BAB 3 SIMULASI SIKLUS CETUS-BINER PADA PLTP
3.1 Pemilihan Persamaan Tingkat Keadaan Memilih persamaan tingkat keadaan yang sesuai merupakan hal yang penting pada langkah awal proses simulasi. Persamaan tingkat keadaan yang berbeda akan mempengaruhi nilai temperatur jenuh, tekanan jenuh, entalpi, dan entropi dari fluida kerja yang digunakan. Akibatnya nilai dari daya netto yang dihasilkan akan berbeda. Toleransi perbedaan nilai yang diijinkan dalam perhitungan teknik umumnya sekitar sepuluh persen dari persamaan tingkat keadaan acuan. Pada Gambar 3.1 diberikan diagram alir / flowchart dalam pemilihan persamaan tingkat keadaan yang umumnya digunakan. Untuk fluida kerja organik (Hidrokarbon C5 dan yang lebih ringan), persamaan tingkat keadaan yang umumnya digunakan adalah Peng – Robinson (P-R) / Redlich – Kwong – Soave (R-K-S). Sedangkan untuk fluida kerja air dan udara, persamaan tingkat keadaan yang umum digunakan adalah Grayson –Stread (G-S). Untuk keseragaman dalam proses simulasi, persamaan tingkat keadaan yang digunakan adalah Peng – Robinson (P-R). Persamaan ini sederhana dan cukup baik untuk menganalisis keadaan yang dekat dengan titik kritis suatu fluida. Perbedaan nilai yang dihasilkan antara persamaan tingkat keadaan G-S dan P-R kecil, sebagai contoh untuk fluida kerja air pada tekanan 600 kPa dan temperatur 100 oC, dengan persamaan tingkat keadaan P-R nilai entalpinya (h) = -15.520 kJ/kg, sedangkan dengan G-S nilai entalpi (h) = -15.500 kJ/kg, berbeda 0,13 % dengan persamaan tingkat keadaan P-R. Perbedaannya sangat kecil, jauh dibawah sepuluh persen, sehingga persamaan tingkat keadaan P-R valid untuk digunakan. Untuk nilai beda entalpi, sebagai contoh fluida kerja air pada tekanan 600 kPa, temperaturnya 200 oC dan 100 oC, dengan persamaan tingkat keadaan P-R didapat nilai beda entalpi = 2460 kJ/kg, sedangkan dengan G-R diperoleh nilai beda entalpi = 2440 kJ/kg, berbeda 0,81 % dengan persamaan tingkat keadaan P-R.
Persentase nilai beda tersebut mengalami akumulasi kesalahan. Nilai akumulasi kesalahan tersebut jauh dibawah 10 %, sehingga persamaan tingkat keadaan P-R valid untuk digunakan dalam proses simulasi.
Gambar 3.1 Diagram alir penentuan persamaan tingkat keadaan.
3.2 Validasi Paket Program HYSYS Proses validasi suatu paket program yang digunakan sangat penting dilakukan. Bila menggunakan suatu paket program, perlu diketahui apakah nilai yang dihasilkannya itu bernilai benar atau salah. Paket program hanya bisa mengolah suatu perhitungan sehingga apabila data masukan yang diberikan salah, maka data yang dihasilkannya juga bernilai salah (garbage in, garbage out). Untuk itu perlu dilakukan pengujian kebenaran paket program yang digunakan. Ada banyak cara untuk melakukan proses validasi, diantaranya: melakukan perbandingan dengan hasil dari proses pengujian/experiment, membandingkan
dengan an data teknis yang ada di lapangan, dan membandingkan hasilnya dengan perhitungan dengan paket program lain. Sangat sulit untuk mendapatkan data teknis lengkap sebuah PLTP yang diperlukan dalam melakukan proses simulasi dengan paket program HYSYS. Penerapan pan siklus cetus-biner cetus dari brine sisa juga belum ada di Indonesia, sehingga diperlukan data teknis dari PLTP di luar Indonesia dimana untuk mendapatkan data teknis tersebut juga sangat sulit. Cara yang akan dilakukan untuk melakukan proses validasi adalah dengan membandingkannya dengan data data teknis yang ada pada jurnal/paper lain. Paper yang akan digunakan sebagai data untuk perbandingan adalah paper dengan judul “Evaluation of Waste te Brine Utilization From LHD Unit III For Electricity Generation in Lahendong Geothermal Filed, Indonesia”, yang ang ditulis oleh (Nugroho, 2007). Paper memiliki data teknis yang cukup baik dan lengkap, sehingga dapat digunakan untuk proses validasi. Oleh karena sulitnya mendapatkan jurnal/paper jurnal/ yang membahas siklus cetus-biner biner yang disertai dengan data teknis yang lengkap, lengkap, maka proses validasi yang dilakukan terpisah untuk siklus cetus dan untuk siklus biner saja. Untuk siklus cetus, data teknis yang ada dalam paper diberikan pada Gambar 3.2, dimana diberikan juga model/konfigurasi yang digunakannya.
Gambar 3.2 3. Pemodelan siklus cetus dengan turbin kondensasi. [8]
Dengan data teknik yang diberikan pada model siklus cetus di atas, dilakukan proses simulasi dengan paket program HYSYS, seperti pada Gambar 3.3. Dimana nilai yang ingin diperbandingkan adalah nilai dari daya turbin yang dihasikan.
Gambar 3.3 Hasil simulasi siklus cetus dengan paket program HYSYS.
Pada proses pemodelan dan simulasi dengan paket program HYSYS tidak dimodelkan adanya kondensor dan menara pendingin, karena tidak tersedianya model komponen kondensor dan menara pendingin. Pemodelan hanya dilakukan sampai kondisi keluaran turbin, tetapi cukup dapat mewakili proses validasi. Dari hasil simulasi dengan paket program HYSYS, didapatkan nilai dari daya turbin adalah 5097 kW, sedangkan hasil yang ada pada paper acuan adalah 5080 kW, sehingga perbedaannya 17 kW (0,33 %). Dapat diambil kesimpulan bahwa paket program HYSYS valid untuk digunakan pada siklus cetus. Cara yang sama digunakan untuk melakukan validasi pada siklus biner, dimana akan dilakukan perbandingan hasil antara data yang ada pada paper dengan hasil dari proses simulasi paket program HYSYS. Pada Gambar 3.4 akan ditampilkan pemodelan siklus biner yang terdapat pada paper.
Gambar 3.4 Pemodelan siklus biner. [8]
Untuk melakukan validasi, dilakukan proses simulasi dengan bantuan paket program HYSYS. Hasil pemodelan dan proses simulasinya akan ditampilkan pada Gambar 3.5.
Gambar 3.5 Hasil simulasi siklus biner dengan paket program HYSYS.
Hasil simulasi dengan paket program HYSYS menunjukkan bahwa didapatkan nilai dari daya turbin adalah 4428 kW, sedangkan nilai yang ada pada paper adalah 4336 kW berbeda 92 kW (2,1%). Untuk daya pompa hasil dari paket program HYSYS adalah 249,5 kW, sedangkan nilai yang ada pada paper 245,7 kW berbeda 3,8 kW (1,5%). Dapat diambil kesimpulan bahwa nilai yang dihasilkan dari proses simulasi dengan paket program HYSYS tidak berbeda jauh dengan data referensi yang ada pada paper. Pada proses validasi yang dilakukan untuk menguji apakah paket program HYSYS ini valid atau tidak, didapatkan hasil bahwa paket program HYSYS valid untuk digunakan pada proses pemodelan dan simulasi siklus cetus-biner.
