4
BAB 2 TINJAUAN PUSTAKA
2.1 Penguat Operasional(Op-Amp)
Penguat operasional (Op Amp) adalah suatu rangkaian terintegrasi yang berisi beberapa tingkat dan konfigurasi penguat diferensial yang telah dijelaskan di atas. Penguat operasional memilki dua masukan dan satu keluaran serta memiliki penguatan DC yang tinggi. Untuk dapat bekerja dengan baik, penguat operasional memerlukan tegangan catu yang simetris yaitu tegangan yang berharga positif (+V) dan tegangan yang berharga negatif (-V) terhadap tanah (ground). Berikut ini adalah simbol dari penguat operasional:
Gambar 2.1 Penguat Operasional
Universitas Sumatera Utara
5 2.1.1 Karakteristik Ideal Penguat Operasional
Penguat operasional banyak digunakan dalam berbagai aplikasi karena beberapa keunggulan yang dimilikinya, seperti penguatan yang tinggi, impedansi masukan yang tinggi, impedansi keluaran yang rendah dan lain sebagainya. Berikut ini adalah karakteristik dari Op Amp ideal:
a. Penguatan tegangan lingkar terbuka (open-loop voltage gain) AVOL =
b. Tegangan ofset keluaran (output offset voltage) VOO = 0
c. Hambatan masukan (input resistance) RI =
d. Hambatan keluaran (output resistance) RO = 0
e. Lebar pita (band width) BW =
f. Waktu tanggapan (respon time) = 0 detik
g. Karakteristik tidak berubah dengan suhu
Kondisi ideal tersebut hanya merupakan kondisi teoritis tidak mungkin dapat dicapai dalam kondisi praktis. Tetapi para pembuat Op Amp berusaha untuk membuat Op Amp yang memiliki karakteristik mendekati kondisi-kondisi di atas. Karena itu sebuah Op Amp yang baik harus memiliki karakteristik yang mendekati kondisi ideal. Berikut ini akan dijelaskan satu persatu tentang kondisi-kondisi ideal dari Op Amp.
Universitas Sumatera Utara
6 2.1.2 Tegangan Offset Keluaran
Tegangan offset keluaran (output offset voltage) VOO adalah harga tegangan keluaran dari Op Amp terhadap tanah (ground) pada kondisi tegangan masukan Vid = 0. Secara ideal, harga VOO = 0 V. Tetapi dalam kondisi praktis, akibat adanya ketidakseimbangan dan ketidakidentikan dalam penguat diferensial dalam Op Amp tersebut, maka tegangan ofset VOO biasanya berharga sedikit di atas 0 V. Apalagi apabila tidak digunakan umpan balik maka harga VOO akan menjadi cukup besar untuk menimbulkan saturasi pada keluaran. Untuk mengatasi hal ini, maka perlu diterapakan tegangan koreksi pada Op Amp. Hal ini dilakukan agar pada saat tegangan masukan Vid = 0, tegangan keluaran VO juga = 0. Apabila hal ini tercapai,
2.1.3 Hambatan masukan
Hambatan masukan (input resistance) Ri dari Op Amp adalah besar hambatan di antara kedua masukan Op Amp. Secara ideal hambatan masukan Op Amp adalah tak berhingga. Tetapi dalam kondisi praktis, harga hambatan masukan Op Amp adalah antara 5 k hingga 20 M, tergantung pada tipe Op Amp. Harga ini biasanya diukur pada kondisi Op Amp tanpa umpan balik. Apabila suatu umpan balik negatif (negative feedback) diterapkan pada Op Amp, maka hambatan masukan Op Amp akan meningkat.
Dalam suatu penguat, hambatan masukan yang besar adalah suatu hal yang diharapkan. Semakin besar hambatan masukan suatu penguat, semakin baik penguat tersebut dalam menguatkan sinyal yang amplitudonya sangat kecil. Dengan hambatan masukan yang besar, maka sumber sinyal masukan tidak terbebani terlalu besar.
Universitas Sumatera Utara
7 2.1.4 Hambatan keluaran
Hambatan Keluaran (output resistance) RO dari Op Amp adalah besarnya hambatan dalam yang timbul pada saat Op Amp bekerja sebagai pembangkit sinyal. Secara ideal harga hambatan keluaran RO Op Amp adalah = 0. Apabula hal ini tercapai, maka seluruh tegangan keluaran Op Amp akan timbul pada beban keluaran (RL), sehingga dalam suatu penguat, hambatan keluaran yang kecil sangat diharapkan.
