BAB 2
LANDASAN TEORI
2.1 Teori Dasar Citra Digital
Citra digital adalah gambar dua dimensi yang dapat ditampilkan pada layar monitor komputer sebagai himpunan berhingga (diskrit) nilai digital yang disebut pixel (picture elements). Pixel adalah elemen citra yang memiliki nilai yang menunjukkan intensitas warna.
Berdasarkan cara penyimpanan atau pembentukannya, citra digital dapat dibagi menjadi dua jenis. Jenis pertama adalah citra digital yang dibentuk oleh kumpulan pixel dalam array dua dimensi. Citra jenis ini disebut citra bitmap (bitmap image) atau citra raster (raster image). Jenis citra yang kedua adalah citra yang dibentuk oleh fungsi-fungsi geometri dan matematika. Jenis citra ini disebut grafik vektor (vector graphics). Dalam pembahasan skripsi ini, yang dimaksud citra digital adalah citra bitmap.
Citra digital (diskrit) dihasilkan dari citra analog (kontinu) melalui digitalisasi Digitalisasi citra analog terdiri atas penerokan (sampling) dan kuantisasi (quantization) Penerokan adalah pembagian citra ke dalam elemenelemen diskrit (pixel), sedangkan kuantisasi adalah pemberian nilai intensitas warna pada setiap pixel dengan nilai yang berupa bilangan bulat (G.W. Awcock, 1996).
Banyaknya nilai yang dapat digunakan dalam kuantisasi citra bergantung kepada
kedalaman
pixel,
yaitu
banyaknya
bit
yang
digunakan
untuk
Universitas Sumatera Utara
7
merepresentasikan intensitas warna pixel. Kedalaman pixel sering disebut juga kedalaman warna. Citra digital yang memiliki kedalaman pixel n bit disebut juga citra n-bit.
Berdasarkan warna-warna penyusunnya, citra digital dapat dibagi menjadi tiga macam (Marvin Chandra Wijaya,2007) yaitu:
a. Citra biner, yaitu citra yang hanya terdiri atas dua warna, yaitu hitam dan putih. Oleh karena itu, setiap pixel pada citra biner cukup direpresentasikan dengan 1 bit.
Gambar 2.1 citra biner
Gambar 2.2 representasi citra biner
Meskipun saat ini citra berwarna lebih disukai karena memberi kesan yang lebih kaya dari citra biner, namun tidak membuat citra biner mati. Pada beberapa aplikasi citra biner masih tetap di butuhkan, misalkan citra logo instansi ( yang hanya terdiri dari warna hitam dan putih), citra kode barang (bar code) yang tertera pada label barang, citra hasil
Universitas Sumatera Utara
8
pemindaian dokumen teks, dan sebagainya. Seperti yang sudah disebutkan diatas, citra biner hanya mempunyai dua nilai derajat keabuan : hitam dan putih. Pixel – pixel objek bernilai 1 dan pixel – pixel latar belakang bernilai 0. pada waktu menampilkan gambar, adalah putih dan 1 adalah hitam. Jadi pada citra biner, latar belakang berwarna putih sedangkan objek berwarna hitam seperti tampak pada gambar 2.1 diatas. Meskipun komputer saat ini dapat memproses citra hitam-putih (grayscale) maupun citra berwarna, namun citra biner masih tetap di pertahankan keberadaannya.
Alasan penggunaan citra biner adalah karena citra biner memiliki sejumlah keuntungan sebagai berikut: a. Kebutuhan memori kecil karena nilai derajat keabuan hanya membutuhkan representasi 1 bit. b. Waktu pemrosesan lebih cepat di bandingkan dengan citra hitamputih ataupun warna.
b. Citra grayscale, yaitu citra yang nilai pixel-nya merepresentasikan derajat keabuan atau intensitas warna putih. Nilai intensitas paling rendah merepresentasikan warna hitam dan nilai intensitas paling tinggi merepresentasikan warna putih. Pada umumnya citra grayscale memiliki kedalaman pixel 8 bit (256 derajat keabuan), tetapi ada juga citra grayscale yang kedalaman pixel-nya bukan 8 bit, misalnya 16 bit untuk penggunaan yang memerlukan ketelitian tinggi.