3.3 Data dan Asumsi Pada Proses Simulasi Data dan asumsi yang diperlukan dalam proses simulasi dengan paket program HYSYS 3.2 diantaranya: •
Laju aliran massa brine (˭Ӕ) = 400 ton/jam
•
Temperatur (T) brine = 170 oC
•
Tekanan (P) brine = 8 barg Data di atas merupakan data brine yang ada pada Pembangkit Listrik
Tenaga Panas Bumi di Lahendong, Sulawesi Utara yang didapatkan dari sumber sekunder. Data di atas merupakan data dari brine sisa yang umumnya diinjeksikan kembali ke dalam perut bumi dan tidak dimanfaatkan lagi. Padahal potensi energi (laju massa, temperatur dan tekanan) yang dikandungnya masih tinggi apabila ingin dimanfaatkan untuk keperluan lain. Dalam proses simulasi ini akan dimanfaatkan untuk mengkaji siklus pembangkit listrik cetus-biner. Dalam proses simulasi, diperlukan asumsi-asumsi untuk menyederhanakan dan menyelesaikan permasalahan. Berikut ini asumsi-asumsi yang digunakan dalam proses simulasi: 1) Rentang tekanan cetus yang digunakan adalah 110-790 kPa, yaitu 110, 200, 300, 400, 500, 600, 700, dan 790 kPa. Tekanan cetus 790 kPa merupakan batas atas tekanan cetus yang digunakan. Apabila tekanan cetus lebih besar dari 790 kPa, tidak ada uap
yang dihasilkan pada proses cetus / flashing sehingga siklus cetus tidak dapat beroperasi karena tidak ada uap yang dapat digunakan. Nilai tekanan 110 kPa merupakan tekanan terendah yang bisa digunakan. Apabila lebih rendah dari 110 kPa, kesetimbangan energi yang terjadi pada siklus biner tidak tercapai karena laju massa brine akan semakin rendah, yang menyebabkan kalor yang dihasilkan semakin kecil. Akibatnya kalor yang dilepaskan oleh brine tidak seimbang dengan kalor yang diterima oleh fluida kerja organik pada siklus biner. 2) Keadaan masuk turbin adalah uap jenuh (fraksi uap = 1). Apabila keadaan masuk turbin tidak uap jenuh (masih mengandung air), akan menyebabkan kerusakan pada sudu turbin. Sudu turbin akan mengalami erosi. Erosi tersebut akan mengganggu performa turbin, karena akan mengakibatkan rontoknya sudu turbin. Pembangkit listrik perlu diberhentikan operasinya apabila dilakukan proses perbaikan pada turbin, sehingga suplai listrik menjadi terganggu. 3) Keadaan masuk evaporator adalah cair jenuh (fraksi uap = 0). Evaporator berfungsi untuk mengubah fasa dari cair jenuh menjadi uap jenuh. Kalor yang terjadi adalah kalor laten, yaitu kalor yang diperlukan untuk mengubah fasa fluida. 4) Keadaan masuk pompa adalah cair jenuh (fraksi uap = 0). Pompa akan mengalami kerusakan apabila kondisi fluida masuk masih mengandung udara / uap. Uap tersebut dapat pecah dan merusak sudu pompa, sehingga performa dari pompa akan menurun, dan pada akhirnya pompa tersebut menjadi tidak berfungsi. 5) Temperatur udara sekitar adalah 28
o
C dan tekanan udara masuk
kondensor berpendingin udara adalah 1 atm. Data temperatur dan tekanan diperoleh dari rata-rata nilai harian yang terjadi di pembangkit listrik tenaga panas bumi (PLTP) di daerah Lahendong, Sulawesi Utara.
6) Temperatur udara keluar kondensor adalah 50 oC. Tidak ada persyaratan umum mengenai berapa temperatur keluar dari kondensor berpendingin udara harus dihasilkan. Yang menjadi perhatian adalah masalah yang bisa muncul apabila temperatur udara keluar masih tinggi,
misalnya:
pengaruh
terhadap
lingkungan,
kesehatan,
dan
keselamatan. Pada referensi dari Persyaratan Umum Instalasi Listrik (PUIL) [9] tahun 2000 dijelaskan bahwa dari segi keamanan, peralatan yang masih bisa disentuh oleh tangan memiliki temperatur maksimum yang diijinkan adalah 55 oC. Apabila terjadi kerusakan pada komponen peralatan, dapat dilakukan perbaikan tanpa harus mengganggu kondisi operasi dari peralatan tersebut. Dengan memberikan asumsi temperatur keluar kondensor adalah 50 oC berarti kondisi tersebut aman untuk digunakan oleh manusia. Dari segi lingkungan dan kesehatan tidak didapatkan referensi yang mensyaratkan temperatur keluar kondensor berpendingin udara harus berapa. Jadi pada proses simulasi ini, digunakan asumsi temperatur keluar kendensor berpendingin udara adalah 50 oC. 7) Efisiensi isentropik turbin adalah 85 persen. Umumnya rentang efisiensi isentropik adalah antara 70 – 90 persen [10]. Pada proses simulasi ini digunakan efisiensi isentropik 85 persen yang masih berada dalam rentang yang diijinkan. Nilai efisiensi tersebut sudah umum digunakan dalam proses perancangan turbin. Nilai efisiensi isentropik menunjukkan seberapa dekat kondisi yang dihasilkan terhadap kondisi idealnya. 8) Efisiensi isentropik pompa adalah 75 persen. Nilai efisiensi isentropik pompa yang akan digunakan dalam proses simulasi adalah 75 persen, yang didapat dengan cara memplot dari grafik pada Gambar 3.6 di bawah ini. Jumlah kapasitas fluida yang mengalir pada siklus sekitar 450 galon/menit, sehingga bila diplot untuk mencari efisiensi isentropiknya, diperoleh sekitar 75 persen.
Gambar 3.6 Grafik efisiensi isentropik pompa terhadap kapasitas fluida. [7]
9) Penurunan tekanan yang diijinkan pada preheater dan evaporator adalah 50 kPa. Penurunan tekanan diperoleh berdasarkan kelaziman dalam proses perancangan. Menurut referensi [11], untuk preheater, penurunan tekanan maksimum yang diijinkan adalah 70 kPa. Sama juga untuk evaporator dimana terjadi proses pendidihan dan perubahan fasa, tekanan maksimum yang diijinkan adalah 70 kPa. Dalam proses simulasi, nilai penurunan tekanan dibuat seragam yaitu dengan nilai penurunan tekanan 50 kPa untuk preheater dan evaporator. Nilai penurunan tekanan maksimum yang diijinkan tidak dibuat terlalu tinggi.
10) Penurunan tekanan yang diijinkan pada kondensor adalah 34 kPa. Nilai penurunan tekanan tersebut diperoleh berdasarkan kelaziman pada proses perancangan. Menurut referensi [7], untuk proses kondensasi penurunan tekanan yang diijinkan antara 3-7 psi, sehingga diambil nilai rata-ratanya yaitu 5 psi, bila dikonversi menjadi 34 kPa. Nilai penurunan tekanan yang terjadi pada proses kondensasi umumnya tidak bernilai besar. 11) Tekanan pompa injeksi adalah 600 kPa. Besarnya nilai tekanan pada pompa injeksi tergantung dari keadaan sumur injeksi yang ada, apakah bertekanan atau tidak. Bila sumur injeksi tidak bertekanan, kondensat sisa keluaran dari turbin uap dapat langsung dibuang ke sumur injeksi tanpa menggunakan pompa. Asumsi tekanan pompa injeksi 600 kPa diperoleh dari tekanan keluar brine sisa pada siklus biner, dimana nilainya sekitar 600 kPa juga. Nilai tekanan pompa injeksi dibuat kurang lebih sama dengan tekanan keluar brine sisa, sehingga proses injeksinya bisa digabungkan dalam satu pipa keluaran.
3.4 Perhitungan Terjadinya Kerak (Scale) Sebelum
melakukan
perhitungan
untuk
memperoleh
temperatur
minimum/rekristalisasi supaya tidak terjadi kerak. Langah awal yang perlu dilakukan adalah memperoleh kondisi sumur yang uap/brine-nya akan dimanfaatkan untuk pembangkit listrik tenaga panas bumi. Kondisi sumur yang dimaksud adalah kandungan/komposisi kimia yang terdapat pada uap/brine tersebut. Pada Tabel 3.1 di bawah ini diberikan komposisi kimia dari brine. Brine tersebut akan dimanfaatkan untuk kajian siklus cetus-biner dalam tugas akhir ini.
