BAB 2 LANDASAN TEORI 2.1 Definisi Perencanaan dan Pengendalian Produksi Menurut Teguh Baroto (2002, p13), produksi adalah suatu proses pengubahan bahan baku menjadi produk jadi. Sedangkan sistem produksi adalah sekumpulan aktivitas untuk pembuatan suatu produk, dimana didalam pembuatan ini melibatkan tenaga kerja, bahan baku, mesin, energi, informasi, modal, dan tindakan manajemen. Sistem produksi bertujuan untuk merencanakan dan mengendalikan produksi agar lebih efektif, produktif, dan optimal. Production Planning and Control merupakan aktivitas dalam sistem produksi. Proses produksi adalah aktivitas bagaimana membuat produk jadi dari bahan baku yang melibatkan mesin, energi, pengetahuan teknis, dan lain-lain. Perencanaan dan Pengendalian Produksi (PPC) adalah aktivitas bagaimana mengelola proses produksi tersebut. Berdasarkan
ukuran
jumlah
produk
yang
dihasilkan,
produksi
dapat
dikelompokkan menjadi: 1. Produksi proyek, jumlah operasi dan sumber daya yang digunakan banyak, sedangkan unit yang diproduksi hanya satu. 2. Produksi batch, produksi yang dihasilkan banyak jenisnya, namun dalam jumlah produksi yang sedang. 3. Produksi massal, jenis produk yang diproduksi lebih sedikit dari batch, namun jumlah unit yang diproduksi sangat besar.
37 Berdasarkan
cara
pembuatan
atau
masa
pengerjaan
produksi
dapat
diklasifikasikan menjadi tipe-tipe berikut : 1. Engineering to order (ETO), penyiapan fasilitas sampai pembuatan dalam memenuhi pesanan dilakukan oleh perusahaan. Produk yang dipesan biasanya berjumlah satu unit dan memiliki spesifikasi yang sangat berbeda antara pesanan yang satu dengan yang lainnya. 2. Made to order (MTO), pesanan yang diterima disesuaikan dengan fasilitas produksi yang dimiliki perusahaan. 3. Assembly to order (ATO), untuk memenuhi permintaan, perakitan dilakukan dengan fasilitas yang dimiliki perusahaan. 4. Made to stock (MTS) , perusahaan memproduksi dengan cara menstok hasil produksi nya untuk memenuhi permintaan, dan tidak melayani pesanan.
2.2 Persediaan 2.2.1 Definisi Persediaan Menurut Kusuma (2001, p131), persediaan didefinisikan sebagai barang yang disimpan untuk digunakan atau dijual pada periode mendatang. Persediaan dapat berbentuk bahan baku yang disimpan untuk diproses, komponen yang diproses, barang dalam proses pada proses manufaktur, dan barang jadi yang disimpan untuk dijual. Kebutuhan akan persediaan muncul karena adanya waktu ancang (lead time) antar operasi yang berurutan, waktu ancang pembelian bahan, atau waktu ancang pendistribusian barang dari titik produksi ke titik pemasaran.
Jika waktu ancang
diketahui maka akan mempermudah manajemen pengendalian persediaan perusahaan.
38 Misalnya, jika waktu ancang pembelian adalah dua minggu maka pemesanan bisa dilakukan dua minggu sebelum fungsi produksi berlangsung. 2.2.2 Fungsi Persediaan Persediaan memiliki beberapa fungsi penting yang menambah fleksibilitas dari suatu perusahaan. Fungsi persediaan menurut Render dan Heizer (2001, p314), yaitu: 1. Untuk memberikan suatu stok barang-barang agar dapat memenuhi permintaan yang diantisipasi akan timbul dari konsumen. 2. Untuk memasangkan produksi dengan distribusi. Misalnya bila permintaan hanya tinggi pada musim panas, persediaan dapat diadakan selama musim dingin untuk menghindari biaya kehabisan stok. 3. Untuk mengambil keuntungan dari potongan harga dalam jumlah besar. 4. Untuk melakukan hedging terhadap inflasi dan perubahan harga. 5. Untuk menghindari kekurangan stok akibat kejadian tidak terduga. 6. Untuk menjaga agar operasi dapat berlangsung dengan baik dengan menggunakan barang-barang dalam proses dalam persediaannya. 2.2.3 Jenis-jenis Persediaan Persediaan dapat dibedakan atas beberapa jenis, yaitu: 1. Supplies (persediaan bahan pembantu), yaitu barang persediaan yang diperlukan dalam proses produksi tetapi bukan merupakan bagian dari produk jadi. 2. Raw Materials (persediaan bahan mentah), yaitu barang persediaan yang dibeli atau dipasok dari supplier yang akan dijadikan sebagai masukan dalam proses produksi. 3. In-process (persediaan barang dalam proses), yaitu persediaan barang yang merupakan keluaran dari suatu bagian proses produksi, yang masih perlu diolah atau diproses lebih lanjut lagi untuk menjadi produk jadi.
39 4. Finished goods (persediaan barang jadi), yaitu persediaan barang yang sudah diproses dan siap untuk dikirim ke pelanggan. 2.2.4 Jenis-jenis Biaya Persediaan Biaya persediaan adalah keseluruhan biaya operasi atas sistem persediaan. Menurut Handoko (2000, p333) berikut ini adalah jenis–jenis biaya persediaan, yaitu : 1. Biaya Penyimpanan Biaya penyimpanan (holding costs atau carrying costs) adalah biaya yang dikeluarkan atas investasi dalam persediaan dan pemeliharaan maupun investasi saran, fisik untuk menyimpan persediaan yang besarnya bervariasi secara langsung dengan kuantitas persediaan. 2. Biaya Pemesanan (pembelian) Setiap kali suatu bahan dipesan, perusahaan menanggung biaya pemesanan (order costs atau procurement costs). Biaya pemesanan adalah biaya yang berasal dari pembelian pesanan dari supplier. Biaya pemesanan seperti biaya membuat
daftar
permintaan,
menganalisis
supplier,
membuat
pesanan
pembelian, penerimaan bahan, inspeksi bahan, dan pelaksanaan proses transaksi. 3. Biaya Penyiapan (manufacturing). Bila perusahaan memproduksi sendiri bahan-bahan “dalam pabrik”, perusahaan menghadapi biaya penyiapan (setup costs) untuk memproduksi komponen tertentu. Biaya persiapan seperti biaya yang dikeluarkan akibat perubahan proses produksi, pembuatan jadwal kerja, persiapan sebelum produksi, dan pengecekan kualiatas. Karena konsep biaya ini analog dengan
40 biaya pemesanan, maka untuk selanjutnya akan digunakan istilah “biaya pemesanan” yang dapat berarti keduanya. 4. Biaya Kehabisan atau Kekurangan Bahan (stock-out cost) Dari semua biaya-biaya yang berhubungan dengan tingkat persediaan, biaya kekurangan bahan adalah yang paling sulit diperkirakan. Biaya ini timbul bilamana persediaan tidak mencukupi adanya permintaan bahan. Kekurangan bahan bisa dari luar maupun dari dalam perusahaan. Kekurangan dari luar terjadi apabila pesanan konsumen tidak dapat dipenuhi. Sedangkan kekurangan dari dalam terjadi apabila departemen tidak dapat memenuhi kebutuhan departemen lain maupun penundaan pengiriman maupun idle kapasitas. Biaya kekurangan dari pihak luar dapat berupa biaya back order, biaya kehilangan kesempatan penjualan, dan biaya kehilangan kesempatan menerima keuntungan.
2.3 Safety stock Menurut James H.Greene, safety stock didapatkan dari konsep pelayanan. Jika konsumen selalu menerima pesanannya, maka service index adalah 100 persen. Berapapun di bawah 100 persen akan menjadi stock-out. Total penjumlahan service index dan stock-out index adalah 100 persen. Rumusnya menjadi: Service index = 100% - Stock-out index. Index stock-out rendah mengindikasikan tingginya service index, dan sebaliknya. Safety stock dapat dihitung dengan standar deviations ataupun dengan menggunakan mean absolute deviation (MAD). Keduanya menghasilkan nilai yang sama, hanya berbeda di cara penghitungannya. Berikut adalah rumus perhitungan MAD:
41 n
∑ xi − x MAD =
i =1
n
Langkah-langkah menghitung safety stock dengan mengunakan MAD (Mean Absolute Deviation): 1) Menghitung nilai rata-rata 2) Menghitung deviasi dari nilai rata-rata untuk tiap data historis 3) Menjumlahkan deviasi tanpa mempertimbangkan tandanya (menjumlahkan nilai mutlak dari deviasi) 4) Mengambil nilai rata-rata deviasi 5) Mengalikan nilai MAD yang didapatkan pada perhitungan sebelumnya dengan nilai safety factor yang didapatkan dari tabel.
2.4 Perencanaan Proses 2.4.1 Definisi Perencanaan Proses Perencanaan Proses adalah suatu perencanaan awal terhadap proses pembuatan produk, hal ini berisi bagaimana produk tersebut akan dibuat (hal ini menentukan apakah suatu komponen akan dibuat atau dibeli dari supplier), memilih fokus proses, menentukan mesin dan peralatan yang digunakan. Perencanaan proses berkenaan dengan perancangan dan implementasi sistem kerja yang akan memproduksi produk yang diinginkan dalam kuantitas yang diperlukan.