Gambar 2.3 citra grayscale (abu-abu)
Universitas Sumatera Utara
9
Citra grayscale merupakan citra satu kanal, dimana citra f(x,y) merupakan fungsi tingkat keabuan dari hitam keputih, x menyatakan variable kolom atau posisi pixel di garis jelajah dan y menyatakan variable kolom atau posisi pixel di garis jelajah. Intensitas f dari gambar hitam putih pada titik (x,y) disebut derajat keabuan (grey level), yang dalam hal ini derajat keabuannya bergerak dari hitam keputih. Derajat keabuan memiliki rentang nilai dari Imin sampai Imax, atau Imin < f < Imax, selang (Imin, Imax) disebut skala keabuan.
Biasanya selang (Imin, Imax) sering digeser untuk alasan-alasan praktis menjadi selang [0,L], yang dalam hal ini nilai intensitas 0 meyatakan hitam, nilai intensitas L meyatakan putih, sedangkan nilai intensitas antara 0 sampai L bergeser dari hitam ke putih. Sebagai contoh citra grayscale dengan 256 level artinya mempunyai skala abu dari 0 sampai 255 atau [0,255], yang dalam hal ini intensitas 0 menyatakan hitam, intensitas 255 menyataka putih, dan nilai antara 0 sampai 255 menyatakan warna keabuan yang terletak antara hitam dan putih.
c. Citra berwarna, yaitu citra yang nilai pixel-nya merepresentasikan warna tertentu Banyaknya warna yang mungkin digunakan bergantung kepada kedalaman pixel citra yang bersangkutan. Citra berwarna direpresentasikan dalam beberapa kanal (channel) yang menyatakan komponen-komponen warna penyusunnya. Banyaknya kanal yang digunakan bergantung pada model warna yang digunakan pada citra tersebut.
Gambar 2.4 Citra Berwarna
Universitas Sumatera Utara
10
Intensitas suatu pada titik pada citra berwarna merupakan kombinasi dari tiga intensitas : derajat keabuan merah (fmerah(x,y)), hijau fhijau(x,y) dan biru (fbiru(x,y)). Persepsi visual citra berwarna umumnya lebih kaya di bandingkan dengan citra hitam putih. Citra berwarna menampilkan objek seperti warna aslinya ( meskipun tidak selalu tepat demikian ). Warna-warna yang diterima oleh mata manusia merupakan hasil kombinasi cahaya dengan panjang gelombang berbeda.
2.2 Format Citra Digital
Citra digital dapat disimpan dalam berbagai macam format. Beberapa format citra digital dapat memanfaatkan metode kompresi dalam penyimpanan data citra. Kompresi yang dilakukan dapat bersifat lossy maupun lossless, bergantung kepada jenis format yang digunakan. Kompresi yang bersifat lossy menyebabkan penurunan kualitas citra, meskipun dalam beberapa kasus penurunan kualitas tersebut tidak dapat dikenali oleh mata manusia. Beberapa format citra digital yang banyak ditemui adalah BMP, JPEG, GIF, PNG, dan lain-lain.
2.2.1 Bitmap images
Kriteria yang paling penting dari citra ini adalah kedalaman warna yaitu berapa banyak bit per pixel yang didefinisikan dari sebuah warna (Rinaldi Munir, 2005). Bitmap dengan mengikuti kriteria tadi maka dapat dilihat:
a. 8 bit = 256 warna (256 gray scales). b. 24 bit = 16.777.216 warna
Universitas Sumatera Utara
11
Gambar 2.5 warna bitmap
Secara umum dapat dikatakan semakin banyaknya warna, maka akan diperlukan keamanan yang ketat atau tinggi dikarenakan bitmap memiliki area yang sangat luas dalam sebuah warna yang seharusnya dihindarkan. Dilihat dari kedalaman atau kejelasan dari sebuah warna, bitmap dapat mengambil sejumlah data tersembunyi dengan perbandingan sebagai berikut (ukuran ratio dari bitmap dalam byte = ukuran dari data yang disembunyikan) :
1. 8 bit = 256 warna : 8 : 1 2. 24 bit = 16.777.216 warna : 8 : 1
Perbandingan tersebut diperoleh dari penentuan LSB dalam suatu byte, untuk citra 8 bit letak LSB adalah pada bit terakhir sedangkan untuk citra 24 bit letak LSB adalah pada bit ke-8, bit ke-16 dan bit ke 24 dimana masing-masing byte mewakili warna merah (red), warna hijau (green) dan warna biru (blue).