Dalam kondisi praktis harga hambatan keluaran Op Amp adalah antara beberapa ohm hingga ratusan ohm pada kondisi tanpa umpan balik. Dengan diterapkannya umpan balik, maka harga hambatan keluaran akan menurun hingga mendekati kondisi ideal.
2.1.5 Lebar Pita Lebar pita (band width) BW dari Op Amp adalah lebar frekuensi tertentu dimana tegangan keluaran tidak jatuh lebih dari 0,707 dari harga tegangan maksimum pada saat amplitudo tegangan masukan konstan. Secara ideal, Op Amp memiliki lebar pita yang tak terhingga. Tetapi dalam penerapannya, hal ini jauh dari kenyataan.
Sebagian besar Op Amp serba guan memiliki lebar pita hingga 1 MHz dan biasanya diterapkan pada sinyal dengan frekuensi beberapa kiloHertz. Tetapi ada juga Op Amp yang khusus dirancang untuk bekerja pada frekuensi beberapa MegaHertz. Op Amp jenis ini juga harus didukung komponen eksternal yang dapat mengkompensasi frekuensi tinggi agar dapat bekerja dengan baik.
Universitas Sumatera Utara
8
2.2 Fotodioda Fotodioda merupakan suatu piranti semikonduktor dengan struktur p-n atau p-in untuk mendeteksi cahaya.Fotodioda biasanya digunakan untuk mendeteksi cahaya. Fotodioda adalah piranti semikonduktor yang mengandung sambungan p-n, dan biasanya terdapat lapisan intrinsik antara lapisan n dan p. Piranti yang memiliki lapisan intrinsik disebut p-i-n atau PIN fotodioda. Cahaya diserap di daerah penggambungan atau daerah intrinsik menimbulkan pasangan elektron-hole, kebanyakan pasangan tersebut menghasilkan arus yang berasal dari cahaya. Fotodioda dapat dioperasikan dalam 2 mode yang berbeda: 1. Mode fotovoltaik: seperti solar sel, penyerapan pada fotodioda menghasilkan tegangan yang dapat diukur. Bagaimanapun, tegangan yang dihasilkan dari tenaga cahaya ini sedikit tidak linier, dan range perubahannya sangat kecil. 2. mode fotokonduktivitas :
disini, fotodioda diaplikasikan sebagai tegangan
revers (tegangan balik) dari sebuah dioda (yaitu tegangan pada arah tersebut pada dioda tidak akan menhantarkan tanpa terkena cahaya) dan pengukuran menghasilkan arus foto. ( hal ini juga bagus untuk mengaplikasikan tegangan mendekati nol). Ketergantungan arus foto pada kekuatan cahaya dapat sangat linier .
Karakteristik bahan fotodioda: 1. silikon (Si) : arus lemah saat gelap, kecepatan tinggi, sensitivitas yang bagus antara 400 nm sampai 1000 nm ( terbaik antara 800 sampai 900 nm). 2. Germanium (Ge): arus tinggi saat gelap, kecepatan lambat, sensitivitas baik antara 600 nm sampai 1800 nm (terbaik 1400 sampai 1500 nm).
Universitas Sumatera Utara
9 3. Indium Gallium Arsenida (InGaAs): mahal, arus kecil saat gelap, kecepatan tinggi sensitivitas baik pada jarak 800 sampai 1700nm (terbaik antara 1300 sampai 1600nm). Gambar fotodioda ditunjukkan sebagai berikut:
Gambar 2.2 Fotodioda
2.3 Resistor Resistor komponen pasif elektronika yang berfungsi untuk membatasi arus listrik yang mengalir. Berdasarkan kelasnya resistor dibagi menjadi 2 yaitu : Fixed Resistor dan Variable R esistor Dan umumnya terbuat dari carbon film atau metal film, tetapi tidak menutup kemungkinan untuk dibuat dari material yang lain. Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan tembaga perak emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan–bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai insulator.
Universitas Sumatera Utara
10 2.3.1 Fixed Resistor Resistor adalah komponen dasar elektronika yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian. Sesuai dengan namanya resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Tipe resistor yang umum berbentuk tabung porselen kecil dengan dua kaki tembaga dikiri dan kanan. Pada badannya terdapat lingkaran membentuk gelang kode warna untuk memudahkan pemakai mengenali besar resistansi tanpa mengukur besarnya dengan ohm meter. Kode warna tersebut adalah standar menufaktur yang dikeluarkan oleh ELA (Electronic Industries Association).