Tabel 3.1 Komposisi Kimia Brine dari Sumur LHD-23
Parameter/Komposisi
Satuan
pH (25 oC)
Nilai 2,43
Total Dissolved Solids (TDS)
mg/l
4270
Total Suspended Solids (TSS)
mg/l
<10
Besi (Fe)
mg/l
6,7
Sulfat (SO42-)
mg/l
984
Bikarbonat (HCO3-)
mg/l
<1
Klorida (Cl-)
mg/l
1148
Silika (SiO2)
mg/l
984
Sodium (Na)
mg/l
1086
Potasium (K)
mg/l
120
Kalsium (Ca)
mg/l
1,0
Magnesium (Mg)
mg/l
0,29
Litium (Li)
mg/l
3,2
Sumber: Certificate of Analysis yang dikeluarkan oleh PT. Geoservices (Ltd.) untuk PT. PGE Area Lahendong, 11 Mei 2009.
Yang menjadi fokus dalam perhitungan terbentuknya kerak adalah kandungan silika (SiO2) yang terkandung pada uap/brine tersebut. Kandungan silikanya adalah 984 mg/l, dengan nilai massa jenis dari silika adalah 2,2 kg/m3 (http://www.azom.com/Details.asp?ArticleID=4766),
akan
diperoleh
nilai
konsentrasi silika 447 mg/kg atau 447 ppm. Perhitungan kerak (scale) yang akan dikaji berdasarkan 3 metode yang sudah dijelaskan pada bab sebelumnya, yaitu meode Fournier, metode DiPippo, dan metode Scale Scaling Index (SSI).
3.4.1 Metode Fournier Konsentrasi silika yang terkandung adalah 447 ppm, sehingga dengan metode Fournier yang grafiknya dapat dilihat pada Gambar 3.7, temperatur
minimum (temperatur rekristalisasi) supaya tidak terbentuk kerak (scale) ( adalah sekitar 120 oC.
A = garis kelarutan amorphous silika B = garis kelarutan βcristobalite C = garis kelarutan αcristobalite D = garis kelarutan chalcedony E = garis kelarutan quartz
Gambar 3.7 Grafik kandungan silika terhadap temperatur rekristalisasi. rekristalisasi [3]
Untuk memperoleh temperatur rekristalisasi yang lebih akurat, dapat dipergunakan persamaan yang ada pada garis A untuk amorphous silika, yaitu t oC =
(3.1)
Dengan memasukan nilai s adalah kelarutan silika silika (447 ppm), akan diperoleh temperatur rekristalisasi 117,82 oC.
3.4.2 Metode DiPippo Dengan metode DiPippo,, temperatur rekristalisasi supaya tidak terbentuk kerak (scale)) bisa didapatkan dari grafik pada Gambar 3.8. Teknik yang dilakukan sama dengan metode Fournier yaitu memplot nilai konsentrasi silika yang dimiliki untuk diperoleh berapa nilai dari temperatur rekristalisasinya. Kandungan
konsentrasi silika yang terkandung terkandung adalah 447 ppm, sehingga dengan metode plot pada grafik diperoleh temperatur rekristalisasi sekitar 120 oC.
Gambar 3.8 Grafik konsentrasi silika terhadap temperatur rekristalisasi. rekristalisasi [1]
Untuk memperoleh temperatur yang lebih lebih akurat, dapat digunakan persamaan garis pada grafik tersebut, yaitu = - 6,116 + 0,01625T – 1,758×10-5T2 + 5,257×10-9T3
(3.2)
Persamaan di atas digunakan untuk kandungan garam/molalitas m = 0, nilai T di atas dalam satuan Kelvin (K), dan nilai kelarutan amorphous silika (s) perlu dibagi 58.400, supaya diperoleh dalam satuan molal NaCl. Dengan bantuan paket program Microsoft Excel,, dilakukan coba-coba coba / trial & error terhadap nilai T, sehingga akhirnya diperoleh nilai T yang sesuai adalah 121,85 oC.
3.4.3 Metode Sillica Scaling Index (SSI) Pada prinsipnya metode ini merupakan modifikasi dari metode DiPippo. Metode SSI merupakan perbandingan antara nilai konsentrasi silika yang terkandung dalam brine terhadap kelarutan dari amorphous silika.
Seperti yang sudah dijelaskan pada sub-bab 2.4.3 di atas, bahwa apabila nilai SSI lebih besar dari 1 maka akan terbentuk kerak, dan sebaliknya bila lebih kecil dari 1 tidak terbentuk kerak. Siklus yang dikaji pada tugas akhir ini adalah siklus cetus-biner yang gambar skematiknya dapat dilihat pada Gambar 3.9. Untuk itu perlu diperhatikan kemungkinan terbentuknya kerak (scale) pada siklus cetusnya maupun pada siklus binernya.
x
T brine 1
T brine 2
Gambar 3.9 Skematik siklus cetus-biner.
Dengan bervariasinya nilai tekanan cetus, didapatkan hubungan bahwa semakin rendah tekanan cetus maka T brine 1 keluar separator semakin rendah. Hal itu memiliki pengaruh terhadap terbentuknya kerak (scale), dimana semakin rendah temperatur maka semakin tinggi potensi terbentuknya kerak. Untuk itu perlu diketahui temperatur rekristalisasinya supaya menjadi batas minimum supaya tidak terbentuk kerak (scale).
Pada tabel 3.2 ditampilkan pengaruh variasi tekanan cetus terhadap temperatur brine 1 keluar dari separator dan nilai SSI-nya. Nilai-nilai tersebut diperoleh dari proses simulasi dengan paket program HYSYS yang diolah dengan bantuan paket program Microsoft Excel. Dari tabel tersebut dapat dilihat bahwa nilai SSI = 1 terdapat diantara nilai SSI = 1,04 dan SSI = 0,96. Dengan proses interpolasi, didapatkan untuk SSI = 1, nilai tekanan (P) cetus = 270 kPa, dan temperatur brine 1 keluar separator adalah 129,93 oC, dapat dilihat pada Gambar 3.10. Proses penurunan tekanan cetus (flashing) minimal dilakukan pada tekanan 270 kPa, karena bila lebih rendah dari tekanan cetus tersebut akan terbentuk kerak (scale) pada saat masuk siklus yang selanjutnya, yaitu siklus biner. Tabel 3.2 Nilai T Brine Keluar Siklus Cetus dan Nilai SSI-nya
P cetus (kPa) 790 750 700 650 600 550 500 450 400 350 300 250 200 150 110
T brine 1 (oC) 170,00 167,84 165,02 162,04 158,87 155,49 151,85 147,91 143,60 138,84 133,49 127,38 120,17 111,32 102,27
T brine 1 (K) 443,00 440,84 438,02 435,04 431,87 428,49 424,85 420,91 416,60 411,84 406,49 400,38 393,17 384,32 375,27
fraksi uap (x) 0 0 0,01 0,02 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,12 0,14
SII (ppm) 447,00 447,00 451,52 456,12 456,12 460,82 465,63 470,53 475,53 480,65 485,87 491,21 496,67 507,95 516,76
s (ppm) 718,03 704,61 687,24 669,06 649,93 629,80 608,43 585,67 561,25 534,87 506,00 474,08 437,89 395,76 355,32
SSI 0,62 0,63 0,66 0,68 0,70 0,73 0,77 0,80 0,85 0,90 0,96 1,04 1,13 1,28 1,45
1.6
175
1.4
150
1.2
125
1
100
0.8
75
0.6 T brine keluar
50
0.4
Terjadi Scaling
25
Faktor SSI
T brine 1 keluar (oC)
200
0.2
Tidak Terjadi Scaling 0
0 0
200
400
600
800
1000
P cetus (kPa) Gambar 3.10 Grafik tekanan cetus terhadap temperatur brine keluar dan faktor SSI.