Manipulasi pada bitmap tidak dapat dikonvert atau diubah ke dalam bentuk format grafik yang lain karena data tersembunyi dalam file tersebut akan hilang. Format menggunakan metode komperesi yang lain (seperti JPEG) tidak di gunakan dalam skripsi ini. Mengurangi ukuran dari carrier file sangatlah penting untuk melakukan transmisi online, yaitu dengan menggunakan utilitas kompresi (seperti : ARZ, LZH, PKZIP, WinZip), dikarenakan kerja mereka tidak terlalu berat.
Universitas Sumatera Utara
12
2.2.2 GIF
Graphic Interchange Format (GIF, dibaca jiff ,tetapi kebanyakan orang menyebutnya dengan giff ) yang dibuat oleh Compuserve pada tahun 1987 untuk menyimpan berbagai gambar dengan format bitmap menjadi sebuah file yang mudah untuk diubah pada jaringan koputer. GIF adalah file format graphic yang paling tua pada Web, dan begitu dekatnya file format ini dengan web pad saat itu sehingga para Browser menggunakan format ini.
File GIF dapat disimpan dalam dua jalan yaitu secara berurutan (Dari atas ke bawah) dan pembagian dengan baris ( 8 baris, 4 baris dan 2 baris). Pembagian baris pada gambar dengan resolusi gambar yang rendah dengan cepat dimana secara gradual datangnya untuk menjadikan lebih focus , dengan expense dari penambahan kapasitas file.
Terdapat dua tipe dari GIFs, antara lain: 1. GIF87a: support dengan interlacing dan kapasitas dari beberapa file. Teknik itu dinamakan GIF87 karena pada tahun 1987 standar ini ditemukan dan dijadikan standar. 2. GIF89a: adalah kelanjutan dari spesifikasi GIF87a dan penambahan pada transparency, pemberian tulisan dan animasi dari text dan grafik.
2.2.3 JPEG
Joint Photograpic Experts (JPEG , dibaca jay-peg) di rancang untuk kompresi beberapa full-color atau gray-scale dari suatu gambar yang asli, seperti pemandangan asli di dunia ini. JPEGs bekerja dengan baik pada continous tone images seperi photographs tetapi tidak terlalu bagus pada ketajaman gambar dan seni pewarnaan seperti penulisan, kartun yang sederhana atau gambar yang mengunakan banyak garis. JPEG sudah mendukung untuk 24-bit color depth atau sama dengan 16,7 juta warna (224 = 16.777.216 warna), progressive JPEGs (p-
Universitas Sumatera Utara
13
JPEGs) adalah tipe dari beberapa persen lebih kecil dibandingkan baseline JPEGs: Tetapi keuntungan dari JPEG dan tipe-tipenya telihat pada langkah-langkahnya sama seperti interlaced GIFs.
JPEG adalah algoritma kompresi secara lossy. JPEG bekerja dengan merubah gambar spasial dan merepresentasikan kedalam pemetaan frekueunsi. Discrete Cosine Transform (DCT) dengan memisahkan antara informasi frekuensi yang rendah dan tinggi dari sebuah gambar. Informasi frekuensi yang tinggi akan diseleksi untuk dihilangkan yang terikat pada pengaturan kualitas yang digunakan. Kompresi dengan tingkatan yang lebih baik , tingkatan yang lebih baik dari informasi yang dihilangkan. Waktu Kompresi dan dekompresi dilaksanakan dengan simetris. JPEG Group’s (IJG) decoder lebih ditingkatkan kemampuannya dibandingkan dengan encodernya. Manakala, ketika diperlihatkan 8 bits, mengurangi kuantisasi warna yang lambat. Banyak para penjual JPEG menawarkan untuk mempercepat hasil dari JPEG, kuantisasi warna dan kualitas dengan mengimplementasikan IJG.
JPEG dirancang untuk mengeksploitasi tingkatan dari mata kita yakni bahwa mata kita tidak akan dapat mebedakan perubahan yang lambat terang dan warna dibandingkan dengan perbedaan suatu jarak apakah jauh atau dekat. Untuk itu JPEG sangat baik digunkan pada fotografi dan monitor 80-bit. JPEG sebenarnya hanyalah algoritma kompresi, bukan merupakan nama format file. File yang biasa disebut JPEG pada jaringan sebenarnya adalah JFIF (JPEG File Interchange Format).