Gambar 2.3 Resistor karbon
Universitas Sumatera Utara
11 Tabel 2.1 Gelang Resistor
WARNA
GELANG I
GELANG II
GELANG III
GELANG IV
Hitam
0
0
1
-
Coklat
1
1
10
-
Merah
2
2
100
-
Jingga
3
3
1000
-
Kuning
4
4
10000
-
Hijau
5
5
100000
-
Biru
6
6
1000000
-
Violet
7
7
10000000
-
Abu-abu
8
8
100000000
-
Putih
9
9
1000000000
-
Emas
-
-
0,1
5%
Perak
-
-
0,01
10%
Tanpa Warna
-
-
-
20%
Resitansi dibaca dari warna gelang yang paling depan ke arah gelang toleransi berwarna coklat, emas, atau perak. Biasanya warna gelang toleransi ini berada pada bahan resistor yang paling pojok atau juga dengan lebar yang lebih menonjol, sedangkan warna gelang yang keempat agak sedikit ke dalam. Dengan demikian pemakai sudah langsung mengetahui berapa toleransi dari resitor tersebut. Kalau anda
Universitas Sumatera Utara
12 telah bisa menentukan mana gelang pertama selanjutnya adalah membaca nilai resistansinya.
2.3.2 Variabel Resistor Untuk kelas resistor yang kedua ini terdapat 2 tipe. Untuk tipe pertama dinamakan variable resistor dan nilainya dapat diubah sesuai keinginan dengan mudah dan sering digunakan untuk pengaturan volume, bass, balance, dll. Sedangkan yang kedua adalah semi-fixed resistor. Nilai dari resistor ini biasanya hanya diubah pada kondisi tertentu saja. Contoh penggunaan dari semi-fixed resistor adalah tegangan referensi yang digunakan untuk ADC, fine tune circuit, dll. Ada beberapa model pengaturan nilai Variable resistor, yang sering digunakan adalah dengan cara nya terbatas sampai 300 derajat putaran. Ada beberapa model variable resistor yang harus diputar berkali – kali untuk mendapatkan semua nilai resistor. Model ini dinamakan “Potentiometers” atau “Trimmer Potentiometers”.
Gambar 2.4 Potensiometer
Universitas Sumatera Utara
13 Pada gambar di atas untuk bentuk 3 biasanya digunakan untuk volume kontrol. Bentuk yang ke 2 merupakan semi fixed resistor dan biasanya di pasang pada PCB (Printed Circuit Board). Sedangkan bentuk 1 dpotentiometers. Ada 3 tipe didalam perubahan nilai dari resistor variabel, perubahan tersebut dapat dilihat pada gambar dibawah ini:
Gambar 2.5 Grafik Perubahan nilai pada potensiometer
Pada saat tipe A diputar searah jarum jam, awalnya perubahan nilai resistansi lambat tetapi ketika putarannya mencapai setengah atau lebih nilai perubahannya menjadi sangat cepat. Tipe ini sangat cocok dengan karakteristik telinga manusia. Karena telinga sangat peka ketika membedakan suara dengan volume yang lemah, tetapi tidak terlalu sensitif untuk membedakan perubahan suara yang keras. Biasanya tipe A ini juga disebut sebagai “Audio Taper” potensiometer. Untuk tipe B perubahan resistansinya adalah linier dan cocok digunakan untuk Aplikasi Balance Control, resistance value adjustment in circuit, dll. Sedangkan untuk tipe C perubahan resistansinya kebalikan dati tipe A.
Universitas Sumatera Utara
14 2.4 Kapasitor Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki elektroda metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif karena terpisah oleh bahan elektrik yang non-konduktif. Muatan elektrik ini “tersimpan” selama tidak ada konduktif pada ujung- ujung kakinya. Di alam bebas phenomena kapasitor terjadi pada saat terkumpulnya muatan-muatan positif dan negatif diawan.
dielektrik
Elektroda
Elektroda
Gambar 2.6 Skema kapasitor.