Kerak (scale)) masih mungkin terjadi pada aliran yang akan melalui siklus biner. Temperatur brine 2 keluar dari penukar panas preheater perlu diperhatikan supaya tidak terlalu rendah. Semakin rendah temperatur brine keluar penukar panas (preheater), ), semakin besar juga potensi terbentuknya kerak (scale). ( Untuk mengkaji temperatur brine 2 keluar minimum supaya tidak terbentuk kerak dan mencari nilai SSI-nya SSI nya dapat digunakan teknik yang sama seperti di atas. Namun yang perlu diperhatikan adalah adanya pengaruh ∆ temperatur pinch, tekanan evaporator, evaporator, dan jenis fluida kerja yang digunakan. Dari D sisi ∆ temperatur pinch,, variasi yang digunakan adalah 5, 10, 15, dan 20 oC. Rentang tekanan evaporator yang digunakan tergantung dari jenis fluida kerja. Dari empat jenis fluida kerja yang dikaji, yaitu i-pentana, i n-pentana, i-butana, butana, dan n-butana n masing-masing masing memiliki grafik yang berbeda, sehingga nilai dari temperatur brine 2 keluarnya akan berbeda pula. Pengaruh jenis fluida kerja terhadap temperatur brine keluar tidak besar, sehingga untuk menghitung nilai SSI-nya SSI akan digunakan temperatur rekristalisasi rekristalisasi maksimumnya. Pada grafik di bawah ini akan dikaji untuk jenis fluida kerja i-pentana. i
Pada Gambar 3.11 dan Gambar 3.12 dapat dilihat grafik yang menunjukkan adanya pengaruh ∆ temperatur pinch terhadap tekanan evaporator, temperatur brine keluar dan da nilai SSI-nya. 3
180 160
T brine keluar
2.5 2
120 100
1.5 80
Faktor SSI
T brine keluar (oC)
140
1
60
SSI
40
0.5 20 0
0 0
400
800
1200
1600
2000
2400
P evaporator (kPa) Gambar 3.11 Grafik variasi tekanan cetus terhadap T brine keluar, SSI pada ∆T pinch 5 oC.
3
180 160
2.5
2
120 100
1.5 80 60
Faktor SSI
T brine keluar (oC)
140
1
40 0.5 20 0
0 0
400
800
1200
1600
2000
2400
P evaporator (kPa) Gambar 3.12 Grafik variasi tekanan cetus terhadap T brine keluar, SSI pada ∆T pinch 10 o C.
Pada ∆ temperatur pinch 5oC, untuk tekanan evaporator 2000 kPa diperoleh temperatur brine keluar ± 140 oC dan nilai SSI ± 0,8, sedangkan pada ∆ temperatur pinch 10oC, untuk tekanan evaporator 2000 kPa diperoleh temperatur brine keluar ± 152 oC dan nilai SSI ± 0,75. Didapatkan kesimpulan bahwa semakin besar ∆ temperatur pinch, semakin besar juga temperatur brine keluar yang dihasilkan sehingga potensi terbentuknya kerak (scale) akan semakin kecil. Pengaruh jenis fluida kerja dapat dilihat pada Gambar 3.13, dimana tekanan cetus yang dikaji adalah sama yaitu 790 kPa dan nilai ∆ temperatur pinch yang sama juga yaitu 5 oC. i-pentana
3.00
180.00
n-pentana
160.00 2.50
i-butana 2.00
120.00 100.00
1.50 80.00 1.00
60.00 40.00
0.50 20.00 0.00
0.00 0
1000
2000 P evaporator
3000
4000
n-butana Faktor SSI
T brine keluar (oC)
140.00
i-pentana terbentuk kerak i-pentana tidak terbentuk kerak n-pentana terbentuk kerak n-pentana tidak terbentuk kerak i-butana terbentuk kerak n-butana terbentuk kerak
Gambar 3.13 Pengaruh jenis fluida kerja terhadap T brine keluar dan nilai SSI pada P cetus 790 kPa, ∆T pinch 5oC yang sama.
Pada tekanan evaporator yang sama yaitu 1000 kPa, fluida kerja n-pentana memiliki temperatur brine keluar yang paling tinggi dibandingkan yang lainnya, sedangkan fluida kerja i-butana memiliki temperatur brine keluar yang paling rendah. Hal ini dipengaruhi oleh karakteristik fluida kerja tersebut, dimana setiap jenis fluida kerja memiliki tekanan dan temperatur kritis yang berbeda-beda. Nilai temperatur dan tekanan kritis-nya dapat dilihat pada Tabel 3.3 di bawah ini.
Tabel 3.3 Tekanan dan Temperatur Kritis Setiap Jenis Fluida Kerja
Parameter
i-butana
n-butana
i-pentana
n-pentana
Tekanan kritis (kPa)
3648
3797
3334
3375
Temperatur kritis (oC)
134,9
152
187,2
196,5
Dari tabel di atas dapat dilihat bahwa fluida kerja n-pentana memiliki temperatur kritis yang paling tinggi dibandingkan yang lain, sedangkan fluida kerja i-butana memiliki temperatur kritis yang paling rendah. Hal ini yang mempengaruhi fluida kerja n-pentana memiliki temperatur keluar brine yang paling tinggi, sedangkan i-butana memiliki temperatur keluar brine yang paling rendah. Adanya pengaruh tekanan cetus, ∆ temperatur pinch, dan jenis fluida kerja terhadap temperatur brine keluar minimum supaya tidak terbentuk kerak, membuat banyak perhitungan yang perlu dilakukan. Untuk mempermudah proses perhitungan ini dibantu dengan bantuan paket program Microsoft Excel. Dengan metode SSI, diperoleh temperatur keluar brine supaya tidak terbentuk kerak adalah 122 oC. Dari ketiga metode yang dikaji pada tugas akhir ini, ternyata setiap metode menghasilkan temperatur rekristalisasi yang berbeda. Perbedaan hasil dari setiap metode dapat dilihat pada Tabel 3.4 di bawah ini Tabel 3.4 Perbandingan Nilai T Rekristalisasi Dengan Berbagai Metode
T rekristalisasi (oC)
Fournier
DiPippo
SSI
117,82
121,85
122
Dari tabel di atas dapat diketahui bahwa metode SSI memiliki temperatur rekristalisasi yang paling tinggi, yang berarti sangat ketat terhadap potensi terbentuknya
kerak.
Sedangkan
metode
Fournier
memiliki
temperatur
rekristalisasi yang paling rendah. Dalam kajian siklus cetus-biner ini metode yang akan digunakan adalah metode SSI, karena memiliki nilai temperatur rekristalisasi yang paling ketat. Selain itu, metode SSI ini paling umum digunakan pada praktik di lapangan, seperti oleh PT. Pertamina Geotermal Energi (PT. PGE).
3.5 Simulasi dengan Paket Program HYSYS Proses simulasi dengan paket program HYSYS dimulai dengan memasukkan jenis fluida kerja, persamaan tingkat keadaan, dan data-data data yang diperlukan dalam pemodelan siklus cetus-biner. cetus biner. Persamaan tingkat keadaan yang akan digunakan adalah persamaan Peng-Robinson,, sedangkan jenis fluida kerja yang akan dikaji adalah i-pentana, i n-pentana, i-butana, dan n-butana. butana. Komponen yang diperlukan untuk memodelkan siklus cetus-biner cetus adalah: katup ekspansi, separator, turbin, kondensor, pompa, kipas, preheater, dan evaporator.. Contoh pemodelan dengan paket program HYSYS akan ditampilkan pada Gambar 3.14 di bawah ini. Keterangan gambar yang berupa nomor menunjukkan bahwa fluida kerja yang digunakan adalah air, untuk keterangan gambar yang berupa huruf kapital (X, X1, Y, Y1, Z, dan Z1) menunjukkan udara, sedangkan untuk keterangan gambar yang berupa huruf kapitil (a, b, c, d, dan e) menunjukkan fluida kerja organik yang digunakan pada siklus biner.
Gambar 3.14 14 Pemodelan siklus cetus-biner dengan paket ket program HYSYS.