2.3
Steganografi
2.3.1 Sejarah dan Defenisi Steganografi
Steganografi merupakan suatu cabang ilmu yang mempelajari tentang bagaimana menyembunyikan suatu informasi “rahasia” di dalam suatu informasi lainnya
Universitas Sumatera Utara
14
(Jonathan Cummins, 2004). Steganografi merupakan seni penyembunyian pesan ke dalam pesan lainnya sedemikian rupa sehingga orang lain tidak menyadari ada sesuatu di dalam pesan tersebut. Kata steganografi (steganography) berasal dari bahasa Yunani yaitu steganos yang artinya tersembunyi atau terselubung dan graphein, yang artinya menulis, sehingga kurang lebih artinya adalah “menulis tulisan yang tersembunyi atau terselubung” Teknik ini meliputi banyak sekali metoda komunikasi untuk menyembunyikan pesan rahasia. Metliputi penggunaan tinta yang tidak tampak, microdots, pengaturan kata, tanda tangan digital, jalur tersembunyi dan komunikasi spektrum lebar.
Catatan pertama tentang steganografi ditulis oleh seorang sejarawan Yunani, Herodotus, yaitu ketika Histaeus seorang raja kejam Yunani dipenjarakan oleh Raja Darius di Susa pada abad 5 Sebelum Masehi. Histaeus harus mengirim pesan rahasia kepada anak laki-lakinya, Aristagoras, di Militus. Histaeus menulis pesan dengan cara mentato pesan pada kulit kepala seorang budak dan ketika rambut budak itu mulai tumbuh, Histaeus mengutus budak itu ke Militus untuk mengirim pesan di kulit kepalanya tersebut kepada Aristagoras.
Cerita lain tentang steganografi datang juga dari sejarawan Yunani, Herodotus, yaitu dengan cara menulis pesan pada papan kayu yang ditutup dengan lilin. Demeratus, seorang Yunani yang akan mengabarkan berita kepada Sparta bahwa Xerxes bermaksud menyerbu Yunani. Agar tidak diketahui pihak Xerxes, Demaratus menulis pesan dengan cara mengisi tabung kayu dengan lilin dan menulis pesan dengan cara mengukirnya pada bagian bawah kayu, lalu papan kayu tersebut dimasukkan ke dalam tabung kayu, kemudian tabung kayu ditutup kembali dengan lilin.
Pada abad 20, steganografi benar-benar mengalami perkembangan. Selama berlangsung perang Boer, Lord Boden Powell (pendiri gerakan kepanduan) yang bertugas untuk membuat tanda posisi sasaran dari basis artileri tentara Boer, untuk alasan keamanan, Boden Powell menggambar peta-peta posisi musuh pada sayap kupu-kupu agar gambar - gambar peta sasaran tersebut terkamuflase.
Universitas Sumatera Utara
15
Perang Dunia II adalah periode pengembangan
teknik-teknik baru
steganografi. Pada awal Perang Dunia II walaupun masih digunakan teknik tinta yang tak terlihat, namun teknik-teknik baru mulai dikembangkan seperti menulis pesan rahasia ke dalam kalimat lain yang tidak berhubungan langsung dengan isi pesan rahasia tersebut, kemudian teknik menulis pesan rahasia ke dalam pita koreksi karbon mesin ketik, dan juga teknik menggunakan pin berlubang untuk menandai kalimat terpilih yang digunakan dalam pesan, teknik terakhir adalah microdots yang dikembangkan oleh tentara Jerman pada akhir Perang Dunia II.
Dari contoh-contoh steganografi konvensional tersebut dapat dilihat bahwa semua teknik steganografi konvensional berusaha merahasiakan komunikasi dengan cara menyembunyikan pesan ataupun mengkamuflase pesan. Maka sesungguhnya prinsip dasar dalam steganografi lebih dikonsentrasikan pada kerahasian komunikasinya bukan pada datanya
Seiring dengan perkembangan teknologi terutama teknologi komputasi, steganografi merambah juga ke media digital, walaupun steganografi dapat dikatakan mempunyai hubungan erat dengan kriptografi, tetapi kedua metode ini sangat berbeda.