42 2.4.2 Alat Bantu yang Digunakan dalam Perencanaan Proses Beberapa alat bantu yang digunakan dalam perencanaan proses adalah sebagai berikut: 1) Struktur Produk Struktur Produk adalah suatu susunan hirarki dari komponen-komponen pembentuk suatu produk akhir. Biasanya produk akhir ditempatkan di level 0 dan komponen pembentuk berikutnya adalah ditempatkan di level 1, dan seterusnya. Pada umumnya produk akhir disebut juga induk atau parent dan komponen pembentuknya disebut juga anak atau child. Dalam Struktur Produk ada dua teknik yang digunakan yaitu seperti yang dijelaskan di bawah ini: 1. Explosion Suatu teknik penguraian komponen struktur produk yang urutan dimulai dari induk sampai komponen pada level paling bawah 2. Implosion Suatu teknik penguraian komponen struktur produk yang urutan dimulai dari komponen sampai induk atau level atas. Manfaat Struktur Produk adalah sebagai berikut: 1. Mengetahui berapa jumlah item penyusunan suatu produk akhir. 2. Memberikan rincian mengenai komponen apa saja yang dibutuhkan untuk menghasilkan suatu produk.
43 2) Bill Of Material (BOM) Bill of Material (BOM) merupakan rangkaian struktur semua komponen yang digunakan untuk memproduksi barang jadi sesuai dengan Master Production Scheduling. Bill Of Material (BOM) adalah daftar (list) dari bahan, material atau komponen yang dibutuhkan untuk dirakit, dicampur atau membuat produk akhir. Ada beberapa format dari Bill of Material (BOM) yaitu: 1. Single-Level BOM BOM yang menggambarkan hubungan sebuah induk dengan satu level komponenkomponen pembentuknya. 2. Multi-Level BOM BOM yang menggambarkan struktur produk lengkap dari level 0 sampai level paling bawah. 3. Indented BOM BOM yang dilengkapi dengan informasi level setiap komponen. 4. Summarized BOM BOM yang dilengkapi dengan jumlah total tiap komponen yang dibutuhkan. 3) Peta Proses Operasi (Operation Process Chart – OPC) Peta proses operasi merupakan suatu diagram yang menggambarkan langkahlangkah proses yang akan dialami oleh bahan baku mengenai urutan-urutan operasi dan pemeriksaan. Sejak dari awal sampai menjadi produk jadi utuh maupun sebagai komponen, dan juga memuat informasi-informasi yang diperlukan untuk analisa lebih lanjut, seperti waktu yang dihabiskan, material yang digunakan, dan tempat atau alat atau mesin yang dipakai.
44 Lambang yang digunakan dalam penggambaran Peta Proses Operasi adalah sebagai berikut: Operasi Suatu operasi terjadi apabila benda kerja mengalami perubahan sifat, baik fisik maupun kimiawi, mengambil informasi maupun memberikan informasi pada suatu keadaan juga termasuk operasi. Pemeriksaan Suatu kegiatan pemeriksaan terjadi apabila benda kerja atau peralatan mengalami pemeriksaan baik untuk segi kualitas maupun kuantitas. Penyimpanan Proses penyimpanan terjadi apabila benda kerja disimpan untuk jangka waktu yang cukup lama. Jika benda kerja tersebut akan diambil kembali, biasanya memerlukan suatu prosedur perijinan tertentu. Aktivitas gabungan. Kegiatan ini terjadi apabila antara aktivitas operasi dan pemeriksaan dilakukan bersamaan atau dilakukan pada suatu tempat kerja.
45 2.5 Peramalan 2.5.1 Definisi Peramalan Peramalan (forecasting) adalah seni dan ilmu memprediksi peristiwa-peristiwa masa depan. Peramalan memerlukan pengambilan data historis dan memproyeksikan ke masa depan dengan beberapa bentuk model matematis (Render dan Heizer, 2001, p46). Secara lebih rinci peramalan menurut Makridakis (1999,p14) adalah suatu kemampuan untuk memperkirakan atau menduga keadaan permintaan produk di masa datang yang tidak pasti. 2.5.2 Horizon Waktu Peramalan biasanya dikelompokkan oleh horison waktu masa depan yang mendasarinya. Tiga jenis peramalan berdasarkan horizon waktu adalah sebagai berikut: 1
Peramalan jangka pendek. Rentang waktunya mencapai satu tahun tetapi umumnya kurang dari tiga bulan. Peramalan jangka pendek digunakan untuk merencanakan pembelian, penjadwalan kerja, jumlah tenaga kerja, penugasan, dan tingkat produksi.
2
Peramalan jangka menengah. Peramalan jangka menengah biasanya berjangka tiga bulan hingga tiga tahun. Peramalan ini sangat bermanfaat dalam perencanaan penjualan, perencanaan dan penganggaran produksi, penganggaran kas, dan menganalisis berbagai rencana operasi.
3
Peramalan jangka panjang. Rentang waktunya biasanya tiga tahun atau lebih; digunakan dalam merencanakan produk baru, pengeluaran modal, lokasi fasilitas, atau ekspansi dan penelitian serta pengembangan.
46 Peramalan jangka menengah dan jangka panjang berhubungan dengan isu yang lebih kompetentif dan mendukung keputusan manajemen berkaitan dengan perencanaan dan produk, pabrik dan proses. Peramalan jangka pendek cenderung lebih akurat daripada peramalan jangka yang lebih panjang. Faktor-faktor yang mempengaruhi permintaan berubah setiap hari, sehingga ketika horison waktu semakin panjang, keakuratan peramalan akan berkurang. Dengan demikian ramalan penjualan perlu diperbarui secara teratur untuk mempertahankan nilainya. Setelah periode penjualan berlalu, ramalan harus dikaji kembali dan diperbaiki. 2.5.3 Kategori Metode Peramalan Banyak jenis metode peramalan yang tersedia untuk meramalkan permintaan dalam produksi. Namun yang lebih penting adalah bagaimana memahami karateristik suatu metode peramalan agar sesuai dengan situasi pengambilan keputusan. Situasi peramalan sangat beragam dalam horison waktu peramalan, faktor yang menentukan hasil yang sebenarnya, tipe pola data dan berbagai aspek lainnya. Untuk menghadapi penggunaan yang luas seperti itu, beberapa teknik telah dikembangkan. Teknik tersebut dibagi dalam dua kategori utama, (Makridakis, 1999, p19-24) yaitu : 1) Metode Peramalan Kuantitatif Metode kuantitatif sangat beragam dan setiap teknik memiliki sifat, ketepatan dan biaya tertentu yang harus dipertimbangkan dalam memilih metode tertentu. Metode kuantitatif formal didasarkan atas prinsip-prinsip statistik yang memiliki ketepatan tinggi atau dapat meminimumkan kesalahan (error), lebih sistematis, dan lebih populer dalam penggunaannya.
47 Metode kuantitatif dapat dibagi kedalam dua model, yaitu : a. Model Deret Berkala (time series) Pada model ini, pendugaan masa depan dilakukan berdasarkan nilai masa lalu dari suatu variabel dan / atau kesalahan masa lalu. Model deret berkala menggunakan riwayat permintaan masa lalu dalam membuat ramalan untuk masa depan. Tujuan metode peramalan deret berkala ini adalah menemukan pola dalam deret berkala historis dan mengekstrapolasikan pola tersebut ke masa depan. Langkah penting dalam memilih suatu metode deret berkala yang tepat adalah dengan mempertimbangkan jenis pola data, sehingga metode yang paling tepat dengan metode tersebut dapat diuji. Pola data dapat dibedakan menjadi : 1. Pola Stasioner atau Horizontal (H) terjadi bilamana nilai data berfluktuasi disekitar nilai rata-rata yang konstan (deret seperti itu adalah “stasioner” terhadap nilai rata-ratanya). Suatu produk yang penjualannya tidak meningkat atau menurun selama waktu tertentu termasuk jenis ini.
Waktu Gambar 2.1 Pola Data Horisontal
48 2. Pola musiman (S) terjadi bilamana suatu deret dipengaruhi oleh faktor musiman (misalnya kuartal tahun tertentu, bulanan, atau hari-hari pada minggu tertentu). Penjualan dari produk minuman ringan, es krim, dan bahan bakar pemanas ruangan, menunjukkan jenis pola ini.
Waktu Gambar 2.2 Pola Data Musiman
3. Pola Siklis (C) terjadi bilamana datanya dipengaruhi oleh fluktuasi ekonomi jangka panjang seperti yang berhubungan dengan siklus bisnis. Penjualan produk seperti mobil, baja dan peralatan utama lainnya menunjukkan jenis pola data ini.
Waktu Gambar 2.3 Pola Data Siklis
49 4. Pola Trend (T) terjadi bilamana terdapat kenaikan atau penurunan sekuler jangka panjang dalam data. Penjualan banyak perusahaan, produk bruto nasional (GNP) dan berbagai indikator bisnis atau ekonomi lainnya mengikuti pola trend selama perubahannya sepanjang waktu.
Waktu Gambar 2.4 Pola Data Trend Untuk menggunakan metode kuantitatif terdapat tiga kondisi yang harus dipenuhi, yaitu : •
Tersedia informasi tentang masa lalu.
•
Informasi tersebut dapat dikuantitatifkan dalam bentuk data numerik.
•
Dapat diasumsikan bahwa beberapa aspek pola masa lalu akan terus berlanjut di masa mendatang. b. Model Kausal Model
Kausal
mengasumsikan
bahwa
faktor
yang
diramalkan
menunjukkan suatu hubungan sebab-akibat dengan satu atau lebih variabel bebas. Tujuan dari model kausal adalah menemukan bentuk hubungan tersebut dan menggunakannya untuk meramalkan nilai mendatang dari varibel tak bebas. Setelah hubungan ini ditemukan, nilai-nilai masa
50 mendatang dapat diramalkan cukup dengan memasukkan nilai-nilai yang sesuai untuk varibel-variabel independen. Metode peramalan kausal mengasumsikan bahwa permintaan akan suatu produk bergantung pada satu atau beberapa faktor independen (misalnya, harga, iklan, persaingan, dan lain-lain). 2) Metode Peramalan Kualitatif atau Teknologis Metode peramalan ini tidak memerlukan data yang serupa seperti metode peramalan kuantitatif. Input yang dibutuhkan tergantung pada metode tertentu dan biasanya merupakan hasil dari pemikiran intuitif, perkiraan dan pengetahuan yang telah didapat. Pendekatan teknologis seringkali memerlukan input dari sejumlah orang yang terlatih. Metode kualitatif mengandalkan opini pakar atau manajer dalam membuat prediksi tentang masa depan. Metode ini berguna untuk tugas peramalan jangka panjang. Penggunaan pertimbangan dalam peramalan, tampaknya tidak ilmiah dan bersifat sementara. Tetapi bila data masa lalu tidak ada atau tidak mencerminkan masa mendatang, tidak banyak alternatif selain menggunakan opini dari orang-orang yang berpengetahuan. Ramalan teknologis terutama digunakan untuk memberikan petunjuk, untuk membantu perencana dan untuk melengkapi ramalan kuantitatif, bukan untuk memberikan suatu ramalan numerik tertentu.
