Prarancangan Pabrik Gasifikasi Batu Bara Kapasitas 475.000 Ton/tahun
BAB I PENGANTAR
A.
Latar Belakang Batu bara merupakan mineral organik yang mudah terbakar yang terbentuk
dari sisa tumbuhan purba yang mengendap dan kemudian mengalami perubahan bentuk akibat proses fisik dan kimia yang berlangsung selama jutaan tahun. Potensi sumber daya batu bara di Indonesia sangat besar yang mayoritas tersebar di Pulau Kalimantan dan Sumatera. Produksi batu bara diperkirakan akan terus meningkat, tidak hanya untuk memenuhi kebutuhan dalam negeri, tetapi juga untuk memenuhi permintaan luar negeri (ekspor). Batu bara yang banyak terdapat di Indonesia adalah jenis batu bara peringkat rendah, yaitu lignit. Salah satu pemanfaatan batu bara berperingkat rendah adalah dengan teknologi gasifikasi. Teknologi gasifikasi adalah suatu cara untuk memperoleh syngas melalui proses gasifikasi batu bara yang berkalori rendah. Pemanfaatan batu bara berperingkat rendah dengan teknologi ini merupakan salah satu upaya untuk meningkatkan pemanfaatan batu bara sehingga dihasilkan produk yang mudah dikonversi menjadi sumber energi dan berbagai macam bahan baku industri kimia. Hasil gasifikasi batu bara adalah sintesis gas atau syngas yang merupakan campuran gas karbon monoksida, hidrogen, metana, karbon dioksida dan gas-gas lainnya. Syngas sendiri merupakan intermediate product yang biasa digunakan sebagai bahan baku pembuatan dalam pabrik kimia lainnya seperti ammonia, methanol, octaldehyde, polypropylene, dan monoethylene glycol, selain itu syngas juga dapat digunakan sebagai salah satu alternatif bahan bakar dan lubricants yang diperoleh melalui proses Fischer-Tropsch. Sehingga syngas merupakan suatu produk yang mempunyai potensi pasar yang besar. Berdasarkan hal-hal tersebut, maka pendirian pabrik gasifikasi batu bara menarik untuk dikembangkan. Selain mengurangi kebutuhan syngas dari gas alam, pendirian pabrik ini akan membantu meningkatkan pemanfaatan sumber daya batu bara di Indonesia, terutama batu bara berperingkat rendah seperti lignit.
Ivannie Valentina Effendi
11/316856/TK/38078
Aksioma Dewayani
11/319135/TK/38266
Prarancangan Pabrik Gasifikasi Batu Bara Kapasitas 475.000 Ton/tahun
B.
Tinjauan Pustaka Gasifikasi batu bara adalah proses konversi batu bara menjadi produk berupa
gas dengan kalor yang dapat dimanfaatkan. Gasifying agent yang dapat digunakan dalam gasifikasi batu bara yaitu oksigen, udara, karbon dioksida, dan hidrogen. Produk berupa gas yang dihasilkan dari gasifikasi batu bara, yaitu CO, H2, CO2, H2O, CH4, N2, dan senyawa turunan sulfur (H2S, COS, dll.), nitrogen (seperti NH3), dan debu. Hasil produk gas yang masih mengandung pengotor disebut “raw gas”. Raw gas yang sudah melewati beberapa proses untuk membersihkan pengotor disebut clean gas. Clean gas ini biasanya digunakan sebagai bahan baku pabrik kimia, sehingga sering disebut “synthesis gas” atau syngas. Berdasar sumber kalornya, gasifikasi batu bara dapat dibedakan menjadi 3, yaitu autothermal, allothermal, dan hydrogenating. Tabel 1. Pembagian Proses Gasifikasi Batu Bara Berdasarkan Sumber Kalornya Sumber kalor Gasifying agents Temperatur Produk Tekanan Residu