Kapasitor merupakan komponen pasif elektronika yang sering dipakai didalam merancang suatu sistem yang berfungsi untuk mengeblok arus DC, Filter, dan penyimpan energi listrik. Didalamnya 2 buah pelat elektroda yang saling berhadapan dan dipisahkan oleh sebuah insulator. Sedangkan bahan yang digunakan sebagai insulator dinamakan dielektrik. Ketika kapasitor diberikan tegangan DC maka energi listrik disimpan pada tiap elektrodanya. Selama kapasitor melakukan pengisian, arus
Universitas Sumatera Utara
15 mengalir. Aliran arus tersebut akan berhenti bila kapasitor telah penuh. Yang membedakan tiap - tiap kapasitor adalah dielektriknya. Berikut ini adalah jenis– jenis kapasitor yang dipergunakan dalam perancangan ini.
2.4.1 Electrolytic Capacitor (ELCO) Elektroda dari kapasitor ini terbuat dari alumunium yang menggunakan membrane oksidasi yang tipis. Karakteristik utama dari Electrolytic Capacitor adalah perbedaan polaritas pada kedua kakinya. Dari karakteristik tersebut kita harus berhati– hati di dalam pemasangannya pada rangkaian, jangan sampai terbalik. Bila polaritasnya terbalik maka akan menjadi rusak bahkan “MELEDAK”. Biasanya jenis kapasitor ini digunakan pada rangkaian power supply. Kapasitor ini tidak bisa digunakan pada rangkaian frekuensi tinggi. Biasanya tegangan kerja dari kapasitor dihitung dengan cara mengalikan tegangan catu daya dengan 2. Misalnya kapasitor akan diberikan catu dayadengan tegangan 5 Volt, berarti kapasitor yang dipilih harus memiliki tegangan kerja minimum 2 x 5 = 10 Volt.
Gambar 2.7 Electrolytic Capacitor (ELCO)
Universitas Sumatera Utara
16 2.4.2 Ceramic Capacitor Kapasitor menggunakan bahan titanium acid barium untuk dielektriknya. Karena tidak dikonstruksi seperti koil maka komponen ini dapat digunakan pada rangkaian frekuensi tinggi. Biasanya digunakan untuk melewatkan sinyal frekuensi tinggi menuju ke ground. Kapasitor ini tidak baik digunakan untuk rangkaian analog, karena dapat mengubah bentuk sinyal. Jenis ini tidak mempunyai polaritas dan hanya tersedia dengan nilai kapasitor yang sangat kecil dibandingkan dengan kedua kapasitor diatas.
Gambar 2.8 Ceramic Capacitor
2.4.3 Nilai Kapasitor Untuk mencari nilai dari kapasitor biasanya dilakukan dengan melihat angka/kode yang tertera pada badan kapasitor tersebut. Untuk kapasitor jenis elektrolit memang mudah, karena nilai kapasitansinya telah tertera dengan jelas pada tubuhnya. Sedangkan untuk kapasitor keramik dan beberapa jenis yang lain nilainya dikodekan. Biasanya kode tersebut terdiri dari 4 digit, dimana 3 digit pertama merupakan angka dan digit terakhir berupa huruf yang menyatakan toleransinya. Untuk 3 digit pertama angka yang terakhir berfungsi untuk menentukan 10n, nilai n dapat dilihat pada tabel dibawah ini.
Universitas Sumatera Utara
17 Tabel 2.2 Nilai Kapasitor
Misalnya suatu kapasitor pada badannya tertulis kode 474J, berarti nilai kapasitansinya adalah 47 + 104 = 470.000 pF = 0.47µF sedangkan toleransinya 5%. Yang harus diingat didalam mencari nilai kapasitor adalah satuannya dalam pF (Pico Farad).