51 2.5.4 Pemilihan Teknik Peramalan Pola atau karakteristik data mempengaruhi teknik peramalan yang dipilih. Seringkali, pola data tersebut merupakan karakteristik inheren dari kegiatan yang sedang diteliti. Hubungan data dengan jangka waktu semakin jelas jika kita mengamati bahwa pola trend adalah merupakan kecenderungan jangka panjang, sedangkan variasi musiman menunjukkan pola data yang berulang. Dalam mengevaluasi teknik-teknik yang dikaitkan dengan pola data bisa saja diterapkan lebih dari satu teknik untuk data yang sama. Misalnya, teknik-teknik tertentu mungkin lebih akurat dalam memprediksi titik balik, sedangkan lainnya terbukti lebih andal dalam peramalan pola perubahan yang stabil. Bisa juga terjadi beberapa model meramalkan terlalu tinggi (overestimate) atau terlalu rendah (underestimate) dalam situasi tertentu. Selain itu, mungkin juga terjadi bahwa prediksi jangka pendek dari suatu model lebih baik dari model lain yang memiliki prediksi jangka panjang yang lebih akurat. 2.5.4.1 Teknik Peramalan untuk Data Stasioner atau Horizontal Suatu data runtut waktu yang bersifat stasioner merupakan suatu serial data yang nilai rata-ratanya tidak berubah sepanjang waktu. Keadaan tersebut terjadi jika pola permintaan yang mempengaruhi data tersebut relatif stabil. Dalam bentuknya yang paling sederhana, peramalan suatu data runtut waktu yang stasioner memerlukan data historis dari runtut waktu tersebut untuk mengestimasi nilai rata-ratanya, yang kemudian menjadi peramalan untuk nilai-nilai masa datang. Beberapa teknik yang dapat dipertimbangkan ketika meramalkan data runtut waktu yang stasioner adalah metode naif, Single Eksponensial Smoothing dan Single Moving Average (Makridakis, 1999)
52 2.5.4.2 Teknik Peramalan untuk Data Trend Suatu data runtut waktu yang bersifat trend didefinisikan sebagai suatu series yang mengandung komponen jangka panjang yang menunjukkan pertumbuhan atau penurunan dalam data tersebut sepanjang suatu periode waktu yang panjang. Dengan kata lain, suatu data runtut waktu dikatakan mempunyai trend jika nilai harapannya berubah sepanjang waktu sehingga data tersebut diharapkan menaik atau menurun selama periode dimana peramalan diinginkan. Biasanya data runtut waktu ekonomi mengandung suatu trend. Teknik-teknik peramalan yang digunakan untuk peramalan data runtut waktu yang mengandung trend adalah metode regresi liner, exponential smoothing atau double exponential smoothing (Teguh Baroto, 2002, p32). 2.5.4.3 Teknik Peramalan untuk Data Musiman Suatu data runtut waktu yang bersifat musiman didefinisikan sebagai suatu data runtut waktu yang mempunyai pola perubahan yang berulang secara tahunan. Mengembangkan suatu teknik peramalan musiman biasanya memerlukan pemilihan metode perkalian dan pertambahan dan kemudian mengestimasi indeks musiman dari data tersebut. Indeks ini kemudian digunakan untuk memasukkan sifat musiman dalam peramalan atau untuk menghilangkan pengaruh seperti itu dari nilai-nilai yang diobsevasi. Teknik-teknik yang dapat dipertimbangkan ketika kita meramalkan data runtut waktu yang bersifat musiman meliputi metode Winter, Weight Moving Average ataupun metode Moving Average (Teguh Baroto, 2002, p33).
53 2.5.4.4 Teknik Peramalan untuk Data Siklis Pengaruh siklis didefinisikan sebagai fluktuasi seperti gelombang disekitar garis trend. Pola siklis cenderung untuk berulang setiap dua, tiga tahun, atau lebih. Pola siklis sulit untuk dibuat modelnya karena polanya tidak stabil. Turun-naiknya fluktuasi di sekitar trend jarang sekali berulang pada interval waktu yang tetap, dan besarnya fluktuasi juga selalu berubah. Metode dekomposisi bisa diperluas untuk menganalisis data siklis. Teknik-teknik yang dapat dipertimbangkan ketika kita meramalkan data runtut waktu yang bersifat siklis adalah metode Moving Average, Weighted moving Average, dan Exponential Smoothing (Teguh Baroto, 2002, p34) 2.5.5 Metode Peramalan Double Exponential Smoothing Menurut Render dan Heizer rumus untuk Double Eksponensial Smoothing 1 parameter adalah: Inisialisasi : F’1 = X1 F”1 = X1 a 0 = b0 = 0 Perhitungan : S’t = α .Xt + (1- α ).S’t-1 S”t = α .S’t + (1- α ).S”t-1 bt =
α (S’t – S” t) 1−α
at = ( α x S’t) – ((1- α ) x S” t) Peramalan : Ft+m = at + bt.(m)
54 2.5.6 Metode Peramalan Double Moving Average
Menurut Teguh Baroto, rumus untuk Double Moving Average 1 parameter Brown adalah: S’t =
X t + X t −1 + X t − 2 + ... + X t − N +1 N
S”t =
S' t +S' t −1 +S' t − 2 +... + S' t − N +1 N
at = 2.S’t – S”t bt =
2 x(S' t -S"t ) N −1
Ft+m = at + bt.(m) 2.5.7 Metode Peramalan Asosiatif (Regresi Linier)
Menurut Teguh Baroto, rumus untuk Metode Regresi Linier adalah: b=
n * ∑ t y − ∑ t *∑ y n * ∑ t 2 −( ∑ t ) 2
Ft = a + b (t) y=
∑y
n ∑t t = n a = y − bt Ft = a + b (t)
55 2.6 Pengujian Peramalan 2.6.1 Ukuran Statistik Standar
Jika Xt merupakan data aktual untuk periode t dan Ft merupakan ramalan (atau nilai kecocokan / fitted value) untuk periode yang sama, maka kesalahan didefinisikan sebagai :
et = X t − Ft Jika terdapat nilai pengamatan dan ramalan untuk n periode waktu, maka akan terdapat n buah galat dan ukuran statistik standar berikut dapat didefinisikan : •
Nilai Tengah Galat Absolut (Mean Absolute Error)
MAE = •
Nilai Tengah Galat Kuadrat (Mean Squared Error)
MSE = •
1 n ∑ et n t =1
1 n et 2 ∑ t =1 n
Deviasi Standar Galat (Standard Deviation of Error) SDE =
1 n et 2 ∑ t =1 n −1
Dua formulasi yang sering digunakan dalam menghitung kesalahan yaitu mean absolute error (yang dalam beberapa buku disebut sebagai mean absolute deviation) dan mean squared error (MSE). Perbedaan keduanya adalah terletak pada bobot kesalahan,
satu dalam bentuk angka kesalahan absolut dan yang lainnya dalam bentuk nilai kuadrat. Tujuan optimalisasi statistik seringkali adalah untuk memilih suatu model agar MSE minimal, tetapi ukuran ini mempunyai dua kelemahan. Pertama, ukuran ini
56 menunjukkan pencocokan (fitting) suatu model terhadap data hitoris. Pencocokan seperti ini tidak perlu mengimplikasikan peramalan yang baik. Suatu model terlalu cocok (over fitting) dengan deret data, yang berarti sama dengan memasukkan unsur random sebagai
bagian proses bangkitan, berarti tidak berhasil mengenali pola non-acak dalam data dengan baik. Perbandingan nilai MSE yang terjadi selama fase pencocokan peramalan adalah mungkin memberikan sedikit indikasi ketepatan model dalam peramalan. Kedua, sebagai ukuran ketepatan model adalah berhubungan dengan kenyataan bahwa metode yang berbeda akan menggunakan prosedur yang berbeda pula dalam fase pencocokan. Dalam fase peramalan, penggunaan MSE sebagai suatu ukuran ketepatan juga dapat menimbulkan masalah. Ukuran ini tidak memudahkan perbandingan deret berkala yang berbeda dan untuk selang waktu yang berlainan, karena MSE merupakan ukuran para absolut. Lagipula, interpretasinya tidak bersifat intuitif bahkan untuk para spesialis sekalipun, karena ukuran ini menyangkut pengkuadratan sederetan nilai (Makridakis, 1999, p58-61). 2.6.2 Ukuran–ukuran Relatif
Karena adanya keterbatasan MSE sebagai suatu ukuran ketepatan peramalan, maka muncul usulan alternatif – alternatif lain yang diantaranya menyangkut galat persentase. Tiga ukuran yang sering digunakan (Makridakis, 1999, p61-62) adalah : •
Galat Persentase (Percentage Error)
⎛ X −F ⎞ PE = ⎜⎜ t t ⎟⎟ *100 ⎝ Xt ⎠
57 •
Nilai Tengah Galat Persentase (Mean Percentage Error)
MPE = •
1 n ∑ PEt n t =1
Nilai Tengah Galat Persentase Absolut (Mean Absolute Percentage Error) MAPE =
1 n ∑ PEt n t =1
PE dapat digunakan untuk menghitung kesalahan persentase setiap periode waktu. Nilai-nilai ini kemudian dapat dirata-ratakan untuk memberikan nilai tengah kesalahan persentase (MPE). Namun MPE mungkin mengecil karena PE positif dan negatif cenderung saling meniadakan. Dari sana MAPE didefinisikan dengan menggunakan nilai absolut dari PE.