Keempat jenis fluida kerja yang dikaji memiliki bentuk pemodelan yang sama pada paket program HYSYS, dimana yang berbeda hanya jenis fluida kerja organik yang digunakan. Parameter bebas yang akan divariasikan pada proses simulasi ini adalah tekanan cetus (2), tekanan evaporator (e), dan ∆ temperatur pinch pada evaporator. Akan dilihat pengaruh dari parameter tersebut terhadap kinerja siklus cetus-biner secara keseluruhan, terutama terhadap daya netto yang dihasilkan. Rentang tekanan cetus yang digunakan adalah 110 - 790 kPa dengan kenaikan 100 kPa (110, 200, 300, 400, 500, 600, 700, dan 790 kPa). Nilai tekanan cetus yang tertinggi adalah 790 kPa. Apabila tekanan yang digunakan lebih besar dari 790 kPa, maka pada proses ekspansi oleh katup tidak dihasilkan uap. Akibatnya siklus cetus tidak dapat beroperasi karena tidak ada pasokan uap yang masuk ke dalam turbin. Nilai tekanan cetus terendah yang digunakan adalah 110 kPa. Bila digunakan nilai tekanan cetus lebih rendah dari 110 kPa maka kesetimbangan energi yang terjadi pada evaporator dalam siklus biner tidak tercapai. Nilai tekanan cetus akan mempengaruhi besarnya temperatur masuk brine pada evaporator. Nilai temperatur akan mempengaruhi besarnya nilai energi kalor (Q), padahal prinsip kerja penukar panas adalah kesetimbangan energi antara kalor yang dilepaskan harus sebanding dengan kalor yang diterima. Nilai ∆ temperatur pinch yang dikaji akan divariasikan pada nilai 5, 10, 15, dan 20 oC. Nilai ∆ temperatur pinch adalah selisih nilai temperatur terkecil yang dapat dicapai pada penukar panas, antara sisi yang melepaskan panas dan sisi yang menerima panas. Rentang nilai tekanan evaporator bergantung pada jenis fluida kerja yang digunakan dan terhadap nilai tekanan cetus yang digunakan. Untuk fluida kerja ipentana dan n-pentana, tekanan evaporator terendah yang dapat digunakan adalah 250 kPa. Sedangkan untuk fluida kerja i-butana dan n-butana, tekanan evaporator terendah yang dapat digunakan adalah 650 kPa. Terdapat tiga variabel bebas yang ingin diketahui hubungannya (tekanan cetus, tekanan evaporator, dan ∆ temperatur pinch). Untuk itu teknik yang akan digunakan adalah membuat dua variabel tersebut konstan, misalnya untuk langkah
pertama divariasikan nilai tekanan cetus pada tekanan evaporator dan ∆ temperatur pinch konstan, kemudian divariasikan nilai tekanan evaporator pada tekanan cetus dan ∆ temperatur pinch konstan, dan divariasikan nilai ∆ temperatur pinch pada nilai tekanan cetus dan tekanan evaporator yang konstan. Paket program HYSYS dapat digunakan untuk mengetahui nilai satu hubungan yang divariasikan terhadap nilai lain yang ingin diketahui nilai dan hubungannya. Pada Gambar 3.15 akan ditampilkan contoh variasi tekanan evaporator pada salah satu nilai tekanan cetus dan ∆ temperatur pinch yang konstan terhadap nilai daya turbin, pompa dan kipas.
Gambar 3.15 Hasil proses simulasi dengan paket program HYSYS.
Proses yang sama diterapkan untuk semua fluida kerja yang dikaji dan untuk variasi nilai yang ingin diketahui hubungannya satu dengan yang lain. Diperlukan bantuan paket program lembar kerja Microsoft Excel untuk mempermudah proses analisis dan optimasinya.
3.6 Analisis Hasil Simulasi Setelah dilakukan proses pemodelan dan simulasi dengan bantuan paket program HYSYS, langkah selanjutnya yang perlu dilakukan adalah menganalisis hasil yang didapatkan dari proses simulasi. Untuk menganalisis hasil simulasi digunakan digunakan bantuan paket program Microsoft Excel.. Dengan bantuan paket program tersebut akan diperoleh grafik, sehingga akan memudahkan dalam proses pemahaman. Parameter yang merupakan variabel bebas dalam proses simulasi adalah tekanan cetus, tekanan evaporator, dan ∆ temperatur pinch. Apabila ∆ temperatur pinch dibuat konstan, sedangkan tekanan evaporator dan tekanan cetus divariasikan maka akan didapat hubungan seperti pada Gambar 3.16, dimana nilai ∆ temperatur pinch yang digunakan adalah 5 oC. 6000
5000
Daya Turbin (kW)
Daya Turbin Organik 4000
3000
2000
1000 Daya Turbin Uap 0 0
500
1000
1500
2000
2500
P evaporator (kPa) Gambar 3.16 Pengaruh daya turbin akibat variasi P evaporator dan P cetus pada ∆T pinch 5oC.
Grafik yang berbentuk payung merupakan grafik daya turbin yang dihasilkan oleh turbin organik, sedangkan garis lurus merupakan daya turbin yang dihasilkan oleh turbin uap pada siklus cetus. Dapat dilihat pada gambar di atas
bahwa apabila tekanan cetusnya semakin semakin tinggi maka daya turbin organik akan semakin besar sedangkan daya turbin uap akan semakin kecil. Hal ini disebabkan jumlah uap yang dihasilkan untuk siklus cetus tidak banyak. Untuk daya turbin uap pada siklus cetus tidak dipengaruhi oleh tekanan evaporator.. Daya turbin uap akan bernilai konstan untuk berapa pun nilai tekanan evaporator.. Daya turbin biner dipengaruhi oleh tekanan evaporator, evaporator dimana ada nilai tekanan evaporator yang dapat menghasilkan daya turbin maksimum (ada titik puncaknya). Apabila tekanan cetus dibuat konstan sebagai contoh pada 790 kPa, sedangkan nilai dari tekanan evaporator dan ∆ temperatur pinch divariasikan, maka akan didapat grafik seperti pada Gambar 3.17. 5500 5100 4700 4300 Daya turbin (kW)
3900
Daya turbin cetus (T pinch=5)
3500
Daya turbin biner (T pinch=5)
3100
Daya turbin cetus (T pinch=10)
2700 Daya turbin biner (T pinch=10)
2300 1900
Daya turbin cetus (T pinch=15)
1500
Daya turbin biner (T pinch =15)
1100
Daya turbin cetus (T pinch = 20)
700
Daya turbin biner (T pinch=20)
300 -100 0
1000
2000
3000
P evaporator (kPa) Gambar 3.17 Pengaruh daya turbin terhadap t variasi P evaporator dan ∆T pinch
Grafik yang berbentuk payung adalah grafik daya turbin organik, sedangkan untuk daya turbin uap bernilai konstan. Dari grafik di atas didapatkan hubungan apabila nilai dari ∆T pinch diperbesar, maka daya turbin organik akan semakin kecil sedangkan daya turbin uap akan bernilai konstan. Tekanan
evaporator tidak berpengaruh terhadap daya turbin uap yang dihasilkan, tetapi berpengaruh terhadap daya turbin biner. Ada kondisi tekanan evaporator evap optimum yang dapat menghasilkan daya turbin biner yang paling optimum. Kondisi yang paling optimum untuk menghasilkan daya turbin maksimum adalah pada nilai ∆ temperatur pinch yang kecil. Tetapi nilai ∆T pinch yang terlalu kecil akan berakibat penukar penukar panas memerlukan luas penampang perpindahan panas yang sangat besar, sehingga pada tugas akhir ini nilai ∆ temperatur pinch minimum yang digunakan adalah 5 oC. Pada Gambar 3.18 akan ditampilkan pengaruh variasi nilai ∆ temperatur pinch dan tekanan cetus terhadap daya netto yang dihasilkan. 4400
Daya Netto (kW)
4200 4000
790 kPa
3800
740 kPa
3600
640 kPa
3400
540 kPa
3200
440 kPa
3000
340 kPa
2800
240 kPa 0
5
10
15
20
25
ΔT pinch (oC) Gambar 3.18 Pengaruh nilai ∆T pinch terhadap daya netto untuk berbagai P cetus.