Autothermal Internal, dari hasil oksidasi O2/udara dan H2O 800-1800oC CO, H2, CO2, CH4 1-100 bar Abu atau terak
Allothermal Eksternal, butuh pemanas H2O dan CO2
Hydrogenating Internal, dari reaksi hidrogenasi H2 dan H2O
750-950oC CO, H2
700-900oC CH4
1-40 bar Abu
10-100 bar Char (Grabner, 2014)
Dari ketiga proses di atas, autothermal lebih dipilih karena panas yang digunakan berasal dari internal, sehingga dapat menghemat kebutuhan pemanas. Selain itu, bahan baku berupa O2 pada proses autothermal dapat diambil dari udara yang berarti tidak memerlukan biaya tambahan untuk bahan baku. Proses autothermal lebih sering digunakan pada pengolahan batu bara secara komersial. Reaksi Gasifikasi pada proses autothermal ada 6 reaksi yang terjadi, yaitu: C+O2 → CO2
∆Hro = -393.5 kJ/mol
(1)
C+½O2 → CO
∆Hro = -110.5 kJ/mol
(2)
CO+½O2 → CO2
∆Hro = -283.0 kJ/mol
(3)
Ivannie Valentina Effendi
11/316856/TK/38078
Aksioma Dewayani
11/319135/TK/38266
Prarancangan Pabrik Gasifikasi Batu Bara Kapasitas 475.000 Ton/tahun
C+CO2 2CO
∆Hro = +172.4 kJ/mol
(4)
C+H2O CO+H2
∆Hro = +131.3 kJ/mol
(5)
CO+H2O CO2+H2
∆Hro = - 41.1 kJ/mol
(6)
C+2H2 CH4
∆Hro = - 74.9 kJ/mol
(7)
Reaksi (1), (2), dan (3) merupakan reaksi oksidasi yang sangat eksotermis dan terjadi dengan cepat. Reaksi ini menghasilkan panas yang dibutuhkan oleh reaksi (4) dan (5). Reaksi (4) merupakan reaksi Boudouard yang terjadi secara lambat. Reaksi (6) merupakan reaksi air-gas yang mengkonversi CO menjadi H2. Reaksi (7) merupakan reaksi metanasi. Metana meningkatkan efisiensi dari gasifikasi dan nilai kalor dari syngas (Grabner, 2014). Berdasarkan tipe bednya, gasifier dapat dibagi menjadi 3 jenis, yaitu MovingBed Gasifiers/Fixed-bed gasifiers, Fluidized-bed, dan Entrained-flow.
(enggyclopedia.com, 2011) Gambar 1. Moving-Bed Gasifier dan Variasi Temperatur dari Batu Bara dan Gas dalam Gasifier
(enggyclopedia.com, 2011) Gambar 2. Fluidized-Bed Gasifier dan Variasi Temperatur dari Batu Bara dan Gas dalam Gasifier
Ivannie Valentina Effendi
11/316856/TK/38078
Aksioma Dewayani
11/319135/TK/38266
Prarancangan Pabrik Gasifikasi Batu Bara Kapasitas 475.000 Ton/tahun
(enggyclopedia.com, 2011) Gambar 3 Entrained-Flow Gasifier dan Variasi Temperatur dari Batu Bara dan Gas dalam Gasifier
Tabel 2 Pembagian Tipe Gasifier Berdasarkan Tipe Bednya
Tipe Aliran
Moving-bed
Fluidized-bed
Entrained-flow
Co-current/
sirkulasi
Up-flow/down-
counter-current
flow
Diameter feed
3-60 mm
0-6 mm
<0.25 mm
Persiapan feed
Screening,
crushing
Grinding
Gravity pipes,
Dense
screw feeder
phase/slurry
0.19-0.53
0.4-0.7
0.7-1.0
0.2-0.4
0.2-0.6
0-0.3 atau slurry
350-800
800-1000
1300-1700
1-100
1-40
1-86
Konversi karbon
80-90%
80-95%
>95%
Pengurangan tar
hampir tidak
dominan
Seutuhnya
Jam
menit
Detik
rendah/moderat