2.7 Master Production Schedule (MPS) 2.7.1 Pengertian MPS
Menurut Gaspersz (1998, p141-144) pada dasarnya jadwal produksi induk (Master Production Schedulling = MPS) merupakan suatu pernyataan tentang produk akhir (termasuk parts pengganti dan suku cadang) dari suatu perusahaan industri manufaktur yang merencanakan memproduksi output berkaitan dengan kuantitas dan periode waktu. MPS mendisagregasikan dan mengimplementasikan rencana produksi. Apabila rencana produksi yang merupakan hasil dari proses perencanaan produksi dinyatakan dalam bentuk agregat, jadwal produksi induk yang merupakan hasil dari proses penjadwalan produksi induk dinyatakan dalam konfigurasi spesifik dengan nomor-nomor item yang ada dalam Item Master and BOM (Bill of Material) files.
58 Aktifitas penjadwalan produksi induk pada dasarnya berkaitan dengan bagaimana menyusun dan memperbaharui jadwal produksi induk, memproses transaksi MPS, memelihara catatan-catatan MPS, mengevaluasi efektifitas dari MPS, dan memberikan laporan evaluasi dalam periode waktu yang teratur untuk keperluan umpanbalik dan tinjauan ulang. MPS sering didefinisikan sebagai anticipated build schedule untuk item-item yang disusun oleh perencana jadwal produksi induk (master schedule). MPS membentuk jalinan komunikasi antara bagian pemasaran dan bagian manufakturing, sehingga seyogyanya bagian pemasaran juga mengetahui informasi yang ada dalam MPS terutama berkaitan dengan ATP (Available To Promise) agar dapat memberikan janji yang akurat kepada pelanggan. Penjadwalan produksi induk pada dasarnya berkaitan dengan aktifitas melakukan empat fungsi utama berikut : 1. Menyediakan atau memberikan input utama kepada sistem perencanaan kebutuhan material dan kapasitas (material and capacity requirements planning = M&CRP). 2. Menjadwalkan pesanan-pesanan produksi dan pembelian (production and purchase orders) untuk item-item MPS. 3. Memberikan landasan untuk penentuan kebutuhan sumber daya dan kapasitas. 4. Memberikan basis untuk pembuatan janji tentang penyerahan produk (delivery promises) kepada pelanggan.
59 Sebagai suatu aktifitas proses, MPS membutuhkan lima input utama yaitu antara lain sebagai berikut: •
Data Permintaan Total merupakan salah satu sumber data bagi proses
penjadwalan produksi induk. Data permintaan total berkaitan dengan ramalan penjualan (sales forecasts) dan pesanan-pesanan (orders). •
Status Inventori berkaitan dengan informasi tentang on-hand inventory, stok
yang dialokasikan untuk penggunaan tertentu (allocated stock), pesanan-pesanan produksi dan pembelian yang dikeluarkan (released production and purchase orders), dan firm planned orders. MPS harus mengetahui secara akurat berapa banyak inventori yang tersedia dan menentukan berapa banyak yang harus dipesan. •
Rencana Produksi memberikan sekumpulan batasan kepada MPS. MPS harus
menjumlahkan batasan tersebut untuk menentukan tingkat produksi, inventori, dan sumber-sumber daya lain dalam rencana produksi itu. •
Data Perencanaan berkaitan dengan aturan-aturan tentang lot-sizing yang harus
digunakan, shrinkage factor, stok pengaman (safety stock), dan waktu tunggu (lead time) dari masing-masing item yang biasanya tersedia dalam file induk dari item (Item Master File). •
Informasi dari RCCP berupa kebutuhan kapasitas untuk mengimplementasikan
MPS menjadi salah satu input bagi MPS. RCCP menentukan kebutuhan kapasitas untuk mengimplementasikan MPS, menguji kelayakan dari MPS, dan memberikan umpan-balik kepada perencana atau penyusun jadwal produksi induk (Master Scheduler) untuk mengambil tindakan perbaikan apabila
60 ditemukan adanya ketidaksesuaian antara penjadwalan produksi induk dan kapasitas tersedia. 2.7.2 Teknik Penyusunan MPS
Tabel 2.1 Contoh Tabel MPS Item No
:
Description
:
Lead time
:
Safety stock
:
On Hand
:
Demand Time Fences
:
Planning Time Fences
:
Period
Past Due
1
2
3
4
5
6
Forecast Actual Order (AO) Project Available Balance (PAB) Available to Promise (ATP) Master Schedule (MS)
Penjelasan mengenai komponen-komponen yang terdapat dalam Tabel 2.1 MPS adalah sebagai berikut : a) Item No menyatakan kode produk yang akan diproduksi. b) Lead time menyatakan waktu yang dibutuhkan untuk me-release atau memanufaktur suatu produk. c) On hand menyatakan jumlah produk yang ada di gudang sebagai sisa periode sebelumnya. d) Description menyatakan deskripsi produk secara umum. e) Safety stock merupakan stok pengaman yang harus ada di tangan sebagai antisipasi terhadap kebutuhan di masa akan datang. f) Demand Time Fences (DTF) adalah periode mendatang dari MPS di mana dalam periode ini perubahan terhadap MPS tidak diijinkan atau tidak diterima
61 karena akan menimbulkan kerugian biaya yang besar akibat ketidaksesuaian atau kekacauan jadwal. g) Planning Time Fences (PTF) merupakan batas waktu penyesuaian pesanan di mana permintaan masih boleh berubah. Perubahan masih akan dilayani sepanjang material dan kapasitas masih tersedia. h) Forecast merupakan rencana penjualan atau peramalan penjualan untuk item yang dijadwalkan itu. i) Actual Order (AO) merupakan pesanan-pesanan yang diterima dan bersifat pasti. j) Projected Available Balance (PAB) merupakan perkiraan jumlah sisa produk pada akhir periode. PAB dihitung dengan menggunakan rumus: PAB t < DTF = PABt-1 + MSt – AO PAB DTF < t < PTF = PABt-1 + MSt – AO atau Ft (pilih yang besar) k) Available to Promise memberikan informasi tentang berapa banyak item atau produk tertentu yang dijadwalkan pada periode waktu itu tersedia untuk pesanan pelanggan, sehingga berdasarkan informasi ini bagian pemasaran dapat membuat janji yang tepat bagi pelanggan. ATPt = ATPt-1 + MSt – AOt l) Master Schedule merupakan jadwal produksi atau manufakturing yang diantisipasi untuk produk atau item tertentu.
62 2.8 Material Requirement Planning (MRP) 2.8.1 Pengertian MRP
MRP merupakan suatu prosedur logis berupa aturan keputusan dan teknik transaksi berbasis komputer yang dirancang untuk menerjemahkan jadwal induk produksi menjadi “kebutuhan bersih” untuk semua item. Sistem MRP dikembangkan untuk membantu perusahaan manufaktur mengatasi kebutuhan akan item-item dependent secara lebih baik dan efisien. Menurut Schoeder (2000, p368) persediaan untuk independent demand didefinisikan sebagai persediaan yang dipengaruhi atau tunduk pada kondisi-kondisi pasar dan bebas dari operasi misalnya : persediaan barang jadi dan suku cadang pada suatu perusahaan manufaktur yang digunakan untuk memenuhi permintaan konsumen pada suatu perusahaan persediaan ini harus dikelola dengan metode titik pemesanan. Sebaliknya untuk dependent demand tidak dipengaruhi oleh kondisi-kondisi pasar dan hanya tergantung pada permintaan suku cadang di tingkat atasnya. Beberapa ciri-ciri dependent demand adalah : -
Ada hubungan matematis antara kebutuhan suatu item dengan item yang lain yang berada pada level yang lebih tinggi
-
Kebutuhan diturunkan dari pemakaian item dalam pembuatan item lain
-
Misal kebutuhan akan bahan baku, komponen atau sub assembly dalam pembuatan suatu produk jadi
-
Item perlu ada hanya pada saat dibutuhkan
-
Diperlukan MRP untuk menjadwalkan seluruh komponen dependent yang diperlukan dalam rencana MPS/JIP
63 2.8.2 Tujuan dan Manfaat Sistem MRP
Sistem MRP adalah suatu sistem yang bertujuan untuk menghasilkan informasi yang tepat untuk melakukan tindakan yang tepat (pembatalan pesanan, pesan ulang, dan penjadwalan ulang). Tindakan ini juga merupakan dasar untuk membuat keputusan baru mengenai pembelian atau produksi yang merupakan perbaikan atas keputusan yang telah dibuat sebelumnya. Beberapa manfaat dari MRP (Render dan Heizer, 1997, p362), adalah sebagai berikut: -
Peningkatan pelayanan dan kepuasan konsumen
-
Peningkatan pemanfaatan fasilitas dan tenaga kerja
-
Perencanaan dan penjadwalan persediaan yang lebih baik
-
Tanggapan yang lebih cepat terhadap perubahan dan pergeseran pasar
-
Tingkat persediaan menurun tanpa mengurangi pelayanan kepada konsumen Sedangkan empat tujuan yang menjadi ciri utama sistem MRP yaitu sebagai
berikut : 1. Menentukan kebutuhan pada saat yang tepat Menentukan secara tepat kapan sutu pekerjaan harus selesai (atau meterial harus tersedia) untuk memenuhi permintaan atas produk akhir yang sudah direncanakan dalam jadwal induk produksi (JIP). 2. Menentukan kebutuhan minimal setiap item Dengan diketahuinya kebutuhan akhir, sistem MRP dapat menentukan secara tepat sistem penjadwalan (prioritas) untuk memenuhi semua kebutuhan minimal setiap item.