2.4
Manfaat Steganografi
Steganografi adalah sebuah pisau bermata dua, ia bisa digunakan untuk alasanalasan yang baik, tetapi bisa juga digunakan sebagai sarana kejahatan. Steganografi
juga
dapat
digunakan
sebagai
salah
satu
metode
untuk
menyembunyikan informasi rahasia, untuk melindunginya dari pencurian dan dari orang yang tidak berhak untuk mengetahuinya. Steganografi juga dapat digunakan oleh para teroris untuk saling berkomunikasi satu dengan yang lain.
Universitas Sumatera Utara
16
2.5
Metode Steganografi
Steganografi merupakan salah satu cara untuk menyembunyikan suatu pesan / data rahasia di dalam data atau pesan lain yang tampak tidak mengandung apa-apa, kecuali bagi orang yang mengerti kuncinya (Jonathan Cummins, 2004). Dalam bidang keamanan komputer, steganografi digunakan untuk menyembunyikan data rahasia saat enkripsi tidak dapat dilakukan atau bersamaan dengan enkripsi. Jadi, walaupun enkripsi berhasil dipecahkan (decipher) pesan / data rahasia tetap tidak terlihat.
Proses
Gambar 2.6 Proses Steganography
Universitas Sumatera Utara
17
Steganografi mempunyai proses yang berbeda dengan kriptografi dimana pesan rahasia yang ingin dikirimkan tidak di acak melainkan disembunyikan pada penampungnya seperti pada gambar 2.6 diatas. Hal ini sangat menguntungkan karena akan mengurangi keinginan seseorang untuk memeriksa file tersebut.
Proses
Gambar 2.7 Proses Cryptography
Selain itu, pada kriptografi pesan disembunyikan dengan “diacak” sehingga pada kasus-kasus tertentu dapat dengan mudah mengundang kecurigaan seperti terlihat pasa gambar 2.7, sedangkan pada steganografi pesan “disamarkan” dalam bentuk yang relatif “aman” sehingga tidak terjadi kecurigaan itu. Steganografi dapat digunakan pada berbagai macam bentuk data, yaitu image, audio, dan video.
Key
Key
Cover emb
Cover* fE
Stego
fE-1
emb*
Gambar 2.8 Sistem Steganografi
Universitas Sumatera Utara
18
Gambar 2.8 menunjukkan sebuah sistem steganografi umum dimana dibagian pengirim pesan (sender), dilakukkan proses embedding (Fe) pesan yang hendak dikirim secara rahasia (emb) ke dalam data cover sebagai tempat meyimpannya (cover), dengan menggunakan kunci tertentu (key), sehingga dihasilkan data dengan pesan tersembunyi di dalamnya (stego). Di bagian penerima pesan (recipient), dilakukan proses extracting (fE-1) pada stego untuk memisahkan pesan rahasia (emb) dan data penyimpan (cover) tadi dengan menggunakan kunci yang sama seperti pada proses embedding tadi. Jadi hanya orang yang tahu kunci ini saja yang dapat mengekstrak pesan rahasia tadi. Proses tadi dapat direpresentasikan secara lebih jelas pada gambar 2.9 di bawah. Key
Key
Cover Image Embedding Function(FE)
110010100011 101100011101 100001011011 100110101000 111001000111 100001101011
Cover Image
Extracting Function(FE-1)
110010100011 101100011101 100001011011 100110101000 111001000111 100001101011
Gambar 2.9 Versi grafis dari sistem Steganografi
Secara garis besar, teknik penyembunyian data dengan steganografi adalah dengan cara menyisipkan sepotong demi sepotong informasi asli pada sebuah media, sehingga informasi tersebut tampak kalah dominan dengan media pelindungnya
Dalam penulisan ini, penulis membatasi teknik yang digunakan adalah modifikasi LSB, dan teknik – teknik steganografi lainnya diberikan hanya sebagai pengantar dalam pembahasan steganografi.
Universitas Sumatera Utara
19
2.5.1 Metode Least-Significant Bit
Penyembunyian data dilakukan dengan mengganti bit-bit data yang tidak terlalu berpengaruh di dalam segmen citra dengan bit-bit data rahasia (Jonathan Cummins, 2004), Pada susunan bit di dalam sebuah byte (1 byte = 8 bit), ada bit yang paling berarti (most significant bit atau MSB) dan bit yang paling kurang berarti (least significant bit atau LSB). Berikut contoh sebuah susunan bit pada sebuah byte:
11010010 MSB = Most Siginificant Bit
LSB = Least Significant Bit
Bit yang cocok untuk diganti adalah bit LSB, sebab perubahan tersebut hanya mengubah nilai byte satu lebih tinggi atau satu lebih rendah dari nilai sebelumnya. Misalkan byte tersebut menyatakan warna merah, maka perubahan satu bit LSB tidak mengubah warna merah tersebut secara berarti. Lagi pula, mata manusia tidak dapat membedakan perubahan yang kecil.