2.5 Transistor Transistor adalah komponen elektronika yang mempunyai tiga buah terminal. Terminal itu disebut emitor, basis, dan kolektor. Transistor seakan-akan dibentuk dari penggabungan dua buah dioda. Dioda satu dengan yang lain saling digabungkan dengan cara menyambungkan salah satu sisi dioda yang senama. Dengan cara penggabungan seperti dapat diperoleh dua buah dioda sehingga menghasilkan transistor NPN. Bahan mentah yang digunakan untuk menghasilkan bahan N dan bahan P adalah silikon dan germanium. Oleh karena itu, dikatakan : 1. Transistor germanium PNP 2. Transistor silikon NPN 3. Transistor silikon PNP
Universitas Sumatera Utara
18 4. Transistor germanium NPN Semua komponen di dalam rangkaian transistor dengan simbol. Anak panah yang terdapat di dalam simbol menunjukkan arah yang melalui transistor. C
C B
B E
E
NPN
PNP
Gambar 2.9 Simbol tipe transistor
Keterangan : C = kolektor E = emiter B = basis Didalam
pemakaiannya
transistor
dipakai
sebagai
komponen
saklar
(switching) dengan memanfaatkan daerah penjenuhan (saturasi) dan daerah penyumbatan (cut off) yang ada pada karakteristik transistor. Pada daerah penjenuhan nilai resistansi persambungan kolektor emiter secara ideal sama dengan nol atau kolektor dan emiter terhubung langsung (short). Keadaan ini menyebabkan tegangan kolektor emiter (VCE) = 0 Volt pada keadaan ideal, tetapi pada kenyataannya VCE bernilai 0 sampai 0,3 Volt. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan on seperti pada gambar dibawah ini:
Universitas Sumatera Utara
19 Vcc
Vcc
IC
R
RB Saklar On VCE VB IB
VBE
Gambar 2.10 Transistor sebagai Saklar ON
Saturasi pada transistor terjadi apabila arus pada kolektor menjadi maksimum dan untuk mencari besar arus basis agar transistor saturi adalah : I max
Vcc ……………………………………………..…………….(2.1) Rc
hfe . I B
IB
Vcc ………………………………………….…………….(2.2) Rc
Vcc ………………………………………………………….(2.3) hfe . Rc
Hubungan antara tegangan basis (VB) dan arus basis (IB) adalah :
IB
VB VBE ………………………………………………(2.4) RB
VB =IB.RB+VBE………………………………………………(2.5)
VB
Vcc . R B VBE ...………………………………………(2.6) hfe . Rc
Jika tegangan VB telah mencapai VB
Vcc . R B VBE , maka transistor akan hfe . Rc
saturasi, dengan Ic mencapai maksimum.
Universitas Sumatera Utara
20 Gambar dibawah ini menunjukkan apa yang dimaksud dengan VCE (sat) adalah harga VCE pada beberapa titik dibawah knee dengan posisi tepatnya ditentukan pada lembar data. Biasanya VCE (sat) hanya beberapa perpuluhan volt, walaupun pada arus kolektor sangat besar bisa melebihi 1 volt. Bagian dibawah knee pada gambar dibawah ini dikenal sebagai daerah saturasi.
IC Penjenuhan (saturation)
Vcc Rc
IB > IB (sat) IB = IB (sat)
IB (Cut off)
IB = 0 VCE
Gambar 2.11 Karakteristik daerah saturasi pada transistor
Pada daerah penyumbatan,nilai resistansi persambungan kolektor emiter secara ideal sama dengan tak terhitung atau terminal kolektor dan emiter terbuka (open). Keadaan ini menyebabkan tegangan (VCB) sama dengan tegangan sumber (Vcc). Tetapi pada kenyataannya Vcc pada saat ini kurang dari Vcc karena terdapat arus bocor dari kolektor ke emiter. Dengan menganalogikan transistor sebagai saklar, transistor tersebut dalam keadaan off seperti gambar dibawah ini.