64 3. Menentukan pelaksanaan rencana pemesanan Memberikan indikasi kapan pemesanan atau pembatalan pemesanan harus dilakukan. Pemesanan perlu dilakukan lewat pembelian atau dibuat pada pabrik sendiri. 4. Menentukan penjadwalan ulang atau pembatalan atas suatu jadwal yang sudah direncanakan Apabila kapasitas yang ada tidak mampu memenuhi pesanan yang dijadwalkan pada waktu yang diinginkan, maka sistem MRP dapat memberikan indikasi untuk melakukan rencana penjadwalan ulang (jika mungkin) dengan menentukan prioritas pesanan yang realistik. Jika penjadwalan ulang ini masih tidak memungkinkan untuk memenuhi pesanan, maka pembatalan atas suatu pesanan harus dilakukan. 2.8.3 Input MRP
Sebagai suatu sistem, MRP membutuhkan lima input utama (Gaspersz, 2001, p177) yang dijelaskan di bawah ini: 1. Master Production Schedule
(MPS) yang suatu rencana terperinci tentang
tentang produk akhir apa yang direncanakan perusahaan untuk diproduksi, berapa kuantitas yang dibutuhkan, pada waktu kapan dibutuhkan, dan kapan produk itu akan diproduksi. 2. Bill of Material (BOM) merupakan daftar jumlah komponen, campuran bahan, dan bahan baku yang diperlukan untuk membuat suatu produk. MRP menggunakan BOM sebagai basis untuk perhitungan banyaknya setiap material yang dibutuhkan untuk setiap periode waktu. Bagan bahan dalam komputer harus selalu benar dan dapat menggambarkan bagaimana produk itu dibuat.
65 3. Item master merupakan suatu file yang berisi informasi tentang material, parts subassemblies, dan produk-produk yang menunjukkan kuantitas on-hand, kuantitas
yang
dialokasikan
(allocated
quantity),
waktu
tunggu
yang
direncanakan (planned lead times), ukuran lot (lot size), stok pengaman, kriteria lot sizing, toleransi untuk scrap atau hasil, dan berbagai informasi penting lainnya yang berkaitan dengan suatu item. 4. Pesanan-pesanan (orders) berisi tentang banyaknya dari setiap item yang akan diperoleh sehingga akan meningkatkan stock on-hand di masa mendatang. Pada dasarnya terdapat dua jenis pesanan, yaitu: shop orders or work orders or manufacturing orders berupa pesanan-pesanan yang akan dibuat atau diproduksi di dalam pabrik, dan purchase orders yang merupakan pesanan-pesanan pembelian suatu item dan pemasok eksternal. 5. Kebutuhan-kebutuhan (requirements) akan memberitahukan tentang banyaknya masing-masing item itu dibutuhkan sehingga akan mengurangi stock on-hand di masa mendatang. Pada dasarnya terdapat dua jenis kebutuhan, yaitu kebutuhan internal dan eksternal. Kebutuhan internal digunakan dalam pabrik untuk membuat produk lain, dan kebutuhan eksternal yang akan dikirim ke luar pabrik berupa: pesanan pelanggan (customer orders), service parts, dan sales forecasts.
66 2.8.4 Mekanisme Dasar dari Proses MRP
Tabel 2.2 Contoh Tabel MRP Part no : BOM UOM : Lead time : Safety stock : period gross requirement scheduled receipts projected available balance 1 net requirement planned order receipts planned order release projected available balance 2
Past due
Description: On hand : Order policy : Lot size : 1 2 3 4 5
6
7
8
Penjelasan mengenai tabel MRP adalah sebagai berikut : 1. Part no menyatakan kode komponen atau material yang akan dirakit 2. BOM (Bill of Materials) UOM (Unit of Material) menyatakan satuan komponen atau material yang akan dirakit 3. Lead time menyatakan waktu yang dibutuhkan untuk merilis atau mengirim suatu komponen. 4. Safety stock menyatakan cadangan material yang harus ada sebagai antisipasi kebutuhan dimasa yang akan datang. 5. Description menyatakan deskripsi material secara umum. 6. On Hand menyatakan jumlah material yang ada di tangan sebagai sisa periode sebelumnya. 7. Order Policy menyatakan jenis pendekatan yang digunakan untuk menentukan ukuran lot yang dibutuhkan saat memesan barang. 8. Lot Size menyatakan penentuan ukuran lot saat memesan barang.
67 9. Gross Requirement menyatakan jumlah yang akan diproduksi atau dipakai pada setiap periode. Untuk item akhir (produk jadi), kuantitas gross requirement sama dengan MPS (Master Production Schedule). Untuk komponen, kuantitas gross requirement diturunkan dari Planned Order Release induknya. 10. Scheduled Receipts menyatakan material yang dipesan dan akan diterima pada periode tertentu. 11. Projected Available Balance I ( PAB I ) menyatakan kuantitas material yang ada di tangan sebagai persediaan pada awal periode. PAB I dapat dihitung dengan menambahkan material on hand periode sebelumnya dengan Scheduled Receipts pada periode itu dan menguranginya dengan Gross Requirement pada periode yang sama. Atau jika dimasukkan pada rumus adalah sebagai berikut : PAB I = (PAB II)t-1 - (Gross Requirement)t + (Scheduled Receipts)t
12. Net Requirements menyatakan jumlah bersih (netto) dari setiap komponen yang harus disediakan untuk memenuhi induk komponennya atau untuk memenuhi Master Production Scheduled. Net Requirements sama dengan nol jika Projected Available Balance I lebih besar dari nol dan sama dengan minus jika Projected Available Balance I kurang sama dengan dari nol. Net Requirement = -(PAB I)t + Safety stock
13. Planned Order Receipts menyatakan kuantitas pemesanan yang dibutuhkan pada suatu periode. Planned Order Receipts muncul pada saat yang sama dengan Net Requirements, akan tetapi ukuran pemesanannya (lot sizing) bergantung kepada Order Policy-nya. Selain itu juga harus mempertimbangkan Safety stock juga. 14. Planned Order Release menyatakan kapan suatu pesanan sudah harus dilakukan atau dimanufaktur sehingga komponen ini tersedia ketika dibutuhkan oleh induk
68 itemnya. Kapan suatu pesanan harus dilakukan ditetapkan dengan periode Lead time sebelum dibutuhkan. 15. Projected Available Balance II ( PAB II ) menyatakan kuantitas material yang ada di tanagn sebagai persediaan pada akhir periode. PAB II dapat dihitung dengan cara mengurangkan Planned Order Receipts pada Net Requirements. PAB II = (PAB II) t-1 + (Schedule receipt) t – (Gross Requirement) t + (Planned Order Receipt) t
atau dapat disingkat : PAB II = (PAB I)t + (Planned Order Receipt)t
2.8.5 Langkah-langkah dalam Sistem MRP
Sistem MRP memiliki empat langkah utama yang selanjutnya keempat langkah ini harus diterapkan satu per satu pada periode perencanaan dan pada setiap item.: 2.8.5.1 Netting
Netting adalah proses perhitungan untuk menetapkan jumlah kebutuhan bersih, yang besarnya merupakan selisih antara kebutuhan kotor dengan keadaaan persediaan (yang ada dalam persediaan dan yang sedang dipesan). Data yang diperlukan dalam proses perhitungan kebutuhan bersih ini adalah : 1. Kebutuhan kotor untuk setiap periode. 2. Persediaan yang dipunyai pada awal perencanaan. 3. Rencana penerimaan untuk setiap periode perencanaan.
69 2.8.5.2 Lotting
Untuk menjamin bahwa semua kebutuhan-kebutuhan akan dipenuhi, pesanan akan dijadwalkan untuk penyelesaian pada awal periode dimana ada kebutuhan bersih yang positif. Ukuran dari pesanan dapat mungkin sama dengan kebutuhan bersih di periode yang bersangkutan, atau mungkin saja lebih besar yang meliputi kebutuhan bersih di periode mendatang untuk memanfaatkan skala ekonominya. Lotting adalah suatu proses untuk menentukan besarnya jumlah pesanan optimal untuk setiap item secara individual didasarkan pada hasil perhitungan kebutuhan bersih yang telah dilakukan. Ukuran lot menentukan besarnya jumlah komponen yang diterima setiap kali pesan. Penentuan ukuran lot ini sangat tergantung pada besarnya biaya-biaya persediaan, seperti biaya pesan, biaya simpan, biaya modal, dan harga barang itu sendiri. Ada banyak alternatif metode untuk menentukan ukuran lot. Beberapa teknik diarahkan untuk meminimalkan total ongkos set-up dan ongkos simpan. Teknikteknik tersebut adalah sebagai berikut : 1. Fixed Order Quantity (FOQ) Dalam metode FOQ ukuran lot ditentukan secara subyektif. Berapa besarnya dapat ditentukan berdasarkan pengalaman produksi atau intuisi. Tidak ada teknik yang dapat dikemukakan untuk menentukan berapa ukuran lot ini. Kapasitas produksi selama lead time produksi dalam hal ini dapat digunakan sebagai dasar untuk menentukan besarnya lot. Sekali lot ditetapkan, maka lot ini akan digunakan untuk seluruh periode selanjutnya dalam perencanaan. Berapa pun kebutuhan bersihnya, rencana pesan akan tetap sebesar lot yang telah ditentukan tersebut. Apabila teknik ini diterapkan dalam sistem MRP, maka besarnya jumlah pesanan dapat menjadi sama atau lebih besar dari kebutuhan bersih, yang kadang-
70 kadang diperlukan bila ada lonjakan permintaan. Salah satu ciri dari metode FOQ ini adalah ukuran lot-nya selalu tetap, tetapi periode pemesanannya yang selalu berubah. 2. Economic Order Quantity (EOQ) Dalam teknik ini besarnya ukuran lot adalah tetap. Penentuan lot berdasarkan biaya pesan dan biaya simpan, dengan formula seperti berikut : EOQ =
2 AD H
dimana : EOQ = jumlah pemesanan yang ekonomis D = Demand rata-rata per horison A = biaya pesan bahan baku H = biaya simpan bahan baku dalam suatu periode Metode EOQ ini biasanya dipakai untuk horizon perencanaan selama satu tahun sebesar dua belas bulan. Metode EOQ baik digunakan bila semua data konstan dan perbandingan biaya pesan dan simpan sangat besar. 3. Lot-For-Lot (LFL) Teknik penetapan ukuran lot dilakukan atas dasar pesanan diskrit. Di samping itu, teknik ini merupakan cara paling sederhana dari semua teknik ukuran lot yang ada. Teknik ini selalu melakukan perhitungan kembali (bersifat dinamis) terutama apabila terjadi perubahan pada kebutuhan bersih. Penggunaan teknik ini bertujuan untuk meminimumkan ongkos simpan, sehingga dengan teknik ini ongkos simpan menjadi nol. Oleh karena itu sering digunakan untuk item-item yang mempunyai biaya simpan per unit sangat mahal.