Pada grafik di atas didapat hubungan bahwa semakin besar nilai ∆ temperatur pinch maka daya netto yang dihasilkan akan semakin kecil. Nilai tekanan cetus memiliki nilai optimumnya untuk dapat menghasilkan daya netto yang terbesar. Grafik di atas didapatkan dengan membuat nilai tekanan evaporator konstan pada 600 kPa. Pada intinya grafik grafik di atas dapat dibuat untuk berbagai variasi nilai tekanan evaporator,, sehingga akan didapatkan daya netto maksimum. Pada sub-bab bab 3.4 di atas telah dijelaskan adanya pengaruh pembentukan kerak terhadap performa suatu PLTP. Oleh karena itu, dalam analisis fluida kerja
yang dikaji perlu diperhatikan kemungkinan terbentuknya kerak. Terbentuknya kerak merupakan suatu batasan, dimana apabila didapatkan daya netto terbesar pada suatu kondisi tetapi terbentuk kerak maka kondisi tersebut tidak dapat digunakan. Optimasi terhadap parameter ini perlu diperhatikan dalam mengkaji daya netto suatu siklus pembangkit listrik tenaga panas bumi.
3.6.1 Fluida Kerja i-pentana Pada fluida kerja i-pentana akan dikaji kondisi yang dapat menghasilkan daya netto maksimum, dengan memperhatikan kemungkinan terbentuknya kerak. Pada Gambar 3.19 akan ditampilkan grafik yang menjelaskan hubungan daya netto, faktor SSI, dan temperatur brine keluar terhadap variasi tekanan cetus dan tekanan evaporator pada ∆T pinch yang konstan, yaitu 5 oC. 180
5 Daya Turbin Netto (MW)
160
4
T brine keluar
T brine keluar (oC)
120
3
100 2 80 60
1 Faktor SSI
Daya Netto (MW) dan Faktor SSI
140
40 0 20 0
-1 0
500
1000
1500
2000
2500
P evaporator (kPa) Gambar 3.19 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 5 oC.
Cara baca grafik di atas ditunjukan dengan tanda panah yang diberikan. Untuk suatu nilai tekanan cetus dan tekanan evaporator tertentu dapat dilihat nilai dari daya netto, faktor SSI, dan temperatur brine keluar dengan cara memplotnya pada sumbu y di sebelah kiri dan kanan dengan mengikuti tanda panah berwarna merah. Arah tanda panah berwarna hitam menunjukkan variasi tekanan cetus yang nilainya semakin kecil. Nilai sumbu y sebelah kiri menunjukkan temperatur brine keluar, sedangkan sumbu y sebelah kanan menunjukkan nilai dari daya netto dan faktor SSI. Grafik di atas dibuat dengan nilai ∆T pinch yang konstan, yaitu 5 oC. Sama juga untuk nilai ∆T pinch 10, 15, dan 20 oC yang akan ditampilkan berturutturut pada Gambar 3.20, Gambar 3.21, dan Gambar 3.22. 4.5
180 160
4
140
3.5
T brine keluar (oC)
T brine keluar 120
3 2.5
100 2 80 1.5 60
1 Faktor SSI
40
Daya Netto (MW) dan Faktor SSI
Daya Turbin Netto (MW)
0.5
20
0 -0.5
0 0
500
1000
1500
2000
2500
P evaporator (kPa) Gambar 3.20 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 10 oC.
4
180 160
3.5
140
3 T brine keluar
120
2.5 2
100
1.5
80 60
1
Faktor SSI
40
0.5
20
0
Daya Netto (MW) dan Faktor SSI
T brine keluar (oC)
Daya Turbin Netto (MW)
-0.5
0 0
500
1000
1500
2000
P evaporator (kPa) Gambar 3.21 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 15 oC. 4
180
3.5
Daya Turbin Netto (MW)
3
T brine keluar (oC)
140 T brine keluar
120
2.5 2
100
1.5
80
1
60 Faktor SSI 40
0.5
20
0
Daya Netto (MW) dan Faktor SSI
160
-0.5
0 0
500
1000
1500
2000
P evaporator (kPa) Gambar 3.22 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 20 oC.
Pada analisis fluida kerja organik i-pentana, didapatkan kondisi optimum untuk menghasilkan daya netto maksimum 3,08 MW adalah pada ∆T pinch 5 oC, tekanan cetus 600 kPa, dan tekanan evaporator 1500,60 kPa.
3.6.2 Fluida Kerja n-pentana Cara yang sama seperti fluida kerja i-pentana, akan divariasikan nilai tekanan cetus dan tekanan evaporator pada ∆T pinch yang konstan untuk dilihat pengaruhnya terhadap nilai daya netto, temperatur brine keluar, dan faktor SSI. Pengaruh dan hubungan tersebut akan ditampilkan pada Gambar 3.23, Gambar 3.24, Gambar 3.25, dan Gambar 3.26. 180
4 Daya Turbin Netto (MW)
160
T brine keluar (oC)
140
T brine keluar
3
120
2.5
100
2
80
1.5
60
1 Faktor SSI
40
0.5
20
0
0
Daya Netto (MW) dan Faktor SSI
3.5
-0.5 0
500
1000
1500
2000
2500
P evaporator (kPa) Gambar 3.23 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 5 oC.
180
4 Daya Turbin Netto (MW)
3.5
140
3
T brine keluar (oC)
T brine keluar 120
2.5
100
2
80
1.5
60
1 Faktor SSI
40
0.5
20
0
0
Daya Netto (MW) dan Faktor SSI
160
-0.5 0
500
1000
1500
2000
P evaporator (kPa) Gambar 3.24 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 10 oC. 3.5
180 Daya Turbin Netto (MW)
160 140 T brine keluar (oC)
T brine keluar
2.5
120 2 100 1.5 80 1 60
Faktor SSI 0.5
40
Daya Netto (MW) dan Faktor SSI
3
0
20
-0.5
0 0
200
400
600
800
1000
1200
1400
1600
1800
P evaporator (kPa) Gambar 3.25 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 15 oC.
3.5
180 Daya Turbin Netto (MW)
3
140 T brine keluar (oC)
T brine keluar 120
2.5 2
100 1.5 80 1
60
Faktor SSI 0.5
40
Daya Netto (MW) dan Faktor SSI
160
0
20
-0.5
0 0
200
400
600
800
1000
1200
1400
1600
P evaporator (kPa) Gambar 3.26 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 20 oC.
Analisis yang sama dengan fluida kerja i-pentana dilakukan untuk fluida kerja n-pentana, dimana untuk mendapatkan daya netto maksimum sebesar 2,79 MW diperlukan kondisi operasi yang optimum yaitu pada ∆T pinch 5 oC, tekanan cetus 500 kPa, dan tekanan evaporator 1187,50 kPa.
3.6.3 Fluida Kerja i-butana Dalam mengkaji fluida kerja i-butana dilakukan cara yang sama seperti mengkaji fluida kerja i-pentana dan n-pentana. Pada Gambar 3.27, akan ditampilkan grafik yang menggambarkan pengaruh variasi tekanan cetus dan tekanan evaporator terhadap daya netto pada nilai ∆T pinch 5 oC. Sedangkan pada Gambar 3.28, Gambar 3.29, Gambar 3.30, dan Gambar 3.31 akan ditampilkan variasi pengaruh tekanan cetus dan tekanan evaporator terhadap daya netto, temperatur brine keluar, dan faktor SSI pada nilai ∆T pinch yang konstan.
8000 7000
Daya Turbin Netto (kW) P katup 790 kPa
Daya netto (kW)
6000
P katup 700 kPa
5000
P katup 600 kPa
4000
P katup 500 kPa 3000 P katup 400 kPa 2000
P katup 300 kPa
1000
P katup 200 kPa
0 -1000 0
P katup 110 kPa 1000
2000
3000
4000
P evaporator (kPa) Gambar 3.27 Pengaruh variasi P cetus dan evaporator terhadap daya netto yang dihasilkan pada ∆T pinch 5 oC.