Universitas Sumatera Utara
21
Vcc
Vcc
IC
R
RB Saklar Off VCE VB IB
VBE
Gambar 2.12 Transistor Sebagai Saklar OFF
Keadaan penyumbatan terjadi apabila besar tegangan habis (VB) sama dengan tegangan kerja transistor (VBE) sehingga arus basis (IB) = 0 maka : IB
IC ……………………………………………………………..(2.6) hfe
IC = IB . hfe ….………………………………………………………(2.7) IC = 0 . hfe ………..…………………………………………………(2.8) IC = 0 ………………………………………………………………..(2.9) Hal ini menyebabkan VCE sama dengan Vcc dapat dibuktikan dengan rumus : Vcc
= Vc + VCE…………..……………………………………..(2.10)
VCE
= Vcc – (Ic . Rc)…..………………………………………..(2.11)
VCE
= Vcc …..…………………………………………………(2.12)
Universitas Sumatera Utara
22 2.6 Relay Relay adalah suatu rangkaian switch magnetik yang bekerja bila mendapat catu dan suatu rangkaian trigger. Relay memiliki tegangan dan arus nominal yang harus dipenuhi output rangkaian pendriver atau pengemudinya. Arus yang digunakan pada rangkaian adalah arus DC. Konstruksi dalam suatu relay terdiri dari lilitan kawat (coil) yang dililitkan pada inti besi lunak. Jika lilitan kawat mendapatkan aliran arus, inti besi lunak kontak menghasilkan medan magnet dan menarik switch kontak. Switch kontak mengalami gaya listrik magnet sehingga berpidah posisi ke kutub lain atau terlepas dari kutub asalnya. Keadaan ini akan bertahan selama arus mengalir pada kumparan relay. Dan relay akan kembali keposisi semula yaitu normaly ON atau Normaly OFF, bila tidak ada lagi arus yang mengalir padanya, posisi normal relay tergantung pada jenis relay yang digunakan. Dan pemakaian jenis relay tergantung pada kadaan yang diinginkan dalam suatu rangkaian. Menurut kerjanya relay dapat dibedakan menjadi : a. Normaly Open (NO), saklar akan tertutup bila dialiri arus b. Normaly Close (OFF), saklar akan tertutup bila dialiri arus c. Change Over (CO), relay ini mempunyai saklar tunggal yang nomalnya tertutup yang lama, bila kumparan 1 dialiri arus maka saklar akan terhubung ke terminal A, sebaliknya bula kumparan 2 dialiri arus maka saklar akan terhubung ke terminal B. Analogi rangkaian relay yang digunakan pada tugas akhir ini adalah saat basis transistor ini dialiri arus, maka transistor dalam keadaan tertutup yang dapat menghubungkan arus dari kolektor ke emiter yang mengakibatkan relay terhubung.
Universitas Sumatera Utara
23 Sedangkan fungsi dioda disini adalah untuk melindungi transistor dari tegangan induksi berlebih, dimana tegangan ini dapat merusak transistor. Jika transistor pada basis tidak ada arus maju, transistor terbuka sehingga arus tidak mengalir dari kolektor ke emiter, relay tidak bekerja karena tidak ada arus yang mengalir pada gulungaBentuk relay yang digunakan dan bentuk relay dengan rangkaian driver dapat dilihat pada gambar:
Vcc Dioda
VB
a. Simbol
Tr
b. Relay dengan rangkaian driver
Gambar 2.13 Simbol Relay dan Rangkaian Driver
2.7 Penguatan Sinyal Sebuah komparator nemiliki kinerja pensaklaran yang mirip dengan rangkaian saklar transistor. Dalam semua aplikasi semacam ini, transistor yang bersangkutan digunakan dengan cara “semua atau tidak semua-sama-sekali”. Transistor hanya akan berada dalam keadaan tidak-aktif (off 0 atau saturasi (jenuh), dan tidak dalam keadaan lainnya. Semua rangkaian semacam ini memiliki fungsi sebagai rangkaian penguat, karena suatu perubahan kecil pada input akan menghasilkan perubahan yang relatif besar pada output.
Universitas Sumatera Utara
24 Rangkaian-rangkaian penguat seperti di atas tidak dapat digunakan dalam aplikasi-aplikasi di mana kita hendak menguatkan sebuah sinyal audio. Bentuk gelombang audio terlalu kompleks. Ketika kita menguatkan sinyal-sinyal audio, kita harus mempertahankan bentuknya semirip mungkin dengan aslinya. Dengan demikian, salah satu sasaran dari rangkaian penguat audio adalah menghasilkan sinyal tegangan output yang merupakan salinan persis dan sinyal tegangan inputnya, kecuali bahwa amplitudo output jauh lebih besar dari amplitudo input. Kita mengubah sinyal V
In menjadi sinyal
V
out.
Terdapat sinyal-sinyal lain yang juga membutuhkan teknik pemrosesan semacam ini. Ketika seorang dokter melakukan pencatatan electroencephalogram (EEP), sinyal-sinyal listrik yang ditangkap dari otot-otot jantung sang pasien dikuatkan sebelum kemudian diumpankan ke alat pencatat. Seorang seismolog harus mampu menguatkan secara akurat sinyal-sinyal yang ditangkap dari kulit bumi, untuk dapat menganalisis getaran yang ditimbulkan oleh sebuah gempa. Pada tataran frekuensi tinggi, kita harus dapat menguatkan sinyal-sinyal berfrekuensi ultra-tinggi yang digunakan di dalam system pemancar gelombang mikro. Gain tegangan sebuah rangkaian penguat dirumuskan sebagai : GV = Vout / V In
Dimana GV = VOut danV Inadalah nilai-nilai tegangan output dan tegangan input pada satu titik waktu tertentu. Sebuah rangkaian penguatt juga dapat memiliki gain arus, yang didefenisikan dengan cara yang sama. Menggabungkan kedua gain ini, dan merujuk ke persamaan P = IV, kita dapat mengetahui bahwa sebuah rangkaian penguat akan meningkatkan daya dari sebuah sinyal. Gain tegangan tidak bersifat tetap. Besaran ini bergantung pada frekuensi sinyal yang bersangkutan. Hal ini terutama disebabkan oleh efek kapasitansi di dalam rangkaian.