71 4. Silver Meal Adalah metode pemesanan lot dinamis (Dynamic Lot sizing Method) yang mempertimbangkan pemesanan untuk beberapa periode ke depan. Tujuan dari teknik lotting ini yaitu untuk meminimumkan rata-rata biaya per periode selama m periode perencanaan. Biaya yang termasuk di dalam teknik lotting ini yaitu biaya pesan dan biaya simpan.
Permintaan untuk beberapa periode n ke depan
dilambangkan dengan : D1, D2, ..., Dn K(m) adalah biaya variabel rata-rata per periode jika pesanan mencakup m periode. Diasumsikan biaya simpan terjadi pada akhir periode dan kuantitas yang diperlukan di setiap periode digunakan pada awal periode. Untuk periode 1 :
K(1) = A
Jika kita memsan D1+D2 pada periode 1 untuk memenuhi permintaan di periode 1 dan 2 , kita mendapatkan: K(2) =
1 ( A + hD2 ) 2
Dimana h adalah biaya simpan satu unit untuk 1 periode. Rumus: K(m) =
1 ( A + hD2 + 2hD3 + ... + (m − 1)hDm m
Hitung K(m), m= 1, 2, ..., m dan berhenti jika: K(m+1) > K(m) Qi = D1 + D2 + ... + Dm Secara umum, Qi adalah kuantitas yang dipesan pada periode i dan mencakup m periode ke depan. Jika tidak ada pemesanan pada periode i maka Qi adalah nol.
72 5. Part Period Balancing Metode ini berusaha meminimalkan jumlah biaya variabel untuk semua lot. Untuk mendapatkan biaya simpan barang. Pada metode ini diperkenalkan nama part period yaitu satu unit barang yang disimpan pada satu periode. Jadi apabila
ada 10 unit disimpan untuk 1 periode sama dengan 10 part period, dan sama juga dengan 5 unit disimpan untuk 2 periode. PPm = part period for m periods Jadi PP1 = 0 PP2 = D2 PP2 = D2 + 2 D3 PPm = D2 + 2 D3 + … + (m-1)Dm PPF = part period factor = A / h Stopping Rule = PPm > PPF Keterangan: Dm = permintaan pada periode ke m A = Biaya Pesan H = Biaya Simpan 6. POQ (Periodic Order Quantity) Metode ini menentukan jumlah dari permintaan per periode untuk ditutup antara satu sama lain. POQ menggunakan logika yang sama dengan EOQ, tetapi mengkonversi nilai EOQ menjadi jumlah periode pemesanan. Hasil dari metode ini adalah interval pemesanan yang tetap, bukannya jumlah pemesanan yang tetap. Interval pemesanan ekonomis (Economic Order Interval – EOI) dihitung
73 menggunakan tingkat rata-rata permintaan dan dibulatkan ke atas. Setiap kuantitas pemesanan menutupi kebutuhan yang diproyeksikan untuk interval berikutnya dengan ukuran pemesanan yang bervariasi dan sesuai dengan kebutuhan yang diproyeksikan. EOI =
EOQ = R
2C RPh
Keterangan: EOI = Interval pemesanan ekonomis dalam periode C = Biaya pemesanan untuk setiap kali pesan H = Biaya penyimpanan untuk tiap periode P = Biaya pembelian unit R = tingkat rata-rata permintaan per periode 2.8.5.3 Offsetting
Langkah ini bertujuan untuk menentukan saat yang tepat untuk melakukan rencana pemesanan dalam rangka memenuhi tingkat kebutuhan bersih. Rencana pemesanan diperoleh dengan cara mengurangkan saat awal tersedianya ukuran lot yang diinginkan dengan besarnya lead time. Lead time adalah besarnya waktu saat barang mulai dipesan atau diproduksi sampai barang tersebut selesai dan diterima siap untuk dipakai.
74 2.8.5.4 Explosion
Proses explosion adalah proses penghitungan kebutuhan kotor untuk tingkat item/komponen yang lebih bawah. Perhitungan kebutuhan kotor ini didasarkan pada
rencana pemesanan item-item produk pada level yang lebih atas. Untuk penghitungan kebutuhan kotor ini, diperlukan struktur produk dan informasi mengenai berapa jumlah kebutuhan tiap item untuk iem yang akan dihitung. Dalam proses ini, data mengenai struktur produk harus tersedia secara akurat. Ketidakakuratan data struktur produk akan mengakibatkan kesalahan pada perhitungan. Atas dasar struktur produk inilah proses explosion dibuat.Dengan data struktur produk dapat ditentukan kearah komponen mana harus dilakukan explosion. Struktur produk juga harus langsung dimodifikasi bila ada perubahan pada cara produksi atau perakitan.
2.9 Metode Peterson Silver
Menurut Daniel Sipper (1998, p256), metode lotting dinamik digunakan untuk permintaan yang bertumpuk. Cara melihat apakah permintaan bertumpuk adalah dengan menggunakan perhitungan Peterson Silver. Perhitungan tersebut digunakan untuk menawarkan pengukuran variabilitas dari permintaan, yang disebut sebagai koefisien variabilitas. Perhitungan tersebut ditunjukkan dengan rumus sebagai berikut: V=
Variance of demand per period Square of average demand per period
Atau dihitung dengan menggunakan rumus: n
n∑ D 2 t
V=
t =1
⎛ n ⎞ ⎜ ∑ Dt ⎟ ⎝ t =1 ⎠
−1
75 Apabila V < 0,25, gunakan model EOQ dengan D sebagai estimasi permintaan Apabila V > 0.25 gunakan metode DLS Menurut jurnal yang ditulis oleh Robert Lim (2005, p20), metode POQ pun dapat digunakan apabila pada metode Peterson Silver nilai V < 0.25 dengan asumsi bahwa metode POQ tidak melakukan perubahan apapun pada nilai EOQ yang dihitung sebagai economic order interval, sehingga POQ dapat diasumsikan sebagian suatu metode MRP
Statik.
2.10 Pengertian Sistem
Berdasarkan pendapat McLeod (2004, p9) sistem adalah sekelompok elemenelemen yang terintegrasi dengan maksud untuk mencapai suatu tujuan tertentu. Definisi ini cocok untuk suatu organisasi seperti suatu perusahaan atau bidang fungsional lainnya. Organisasi terdiri dari sejumlah sumber daya seperti manusia, material, uang, mesin, dan informasi dimana sumber daya tersebut bekerja menuju tercapainya suatu tujuan yang ditentukan oleh pemilik atau manajemen. Model dasar dari sistem ialah sebagai berikut : a. Input
Merupakan sekumpulan data baik dari luar organisasi maupun dari dalam organisasi yang akan digunakan dalam proses sistem informasi. b. Process
Merupakan kegiatan konversi, manipulasi, dan analisis dari data input menjadi lebih berarti bagi manusia.
76 c. Output
Merupakan proses menditribusikan informasi kepada orang atau kegiatan yang memerlukannya. d. Feedback
Merupakan output yang dikembalikan kepada orang-orang dalam organisasi untuk membantu mengevaluasi input. e. Subsistem Merupakan sebagian dari sistem yang mempunyai fungsi khusus. Masing-masing subsistem itu sendiri memiliki komponen input, proses, output, dan feedback.
Organisasi juga merupakan suatu sistem yang berisi beberapa subsistem yang menjalankan aktivitas utama dan beberapa subsistem yang menjalankan aktivitas pendukung. Aktivitas utama mempengaruhi secara langsung keunggulan kompetitif produk seperti biaya, kualitas, ketersediaan, dan pelayanan. Sedangkan aktivitas pendukung tidak secara langsung menciptakan nilai suatu produk.
2.11 Pengertian Informasi
McLeod (2004, p12) berpendapat informasi adalah data yang telah diproses, atau data yang memiliki arti. Sedangkan menurut O’Brien (2004, p13) informasi adalah data yang telah dikonversikan menjadi konteks yang berarti dan berguna bagi pemakai tertentu.