Pada grafik di atas terjadi “anomali”, dimana untuk nilai tekanan cetus dan tekanan evaporator tertentu grafik daya mengalami kenaikan lagi. Apabila ingin dilihat pengaruhnya apabila nilai ∆T pinch diubah, dapat dilihat pada grafik di bawah ini. 140
8
6
T brine keluar (oC)
Daya Turbin Netto (MW) 100
5 T brine keluar
80
4 3
60
2
Faktor SSI
40
1 20
Daya Netto (MW) dan Fakor SSI
7
120
0
0
-1 0
1000
2000
3000
4000
P evaporator (kPa) Gambar 3.28 Pengaruh variasi tekanan cetus dan tekanan evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 5 oC.
8
120
7 6
100
T brine keluar
5
80 Daya Turbin Netto (MW)
4
60 3 40
2
20
1
Faktor SSI
0
Daya Netto (MW) dan Fakor SSI
T brine keluar (oC)
140
0 0
1000
2000
3000
4000
P evaporator (kPa)
140
7
120
6
T brine keluar (oC)
100
5
T brine keluar Daya Turbin Netto (MW)
80
4
60
3
40
2
20
1
Faktor SSI
Daya Netto (MW) dan Fakor SSI
Gambar 3.29 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 10 oC.
0
0 0
500
1000
1500
2000
2500
3000
3500
4000
P evaporator (kPa) Gambar 3.30 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 15 oC.
7
120
6
T brine keluar (oC)
100
5 T brine keluar Daya Turbin Netto (MW)
80
4
60
3
40
2
20
1
Faktor SSI
0
Daya Netto (MW) dan Fakor SSI
140
0 0
500
1000
1500
2000
2500
3000
3500
4000
P evaporator (kPa) Gambar 3.31 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 20 oC.
Pada grafik di atas dapat diamati bahwa terjadi “anomali” pada grafik yang dihasilkan. Anomali tersebut umumnya terjadi untuk tekanan evaporator dan tekanan cetus yang tinggi. Hal ini menyebabkan dugaan bahwa penyebab “anomali” tersebut adalah pemilihan persamaan tingkat keadaan yang kurang tepat, karena persamaan tingkat keadaan cukup berpengaruh terhadap nilai dari suatu kondisi/tingkat keadaan. Diperlukan kajian mengenai kesesuaian dalam pemilihan tingkat keadaan, apakah sudah sesuai atau tidak. Setelah berdiskusi dengan dosen pembimbing, mereka menyarankan untuk berdiskusi dengan Dr. Ir. I Made Astina untuk membahas mengenai “anomali” tersebut. Beliau ahli di bidang persamaan tingkat keadaan. Setelah berdiskusi dengan Pak Made dan mahasiswa doctor-nya Chan Sarin, mereka menyarankan untuk menguji nilai dari persamaan peng-robinson yang digunakan dalam paket program HYSYS untuk dibandingkan dengan hasil dari paket program REFPROP 6, yang memiliki nilai yang lebih mendekati dengan hasil eksperimen untuk berbagai refrigeran. Yang akan dikaji adalah sifat dari fluida kerja organik. Paket program REFPROP dikembangkan oleh National
Institute of Standards and Technology (NIST) yang merupakan suatu lembaga yang meneliti standar dan teknologi yang digunakan saat ini. Lembaga ini bekerja di bawah departemen perdagangan Amerika Serikat. Dengan mengacu pada nilai yang dihasilkan oleh paket program REFPROP, dibuat grafik P-h seperti pada Gambar 3.32. Mengapa dipilih grafik Ph, karena pada grafik P-h ditampilkan pengaruh dari tekanan terhadap nilai entalpi (h), dimana untuk mencari daya diperlukan faktor beda entalpi (∆h). 4000 3500
Tekanan (P) kPa
3000 2500 P-h HYSYS wet
2000
P-h REFPROP wet 1500
P-h HYSYS dry
1000
P-h REFPROP dry
500 0 -200.00
0.00
200.00
400.00
600.00
800.00
Entalpi (h) kJ/kg Gambar 3.32 Perbandingan grafik P-h hasil HYSYS Vs REFPROP.
Grafik di atas didapat dengan melakukan normalisasi nilai entalpi (h) terlebih dulu, karena nilai referensi entalpi tersebut berbeda. Setelah dilakukan normalisasi kemudian dibuat grafiknya seperti gambar di atas. Dari grafik di atas, didapatkan hasil bahwa perbedaan nilai entalpi (h) untuk suatu nilai tekanan rata-rata, beda maksimumnya 2,52%. Dari hasil kajian ini, didapat kesimpulan bahwa persamaan tingkat keadaan yang digunakan pada paket program HYSYS sudah tepat dan bernilai benar. Setelah didapatkan kesimpulan bahwa nilai dari entalpi (h) bernilai benar, sehingga nilai dari beda entalpi (∆h) juga akan bernilai benar. Berarti ada faktor lain yang menyebabkan hal tersebut. Kita tahu bahwa nilai daya (W) merupakan
perkalian antara laju massa (˭Ӕ) dengan nilai beda entalpi (∆h). Sehingga muncul dugaan bahwa nilai laju massa ini yang berpengaruh. Kemudian dilakukan kajian tentang laju massa, dimana nilai laju massa terhadap variasi tekanan cetus dan
700000
8000
600000
7000 6000
500000
5000
400000
4000 300000
3000
200000
2000
100000
Daya Netto (kW)
Laju aliran massa (kg/h)
tekanan evaporator untuk fluida kerja i-butana ditampilkan pada Gambar 3.33.
1000
0 1000
2000
3000
laju massa pada P cetus 500 kPa daya netto pada p cetus 700 kPa daya netto pada P cetus 500 kPa
0 0
laju massa pada P cetus 700 kPa
4000
P evaporator(kPa) Gambar 3.33 Pengaruh laju massa terhadap daya netto pada fluida kerja i-butana.
Pada grafik di atas dapat diperhatikan bahwa ketika nilai dari laju massa mengalami kenaikan, pada saat itu juga nilai dari daya netto mengalami kenaikan. Dapat dibandingkan dengan grafik pengaruh laju massa terhadap daya netto untuk fluida kerja i-pentana, seperti pada Gambar 3.34. 5000 4500
600000
4000
500000
3500
400000
3000 2500
300000
2000 1500
200000
1000
100000
500 0
0 0
1000
2000
Daya Netto (kW)
Laju aliran massa (kg/h)
700000
laju massa pada P eva 500 kPa laju massa pada P eva 700 kPa daya netto pada P eva 500 kPa daya netto pada P eva 700 kPa
3000
P evaporator (kPa) Gambar 3.34 Pengaruh laju massa terhadap daya netto pada fluida kerja i-pentana.
Pada grafik pengaruh laju massa terhadap daya netto untuk fluida kerja ii pentana, dapat dilihat bahwa kecenderungan laju aliran massanya adalah menurun. Sedangkan laju aliran massa pada fluida kerja i-butana i butana mengalami kenaikan pada tekanan yang semakin tinggi. tin Untuk mengetahui jawaban atas persoalan tersebut, perlu dilakukan kajian terhadap neraca kesetimbangan energi pada penukar panas, khususnya evaporator.. Gambar 3.35 menunjukkan gambar rangkaian penukar panas yang ada pada siklus biner, yaitu preheater dan evaporator.. Keterangan nomor menujukkan aliran brine (3, 11, dan 12), sedangkan keterangan huruf menunjukkan aliran fluida kerja organik (d, e, dan a).
Persamaan neraca energi pada evaporator: evaporator mb(h3-h11) = mfk(ha-he) Sehingga,
mfk = [mb(h3-h11)]/(ha-hhe)
(3.3) (3.4)
Gambar 3.35 Rangkaian penukar panas.
