari elemen ke elemen, dalam suatu struktur umumnya memerlukan asumsi dan pendekatan. Jika beban – beban yang bekerja pada struktur telah diestimasi, maka masalah berikutnya adalah menentukan kombinasi kombinasi
beban yang paling dominan yang mungkin bekerja pada struktur
tersebut. Besar beban yang bekerja pada suatu struktur diatur oleh peraturan pembebanan yang berlaku, sedangkan masalah dari kombinasi beban – beban yang bekerja telah diatur dalam SNI 03-1729-2002 pasal 6.2.2.
Beberapa jenis pembebanan antara lain : 1.
Beban Mati Beban mati adalah berat dari semua bagian suatu gedung / bangunan yang bersifat tetap selama masa layan struktur, termasuk unsur-unsur tambahan, finishing, mesin-mesin serta peralatan tetap yang merupakan bagian tak terpisahkan dari gedung/bangunan tersebut. Termasuk dalam beban ini adalah berat struktur, pipa - pipa , saluran listrik , AC, penutup lantai dan plafon. Beberapa contoh berat dari beberapa komponen bangunan penting yang digunakan untuk menentukan besarnya beban mati dari suatu gedung / bangunan diperlihatkan berikut ini ;
Universitas Sumatera Utara
Bahan Bangunan
Berat
•
Baja
7850 kg/m3
•
Beton
2200 kg/m3
•
Beton Bertulang
2400 kg/m3
•
Kayu (kelas I)
1000 kg/m3
•
Pasir (kering udara)
1600 kg/m3
Komponen Gedung
Berat
•
Spesi dari semem per cm tebal
21 kg/m3
•
Dinding batu bata ½ batu
250 kg/m3
•
Penutup atap genting
50 kg/m3
•
Pentup lantai ubin semen per cm tebal
24 kg/m3
Beban mati yang terdapat pada struktur menara air adalah berat tangki pelat baja dan berat air sebesar 25 m3
2. Beban Hidup Beban hidup adalah beban gravitasi yang bekerja pada struktur dalam masa layannya, dan timbul akibat penggunaan suatu gedung. Termasuk beban ini adalah berat manusia, perabotan yang dapat dipindah-pindahkan, kendaraan dan barang-barang lainnya. Karena besar dan lokasi beban yang senantiasa berubah-ubah, maka penentuan beban hidup secara pasti adalah merupakan suatu hal yang cukup sulit. Beberapa contoh beban hidup menurut kegunaan suatu bangunan :
Universitas Sumatera Utara
Kegunaan Bangunan
3.
Berat
•
Lantai dan tangga rumah sederhana
125 kg/m3
•
Lantai dan tangga kantor, hotel & Rumahsakit
250 kg/m3
•
Lantai ruang olahraga
400 kg/m3
•
Lantai pabrik, gudang, bengkel & perpustakaan
400 kg/m3
•
Lantai gedung parkir bertingkat
800 kg/m3
Beban Angin Beban angin adalah beban yang bekerja pada struktur akibat tekanan – tekanan dari gerakan angin, beban angin sangat tergantung dari lokasi dan ketinggian struktur. Besarnya tekanan tiup harus diambil minimum sebesar 25 kg/m3 , kecuali untuk bangunan – banguanan berikut : •
Tekanan tiup ditepi laut hingga 5 km dari pantai harus diambil minimum 40 kg/m2
•
Untuk bangunan didaerah lain yang kemungkinan tekanan tiupnya lebih dari 40 kg/m2, harus diambil P = V2/16 (kg/m2), dengan V adalah kecepatan angin (m/s)
•
Untuk cerobong, tekanan tiup dalam kg/m2 harus ditentukan dengan rumus (42,5 + 0,6 h ), dengan h adalah tinggi cerobong seluruhnya dalam meter.
Nilai tekanan tiup yang diperoleh dari hitungan di atas harus dikalikan dengan suatu koefisien angin, untuk mendapatkan gaya resultan yang bekerja pada bidang kontak tersebut.
Universitas Sumatera Utara
4.
Beban Gempa Beban gempa adalah semua beban statik ekivalen yang bekerja pada struktur akibat adanya pergerakan tanah oleh gempa bumi, baik pergerakan arah vertikal maupun horizontal. Namun pada umumnya percepatan tanah arah horizontal lebih besar daripada arah vertikalnya, sehingga pengaruh gempa horizontal jauh lebih menentukan daripada gempa vertikal. Besarnya gaya geser V=
dasar
(statik
ekivalen)
ditentukan
berdasarkan
persamaan
CxI xWt R
Dengan C adalah faktor respon gempa yang ditentukan berdasarkan lokasi bangunan dan jenis tanahnya, I adalah faktor keutamaan gedung, R adalah faktor reduksi gempa yang tergantung pada jenis struktur yang bersangkutan, Wt adalah berat total bangunan termasuk beban hidup yang bersesuian.
Universitas Sumatera Utara