Universitas Sumatera Utara
25 2.8 Ligt Emitting Diode Light emitting diode (dioda pemancar cahaya), yang lebih dikenal dengan kependekannya yaitu Led, menghasilkan cahaya ketika arus mengalir melewatinya. Pada awalnya Led-led hanya dibuat dengan warna merah, namun sekarang warnawarna jingga, kuning, hijau, biru dan putih juga tersedia di pasaran. Terdapat pula Led-led inframerah, yang menghasilkan cahaya inframerah, alih-alih cahaya tampak. Sebuah Led yang tipikal memiliki kemasan berbentuk kubah yang terbuat dari bahan plastik, dengan pinggiran yang menonjol (rim) pada bagian bawah kubah, terdapat dua kubah kaki terminal dibagian bawah kubah. Biasanya, meskipun tidak selalu demikian, kaki katoda lebih pendek dari kaki anoda. Cara lain untuk membedakan kaki katoda dengan kaki anoda adalah dengan memperhatikan bagian rim (apabila Led yang bersangkutan memang memilikinya). Rim dibuat berbentuk datar pada sisi yang berdekatan dengan kaki katoda. Sebuah Led membutuhkan arus sekitar 20 mA untuk memancarkan cahaya dengan kecerahan maksimum, meskipun arus sekecil 5 mA pun masih dapat menghasilkan cahaya yang jelas tampak. Jatuh tegangan maju. Sebuah Led rata-rata adalah 1,5 V, sehingga pasokan tegangan 2 V dapat menyalakan sebagian besar Led dengan kecerahan maksimum. Dengan level-level tegangan yang lebih tinggi, Led dapat terbakar apabila tegangan maju yang diberikan melebihi 2 V. Kita harus penting untuk menyambungkan resistor pembatas arus secara seri kesebuah Led. Led
digunakan
sebagai
lampu-lampu
indicator,
misalnya,
untuk
mengindikasikan bahwa daya listrik ke sebuah perangkat berada dalam keadaan tersambung. Led juga digunakan untuk tampilan-tampilan informative dan dekoratif. Led dibuat dalam beragam bentuk, beberapa di antaranya bulat, persegi, dan segitiga. Susunan beberapa buah Led digunakan untuk membentuk sebuah display (tampilan).
Universitas Sumatera Utara
26 Bentuk susunan yang paling umum adalah tampilan tujuh segmen, yang digunakan untuk menampilkan angka-angka dan huruf-huruf secara digital.Satu atau beberapa baris susunan semacam ini dapat digunakan untuk menampilkan sebuah pesan lengkap. Led dibuat dengan beberapa ukuran tertentu. Led terkecil memiliki ukuran diameter sekitar 1 mm, digunakan sebagai lampu-lampu indicator pada panel-panel dengan ruang yang relatif sempit. Sebaiknya Led-led terbesar (jumbo) memiliki ukuran diameter 10 mm dan digunakan dalam aplikasi-aplikasi yang membutuhkan lampu-lampu peringatan yang harus mudah terlihat. Led sangat ideal untuk digunakan sebagai lampu indicator karena hanya membutuhkan arus listrik yang relatif sangat kecil dibandingkan dengan lampu-lampu filamen. Hal ini menjadikan Led sangat cocok untuk digunakan pada perangkatperangkat yang digerakkan oleh baterai, dimana penggunaan lampu filamen akan segera menghabiskan daya yang tersedia. Juga terdapat fakta bahwa lampu-lampu filamen memiliki usia pemakaian yang terbatas. Cepat atau lambat, kawat filamen di dalam lampu akan terbakar. Di sisi lain, Led dapat bertahan untuk tetap digunakan praktis selamanya.
Universitas Sumatera Utara