Misalkan segmen data citra sebelum perubahan:
00110011 10100010 11100010
10101011 00100110
10010110 11001001 11111001
10001000 10100011
Segmen data citra setelah pesan ‘1110010111‘ disembunyikan:
00110011 10100011 11100011
10101010 00100110
10010111 11001000 11111001
10001001 10100011
Universitas Sumatera Utara
20
Untuk memperkuat teknik penyembunyian data, bit-bit data rahasia tidak digunakan mengganti byte-byte yang berurutan, namun dipilih susunan byte secara acak. Misalnya jika terdapat 50 byte dan 6 bit data yang akan disembunyikan, maka maka byte yang diganti bit LSB-nya dipilih secara acak, misalkan byte nomor 36, 5, 21, 10, 18, 49.
41
42
43
44
45
46
47
48
49
50
31
32
33
34
35
36
37
38
39
40
21
22
23
24
25
26
27
28
29
30
11
12
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
Gambar 2.10 Proses Penempatan Bit Pesan
Untuk
membangkitkan bilangan acak
maka digunakan algoritma
pembangkit bilangan acak semu (pseudo-random number generator). X n +1 = (aX 0 + c ) mod p
dimana Xn+1 , adalah bilangan acak yang dihasilkan. p adalah jumlah pixel dikali 3 (tiga), dimana tiap pixel citra 24 bit memiliki tiga komponen warna yaitu red, green dan blue masing-masing 1 byte (8 bit).
a adalah pengali (multiplier) c adalah penambah (increment) X 0 adalah nilai awal (seed or start value)
Ukuran data yang akan disembunyikan bergantung pada ukuran citra penampung. Pada citra 24-bit yang berukuran 256 x 256 pixel terdapat 65536 pixel, setiap pixel berukuran 3 byte (komponen RGB), berarti seluruhnya ada 65536 x 3 = 196608 byte. Karena setiap byte hanya bisa menyembunyikan satu bit di LSB-nya, maka ukuran data yang akan disembunyikan di dalam citra maksimum
Universitas Sumatera Utara
21
196608/8 = 24576 byte Ukuran data ini harus dikurangi dengan panjang nama berkas, karena penyembunyian data rahasia tidak hanya menyembunyikan isi data tersebut, tetapi juga nama berkasnya. Untuk memperkuat keamanan, data yang akan disembunyikan dapat dienkripsi terlebih dahulu. Sedangkan untuk memperkecil ukuran data, data dimampatkan sebelum disembunyikan. Bahkan, pemampatan dan enkripsi dapat juga dikombinasikan sebelum melakukan penyembunyian data.
2.6 Kriteria Steganografi yang Baik
Steganografi yang dibahas di sini adalah penyembunyian data di dalam citra digital saja. Meskipun demikian, penyembunyian data dapat juga dilakukan pada wadah berupa suara digital, teks, ataupun video.
Penyembunyian data rahasia ke dalam citra digital akan mengubah kualitas citra tersebut (Jonathan Cummins, 2004). Kriteria yang harus diperhatikan dalam penyembunyian data adalah:
a. Fidelity. Mutu citra penampung tidak jauh berubah. Setelah penambahan data rahasia, citra hasil steganografi masih terlihat dengan baik. Pengamat tidak mengetahui kalau di dalam citra tersebut terdapat data rahasia.
b. Robustness. Data yang disembunyikan harus tahan terhadap manipulasi yang dilakukan pada citra penampung (seperti pengubahan kontras, penajaman,
pemampatan,
rotasi,
perbesaran
gambar,
pemotongan
(cropping), enkripsi, dan sebagainya). Bila pada citra dilakukan operasi pengolahan citra, maka data yang disembunyikan tidak rusak.
c. Recovery. Data yang disembunyikan harus dapat diungkapkan kembali (recovery). Karena tujuan steganografi adalah data hiding, maka sewaktuwaktu data rahasia di dalam citra penampung harus dapat diambil kembali untuk
digunakan
lebih
lanjut.
Universitas Sumatera Utara