77 Terdapat empat dimensi informasi menurut pendapat McLeod (2001, p145), yaitu: • Ketepatan Waktu Informasi harus dapat tersedia untuk memecahkan masalah pada waktu yang tepat sebelum situasi menjadi tidak terkendali atau kesempatan yang ada menghilang. Manajer juga harus mampu memperoleh informasi yang menggambarkan keadaan yang sedang terjadi sekarang, selain apa yang telah terjadi pada masa lalu. • Kelengkapan Perusahaan khususnya manajer harus dapat memperoleh informasi yang memberi gambaran lengkap dari suatu permasalahan atau penyelesaian. Namun pemberian informasi yang tidak berguna secara berlebihan harus dihindari. • Akurasi Secara ideal, semua informasi harus akurat untuk menunjang terbentuknya sistem yang akurat pula. Akurasi ini terutama diperlukan dalam aplikasi-aplikasi tertentu seperti aplikasi yang melibatkan keuangan, semakin teliti informasi yang diinginkan maka biaya pun semakin bertambah. • Relevansi Informasi disebut relevan jika informasi tersebut berkaitan langsung dengan masalah yang sedang dihadapi. Manajer harus mampu memilih informasi yang diperlukan.
78 2.12 Pengertian Sistem Informasi
Menurut McLeod (2001, p4) sistem informasi adalah kombinasi secara terorgansir antara orang, perangkat keras, perangkat lunak, jaringan komunikasi, sumber data yang menerima, mentransformasikan, dan menyebarkan informasi dalam organisasi. Sedangkan berdasarkan pendapat Laudon (2001, p8) sistem informasi adalah sekumpulan komponen yang saling berhubungan yang menerima, memproses, menyimpan, dan menyebarkan informasi untuk mendukung pengambilan keputusan dan pengendalian dalam sebuah organisasi. Dalam suatu organisasi, sistem informasi memiliki beberapa peranan dasar yaitu sistem informasi berusaha memberikan informasi aktual tentang lingkungan dari organisasi tersebut sehingga organisasi mendapat gambaran yang akurat tentang lingkungannya. Selain itu dengan aliran informasinya, sistem informasi berusaha agar elemen – elemen di dalam organisasi selalu kompak dan harmonis dimana tidak terjadi duplikasi kerja dan lepas satu sama lain . Dengan demikian dapat dilihat bahwa manfaat dari sistem informasi ialah : a) Menjadikan organisasi lebih efisien dan lebih efektif b) Lebih cepat tanggap dalam merespon perubahan c) Mengelola kualitas output d) Memudahkan melakukan fungsi kontrol e) Memprediksi masa depan f) Melancarkan operasi organisasi g) Menstabilkan beroperasinya organisasi h) Membantu pengambilan keputusan.
79 2.13 Unified Modelling Language (UML) 2.13.1 Sejarah UML
Unified Modeling Language (UML) dikembangkan dengan tujuan untuk
menyederhanakan dan mengkonsolidasikan sejumlah besar metode pengembangan object oriented yang muncul. Metode pengembangan untuk bahasa pemrograman
tradisional muncul pada tahun 1970 an dan menjadi menyebar pada tahun 1980 an. Yang paling terkenal diantaranya adalah structured analysis and structured design. Pendekatan analisa dan rancangan dengan menggunakan metode Object Oriented mulai diperkenalkan sekitar pertengahan 1970 hingga akhir 1980 dikarenakan
pada saat itu aplikasi software sudah meningkat dan mulai kompleks. Jumlah yang menggunakan metode OO mulai diuji coba dan diaplikasikan antara 1989 hingga 1994 , seperti halnya oleh Grady Booch dari Rational Software Co., dikenal dengan OOSE (Object-Oriented Software Engineering), serta James Rumbaugh dari General Electric, dikenal dengan OMT (Object Modelling Technique). Kelemahan saat itu mulai disadari oleh Booch maupun Rumbaugh, ketika mereka bertemu rekan lainnya, Ivar Jacobson dari Objectory. Kelemahannya adalah tidak adanya standar penggunaan model yang berbasis Object Oriented, sehingga mereka mulai mendiskusikan untuk mengadopsi masing-masing pendekatan metode Object Oriented untuk membuat suatu model bahasa yang seragam, yaitu UML (Unified Modeling Language) dan dapat digunakan oleh seluruh dunia.
80 2.13.2 Kegunaan UML
UML diperuntukan untuk pemakaian sistem software yang intensif. Ada banyak tujuan dibelakang pengembangan dari UML, yang paling pertama dan penting adalah agar dapat digunakan oleh semua pengembang atau modelers dan tujuan akhir dari UML adalah untuk menjadi sesederhana mungkin selama masih memenuhi kebutuhan untuk melakukan modeling pada sistem yang akan dibangun.
2.14 Analisis dan Perancangan Berorientasi Obyek
Menurut Mathiassen et al. (2000, p5), Analisis dan Perancangan Berorientasi Obyek mendeskripsikan dua permasalahan yang berbeda, yakni di dalam sistem dan di luar sistem. Analisis obyek mendeskripsikan fenomena di luar sistem, seperti orang dan barang, yang dapat berdiri sendiri. Perancangan obyek mendeskripsikan fenomena di dalam sistem yang dapat diawasi. Kita dapat mendeskripsikan behavior mereka sebagai operasi untuk komputer yang menyelesaikannya. Berikut adalah gambar yang menerangkan tahapan analisis dan perancangan berorientasi obyek.
Gambar 2.5 Main Activitities in Object Oriented Design Menurut Mathiassen et al. (2000, p15)
81 Menurut Mathiassen et al. (2000, p15), analisis dan perancangan berorientasi obyek mempunyai 4 tahapan atau aktivitas utama, yakni : 2.14.1 Problem Domain Analysis
Menurut Mathiassen et al. (2000, p45), Problem Domain Analysis merupakan bagian dari sebuah konteks yang diadministrasi, dimonitor dan dikontrol oleh sebuah sistem. Tujuannya adalah untuk mengidentifikasi dan memodelkan sebuah problem domain.
Menurut Mathiassen et al. (2000, p46), Problem Domain Modelling mempunyai 3 aktivitas : a. Classes Object adalah suatu entitas dengan identity (identitas), state (pernyataan)
dan behavior (perilaku). Sedangkan Event adalah kejadian terus–menerus yang melibatkan satu atau dua obyek. (Mathiassen et al, 2000, p51). Menurut Mathiassen et al. (2000, p53), Class adalah suatu deskripsi dari sekumpulan obyek yang mempunyai structure, behavioral pattern dan attributes. Dapat dinyatakan bahwa sebuah obyek dijelaskan di sebuah class, class menjelaskannya dengan bentuk struktur dan kelakukan dari semua obyeknya. Sebuah obyek yang diciptakan dari sebuah kelas disebut juga instansi dari class, dengan kata lain class adalah deskripsi statik dan obyek adalah instansi dinamis dari class.
82 Menurut Mathiassen et al. (2000, p55) ada 3 sub aktivitas dalam memilih Class dan Event, yaitu :
1. Menemukan kandidat untuk classes Pemilihan class merupakan kunci utama dalam membuat problem domain. Pada umumnya yang dilakukan adalah mencari semua kata benda
sebanyak mungkin yang terdapat pada system definition. Menurut Mathiassen et al. (2000, p57), penggunaan nama class sebaiknya : •
Sederhana dan mudah dimengerti
•
Sesuai dengan problem domain
•
Menunjukkan satu kejadian
Gambar 2.6 Memilih Class dan Event Menurut Mathiassen et al. (2000, p55)
83 2. Menemukan kandidat untuk event Selain class, event juga merupakan bagian penting dalam problem domain. Cara untuk mencarinya adalah dengan mencari kata kerja pada system definition sebanyak mungkin.
3. Mengevaluasi dan memilih secara sistematik Jika daftar class dan event telah lengkap, maka mereka dievaluasi secara sistematik. Kriteria umum untuk mengevaluasi adalah sebagai berikut: •
class dan event ada dalam system definition
•
class dan event relevan untuk problem domain
b. Structure
Menurut Mathiassen et al. (2000, p69), tujuan structure adalah untuk mendeskripsikan hubungan struktural antara classes dan objects dalam problem domain.
Menurut Mathiassen et al. (2000, p72), konsep structure dibedakan atas : 1. Class structure
Menggambarkan hubungan konseptual yang statis antar class. Terdiri atas : • Generalization Structure : Merupakan suatu hubungan antara satu atau lebih subclass dengan satu atau lebih superclass. • Cluster Structure Merupakan kumpulan dari classes yang saling berhubungan.
84 2. Object structure
Menggambarkan hubungan yang dinamis antara objects yang ada dalam problem domain. Terdiri atas :
•
Agregation structure
Mendefinisilkan hubungan antara 2 buah objects atau lebih. Menurut Mathiassen et al. (2000, p79), ada 3 tipe aplikasi dari aggregation structure: 1. Whole part Object superior adalah jumlah dari object inferior, jika
menambah atau mengurangi maka akan mengubah pokok object superior. 2. Container content Object superior adalah container bagi object inferior, jika
menambah atau mengurangi object inferior maka tidak akan mengubah object superior. 3. Union member Object superior adalah object inferior yang terorganisasi.
Tidak akan terjadi perubahan pada object superior apabila melakukan penambahan atau pengurangan pada object inferior namun tetap memiliki batasan – batasan.
85 •
Association structure
Merupakan relasi antara 2 atau lebih obyek
Digambarkan sebagai
sebuah garis sederhana antara class yang berhubungan. Association multiplicity diuraikan dengan cara yang sama seperti menguraikan aggregation.
Perbedaan antara association structure dan aggregation structure adalah hubungan antar class pada aggregation mempunyai pertalian yang kuat sedangkan pada association tidak kuat. Dan dalam aggregation dilukiskan hubungan yang definitive serta fundamental sedangkan dalam association dilukiskan hubungan yang tidak tetap. c. Behavior
Menurut Mathiassen et al. (2000, p89), tujuan behavior adalah untuk memodelkan problem domain yang dinamis. Tiga konsep yang terkandung dalam behavior adalah sebagai berikut: ♦ Event Trace Merupakan urutan dari events yang melibatkan obyek secara spesifik. ♦ Behavioral Pattern Suatu deskripsi dari kemungkinan events traces untuk semua object dalam class.