moderat/tinggi
sangat tinggi
agglomeration Feeding
Gravitasi
Kebutuhan oksigen (m3/kg) Kebutuhan
steam
(kg/kg) Suhu (oC) Tekanan (bar)
Waktu
tinggal
padatan Kapasitas spesifik
(Grabner, 2014)
Ivannie Valentina Effendi
11/316856/TK/38078
Aksioma Dewayani
11/319135/TK/38266
Prarancangan Pabrik Gasifikasi Batu Bara Kapasitas 475.000 Ton/tahun
Dari perbandingan di atas, akhirnya dipilih fluidized-bed karena hal-hal sebagai berikut : a. Waktu tinggal yang tidak terlalu lama, berarti volume reaktor yang dibutuhkan tidak terlalu besar dan produk yang dihasilkan lebih banyak pada waktu yang sama. b. Suhu tidak terlalu tinggi dibanding yang lain, sehingga kebutuhan pemanas tidak terlalu banyak. c. Kebutuhan oksigen dan steam tidak terlalu banyak, sehingga energi yang dibutuhkan untuk menghasilkan steam dan menseparasi oksigen tidak terlalu besar. d. Tekanan yang dibutuhkan tidak terlalu tinggi dibanding gasifier yang lain, sehingga tidak membutuhkan tangki yang tebal, dan energi yang dibutuhkan untuk menaikkan tekanan tidak terlalu besar. e. Diameter feed tidak terlalu besar, sehingga energi yang dibutuhkan untuk crushing tidak terlalu besar.
Menurut Puigjaner (2011), Pemurnian syngas yaitu proses pemurnian syngas dari padatan, tar, metal, halogen, alkaline, asam, dan basa. Proses pemurnian syngas: 1. Secara mekanis Untuk memisahkan fly ash dan debu dari raw gas, diperlukan pemisahan mekanis. Pemisahan ini dilakukan dengan menggunakan siklon. 2. Absorpsi Absorpsi bertujuan utama untuk menghilangkan H2S, CO2, dan COS (Carbonyl Sulfide) dari syngas. Ada beberapa cara untuk absorpsi yang dijelaskan pada tabel di bawah:
Ivannie Valentina Effendi
11/316856/TK/38078
Aksioma Dewayani
11/319135/TK/38266
Prarancangan Pabrik Gasifikasi Batu Bara Kapasitas 475.000 Ton/tahun
Tabel 3. Pembagian Cara Absorpsi Proses
Amine
Rectisol
Selexol
Absorben
MDEA
Metanol
DEPG
Teknanan (MPa)
<7
5.8
1.6-7.0
Temperatur (oC)
25-60
-70 sampai -30
-5 sampai 25
<0.1
<0.1
<5
Kandungan sulfur tersisa (ppm) a. Regenerasi solven mudah Kelebihan
b. Solven murah
a. Efisiensi tinggi
a. Biaya sedang
b. Penghilangan
b. CO2 slip
CO2 sempurna c. Murah
c. Solven stabil d. Tekanan uap rendah e. Regenerasi mudah
a. Korosi
a. Operating cost
b. Foaming
tinggi
c. Circulation
Kekurangan
b. Beracun
rate tinggi
c. Suhu rendah
d. Degradasi
(thermal loss
solven
besar)
a. Circulation rate tinggi b. Sulfur keluar cukup tinggi c. Mengabsorpsi hidrokarbon
e. Lebih reaktif terhadap CO2 dibanding H2S f. COS tidak larut (Liu, 2010) Dari uraian di atas, lebih dipilih absorpsi dengan cara Selexol karena: a.
Biaya yang tidak terlalu tinggi dibanding proses yang lain.
b.
Kondisi proses tidak terlalu ekstrim seperti suhu dan tekanan sehingga tidak perlu energi yang besar untuk memenuhi kondisi operasi.
c.
Solven yang stabil secara kimia dan suhu, sehingga regenerasi solven tidak perlu terlalu sering.
Ivannie Valentina Effendi
11/316856/TK/38078
Aksioma Dewayani
11/319135/TK/38266