Tingkat keadaan 3: laju massa konstan tergantung dari nilai tekanan cetus,
-
dimana data temperatur (T) dan tekanan (P) diketahui, sehingga bisa dicari nilai entalpi (h3), yang nilainya akan bernilai konstan. -
Tingkat ingkat keadaan e: e ditentukan berfasa cair jenuh (x = 0), 0) dengan
divariasikannya nilai tekanan evaporator (Pe), sehingga nilai entalpi (he) bisa diperoleh. -
Tingkat ingkat keadaan a: a ditentukan berfasa uap jenuh, dimana nilai tekanan a
(Pa) didapatkan dengan mengurangi tekanan evaporator (Pe) dengan nilai penurunan tekanan (∆P) ( yang ditentukan pada proses simulasi, sehingga nilai entalpi (ha) dapat ditentukan.
-
Tingkat keadaan 11: temperatur (T11) didapatkan dengan menambahkan
temperatur pada kondisi e (Te) dengan nilai ∆ temperatur pinch yang diketahui nilainya dan divariasikan, sedangkan nilai tekanan (P11) didapatkan dengan mengurangkan nilai tekanan pada keadaan 3 (P3) yang sudah diketahui nilainya dengan nilai penurunan tekanan (∆P) pada penukar panas yang ditentukan nilainya. Dengan diketahuinya nilai temperatur dan tekanan maka nilai dari entalpi 11 (h11) bisa didapatkan. Dengan diketahuinya semua nilai entalpi (h) dan laju massa brine, maka nilai laju massa fluida kerja organik bisa didapatkan. Apabila nilai tekanan evaporator (Pe) dinaikkan terus, maka nilai temperatur e (Te) juga akan mengalami kenaikan. Sedangkan dengan kenaikan nilai temperatur e akan berakibat nilai temperatur 11 akan mengalami kenaikan juga. Dengan kenaikan temperatur 11 maka nilai dari entalpi 11 (h11) akan semakin mendekati nilai entalpi 3 (h3), sehingga nilai dari beda entalpi (∆h) akan semakin kecil, yang berarti nilai pembilang akan semakin kecil. Di saat yang bersamaan semakin tinggi nilai tekanan evaporator (Pe) maka nilai dari beda entalpi (ha - he) akan semakin kecil juga. Fluida kerja organik memiliki karakteristik ketika semakin tinggi nilai tekanan maka nilai beda entalpi akan semakin kecil, dapat dilihat pada Gambar 3.36, dimana akan ditampilkan grafik tekanan (P) terhadap nilai entalpi (h). 4000 3500 Tekanan (P) kPa
3000 2500 2000 1500 1000 500 0
-3200
-2700
-2200
-1700
Entalpi (h) kJ/kg Gambar 3.36 Grafik P-h untuk i-pentana hasil HYSYS.
wet dry
Nilai penurunan beda entalpi faktor pembilang (h3 - h11) lebih besar dari pada penurunan faktor penyebut (ha - he), sehingga nilai laju massa fluida kerja ipentana akan semakin kecil/menurun. Lain halnya dengan yang terjadi pada fluida kerja i-butana, dimana apabila tekanan evaporator dinaikan sampai nilai tertentu maka nilai dari faktor penyebut (ha - he) mengalami pengecilan yang lebih ekstrim dibandingkan dengan nilai pada faktor pembilang (h3 - h11), hal ini dikarenakan karakteristik yang dimiliki oleh fluida kerja i-butana. Sebagai gambaran untuk tekanan evaporator yang sama misalnya 2000 kPa, nilai Tjenuh i-butana jauh lebih kecil dari Tjenuh i-pentana (Tjenuh i-butana = 100oC dan Tjenuh i-pentana = 154oC). Hal ini juga yang mengakibatkan fluida kerja i-butana dapat terus digunakan dengan menaikkan nilai tekanan evaporator, selama nilai entalpi 11 (h11) belum mendekati nilai entalpi 3 (h3). Fluida kerja i-butana akan menghasilkan daya netto maksimum 2,92 MW pada kondisi tekanan cetus 500 kPa, tekanan evaporator 3500 kPa, dan nilai ∆T pinch 15 oC.
3.6.4 Fluida Kerja n-butana Sama seperti untuk ketiga fluida kerja yang telah dibahas, untuk mengkaji fluida kerja n-butana dilakukan cara yang sama. Akan dilihat pengaruh tekanan cetus, tekanan evaporator terhadap nilai daya netto, temperatur brine keluar dan faktor SSI untuk nilai ∆T pinch yang konstan. Pada analisis fluida kerja n-butana ini, ditemukan “anomali” yang serupa pada i-butana. Pada Gambar 3.37, Gambar 3.38, Gambar 3.39, dan Gambar 3.40 ditampilkan grafik yang menujukkan pengaruh tekanan cetus, tekanan evaporator terhadap daya netto, faktor SSI, dan temperatur brine keluar pada ∆T pinch yang konstan.
9
140
8 T brine keluar
T brine keluar (oC)
120
7 6
100
5 80 4 60
Daya Turbin Netto (MW)
40
3 2
20
Daya Netto (MW) dan Faktor SSI
160
1 Faktor SSI 0
0 0
1000
2000
3000
4000
P evaporator (kPa)
Gambar 3.37 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 5 oC.
160
7
140
T brine keluar (oC)
120
5
100 4 80 Daya Turbin Netto (MW)
3
60 2
40
Daya Netto (MW) dan Faktor SSI
6
T brine keluar
1
20
Faktor SSI
0
0 0
500
1000
1500
2000
2500
3000
3500
4000
P evaporator (kPa) Gambar 3.38 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 10 oC.
160
5 T brine keluar
140
4.5
T brine keluar (oC)
3.5 100
3 Daya Turbin Netto (MW)
80
2.5 2
60
1.5 40
Daya Netto (MW) dan Faktor SSI
4 120
1 Faktor SSI
20
0.5 0
0 0
500
1000
1500
2000
2500
3000
3500
4000
P evaporator (kPa) Gambar 3.39 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 15 oC. 5 T brine keluar
160
4
140 T brine keluar (oC)
4.5
3.5
120
3
100
2.5 80
Daya Turbin Netto (MW)
2
60
1.5
40
1 Faktor SSI
20
Daya Netto (MW) dan Faktor SSI
180
0.5
0
0 0
500
1000
1500
2000
2500
3000
3500
4000
P evaporator (kPa) Gambar 3.40 Pengaruh P cetus dan P evaporator terhadap daya netto, faktor SSI, T brine keluar pada ∆T pinch 20 oC.
Analisis yang sama juga berlaku untuk “anomali” yang terjadi pada fluida kerja n-butana. Untuk menghasilkan daya netto maksimum 3,06 MW diperlukan kondisi operasi tekanan cetus 600 kPa, tekanan evaporator 3533,33 kPa, dan ∆ temperatur pinch 5 oC. Dari keempat jenis fluida kerja yang dikaji, dapat dibuatkan tabel yang membandingkan keempat jenis fluida kerja bersama dengan kondisi operasinya. Tabel 3.5 Perbandingan Kondisi Operasi Keempat Jenis Fluida Kerja Organik
Parameter T pinch (oC) P cetus (kPa) SSI P evaporator (kPa) Daya Netto (kW) Persen Beda Daya Netto (%)
i-butana 15,00 500,00 0,97 3500,00 2915,79 -0,13
n-butana 5,00 600,00 0,97 3533,33 3057,31 6,05
i-pentana 5,00 600,00 0,97 1500,60 3077,64 7,91
n-pentana 5,00 500,00 0,97 1187,50 2793,85 acuan
Dari tabel di atas dapat diketahui bahwa fluida kerja yang menghasilkan daya netto terbesar adalah fluida kerja i-pentana, dimana tekanan kerja evaporator yang diperlukan sebesar 1500,60 kPa. Persentase beda daya netto juga ditampilkan, dengan n-pentana sebagai acuan karena memiliki daya netto terkecil. Setelah diperoleh kondisi operasi optimum yang dapat menghasilkan daya netto maksimum, langkah selanjutnya adalah proses perancangan termal untuk penukar panas (preheater dan evaporator) dan kondensor berpendingin udara dengan bantuan paket program HTRI dan metode yang ada pada GPSA.