♦ Attribute Suatu deskripsi dari class atau event.
86
Gambar 2.7 Activities in Problem Domain Menurut Mathiassen et al. (2000, p46)
2.14.2 Application Domain Analysis
Menurut Mathiassen et al. (2000, p115), Application Domain Analysis adalah organisasi yang mengadministrasi, memonitor atau mengontrol sebuah problem domain. Tujuannya adalah untuk menetapkan system usage requirements. Aktivitas dari Application Domain Analysis adalah : Usage, Functions dan Interfaces.
87
Gambar 2.8 Application Domain Analysis Menurut Mathiassen et al. (2000, p117) a. Usage
Menurut Mathiassen ( 2000, p119 ), usage untuk menetapkan bagaimana actor berinteraksi dengan sistem. Konsepnya adalah : • Actor : sebuah abstraksi dari user atau sistem lain yang berinteraksi dengan target system.
Actor1 Gambar 2.9 Actor
88 • Use case : urutan kejadian – kejadian anatara system dan actor dalam application domain.
create software
record grades
Gambar 2.10 Use Case b. Functions
Menurut Mathiassen et al. (2000, p137), functions merupakan fasilitas untuk membuat sebuah model berguna bagi actor. Tujuannya adalah untuk menetapkan kemampuan berproses sistem informasi. Tipe–tipe functions adalah : • Read functions Diaktifkan oleh kebutuhan akan informasi di lembar kerja actor dan hasilnya tampilan sistem yang relevan dari model. • Compute functions Diaktifkan oleh kebutuhan akan informasi di lembar kerja actor melibatkan informasi yang disediakan actor atau model. Hasilnya adalah tampilan dari kegiatan compute tersebut. • Update functions Diaktifkan dengan problem domain event dan hasilnya didalam perubahan model state. • Signal functions Diaktifkan dengan merubah model state dan hasilnya pada reaksi di konteks. Reaksi ini mungkin menampilkan actor pada application domain atau intervensi langsung di problem domain.
89 c. Interfaces
Menurut Mathiassen et al. (2000, p151), interfaces adalah fasilitas yang membuat system model dan functions dapat digunakan oleh actor. Tujuannya adalah untuk menetapkan system interfaces. Hasil dari interfaces adalah : • User interfaces Tipe dialog dan form presentasi, daftar lengkap dari elemen user interface, window diagram dan navigation diagram.
• System interfaces Class diagram untuk peralatan luar dan protokol - protokol untuk
berinteraksi dengan sistem lain.
2.14.3 Architectural Design
Menurut Mathiassen et al. (2000, p173), tujuan dari architectural design adalah untuk menstruktur sistem yang terkomputerisasi.
Gambar 2.11 Activities in Architectural Design Menurut Mathiassen et al. (2000, p176)
90 Menurut Mathiassen et al. (2000, p173), 3 aktivitas yang terdapat pada Architectural Design adalah sebagai berikut: a. Criteria
Menurut Mathiassen et al. (2000, p177), tujuan dari criteria adalah untuk mengatur prioritas perancangan. Konsepnya adalah : •
Criterion : Properti dari architecture
•
Conditions : kesempatan dan batas technical, organizational dan human yang terlibat dalam suatu tugas.
Menurut Mathiassen et al. (2000, p178) terdapat 12 jenis kriteria software : 1. Usable
Adalah kemampuan sistem untuk beradapatasi dengan situasi organisasi, tugas dan hal – hal teknis. 2. Secure
Adalah kemampuan untuk melakukan pencegahan terhadap akses yang tidak berwenang. 3. Efficient
Adalah penggunaan secara ekonomis terhadap fasilitas technical platform. 4. Correct
Adalah sesuai dengan kebutuhan dan tepat guna. 5. Reliable
Adalah ketepatan dalam melakukan suatu fungsi. 6. Maintainable
Adalah kemampuan untuk perbaikan sistem yang rusak.
91 7. Testable
Adalah penempatan biaya untuk memastikan sistem bekerja sesuai dengan yang diinginkan. 8. Flexible
Adalah kemampuan untuk modifikasi sistem yang berjalan. 9. Comprehensible
Adalah usaha yang diperlukan untuk memperoleh pengertian akan suatu sistem. 10. Reusable
Adalah potensi untuk menggunakan sistem pada bagian sistem lain yang saling berhubungan. 11. Portable
Adalah kemampuan sistem untuk dapat dipindahkan ke technical platform yang lain. 12. Interoperable
Adalah kemampuan untuk merangkai sistem ke dalam sistem yang lain. Selain kriteria – kriteria diatas, menurut Mathiassen et al. (2000, p184), terdapat pula kondisi – kondisi yang harus diperhitungkan : • Technical Adalah perangkat keras yang tersedia, perangkat lunak dasar dan sistem; menggunakan kembali bahan – bahan dan komponen – komponen yang telah ada; menggunakan komponen standar yang dapat dibeli.
92 • Organizational Adalah perjanjian kontrak; rencana pengembangan dan pembagian kerja antara pengembang. • Human Adalah kemampuan untuk mendesain; pengalaman dengan sistem yang serupa; pengalaman dengan technical platform. b. Component
Menurut Mathiassen et al. (2000, p189), tujuan dari components adalah untuk menciptakan
sistem yang comprehensible dan flexible. Component
architecture adalah sebuah struktur sistem dari components yang saling
berhubungan. Dalam mengeksplorasi pola arsitektur, yang perlu diperhatikan adalah ketika menemukan distribusi geografis, rancangan harus mempertimbangkan pola client-server architecture. Bentuk yang dapat digunakan adalah sebagai berikut: Tabel 2.3 Perbedaan Bentuk Distribusi dalam Client-server Architecture Menurut Mathiassen et al (2000, p200) Client
Server
Architecture
U
U+F+M
U
F+M
Local Presentation
U+F
F+M
Distributed Functionality
U+F
M
Centralized Data
U+F+M
M
Distributed Data
Distributed Presentation
93 c. Process
Menurut Mathiassen et al. (2000, p209), tujuan process adalah untuk mendefinisikan struktur program secara fisik.
2.14.4 Component Design
Menurut Mathiassen et al. (2000, p231), tujuan component design adalah untuk menetapkan sebuah implementasi pada sebuah architectural framework. Aktivitas pada component design adalah : 1. Model component
Menurut Mathiassen et al. (2000, p235), model component adalah bagian dari sistem yang mengimplementasikan problem domain model. 2. Function component
Tujuan Function component menurut Mathiassen et al. (2000, p252) adalah untuk menetapkan functions implementation. Function implementation adalah bagian dari sistem yang mengimplementasikan persyaratan functions. 3. Connecting component
Tujuan dari connecting components menurut Mathiassen et al. (2000, p271) adalah untuk menggabungkan system components. Ada 2 konsep dalam connenting component yaitu : a. Coupling
Merupakan suatu ukuran seberapa dekat 2 classes atau components terhubungkan.
94 b. Cohesion
Merupakan ukuran seberapa dekat class atau component saling terkait satu sama lain.
Gambar 2.12 Components Design Menurut Mathiassen et al. (2000, p232)
2.15 System Development Life Cycle Model
Menurut Daniel Galin (2000, p122) System Development Life Cycle Model (Model SDLC) adalah model klasik yang masih dapat diaplikasikan saat ini; model tersebut menyediakan deskripsi yang paling komprehensif dari proses-proses yang tersedia. Model tersebut menjukkan tahap-tahap utama dari proses pengembangan, mendeskripsikannya ke dalam urutan linier. Model tersebut dimulai dengan definisi kebutuhan dan berakhir dengan operasi dan perawatan reguler. Ilustrasi yang paling umum dari model SDLC adalah model Waterfall.
95
Gambar 2.13 Model Waterfall Menurut Daniel Galin (2002, p124)
Model di atas terdiri dari tujuh tahap, yang dijelaskan sebagai berikut: •
Requirement Definition. Untuk fungsionalitas dari sistem software yang
dikembangkan, konsumen harus mendefinisikan kebutuhan mereka. Dalam beberapa kasus, sistem software adalah bagian dari sistem yang lebih besar. •
Analysis. Usaha utama dalam hal ini adalah untuk menganalisis implikasi
dari kebutuhan-kebutuhan yang ada untuk membentuk model sistem awal. •
Design. Tahap ini melibatkan definisi secara detil dari input, output, dan
prosedur pemrosesan, termasuk di dalamnya struktur data dan database, struktur software, dan sebagainya.
96 •
Coding. Pada tahap ini, rancangan akan ditranslasikan ke dalam kode
pemrograman. Coding melibatkan aktivitas pengendalian kualitas seperti inspeksi, unit test dan integration test. •
System Tests. Pengujian sistem dilakukan setelah tahap coding telah selesai.
Tujuan utama dari pengujian adalah untuk menemukan sebanyak mungkin software error sehingga dapat memperoleh tingkat penerimaan dari kualitas software setelah usaha-usaha koreksi selesai dilakukan.
•
Installation and Conversion. Setelah sistem disetujui, sistem tersebut akan
diinstalasikan sebagai suatu firmware. Apabila sistem informasi baru ini menggantikan sistem yang sudah ada sebelumnya, proses konversi software harus dilakukan untuk memastikan agar aktivitas organisasi tidak terganggu selama tahap konversi tersebut. •
Regular Operation and Maintenance. Operasi software reguler dimulai
setelah instalasi dan konversi telah selesai dilakukan. Melalui periode operasi reguler, dimana berlangsung hingga tahunan atau hingga generasi software
baru
Maintenance
muncul
dibagi
dalam
menjadi
rencana, tiga
jenis
maintenance
pelayanan:
dibutuhkan. corrective
–
memperbaiki kesalahan software yang teridentifikasi oleh pengguna dalam operasi; adaptive – menggunakan fitur software yang sudah ada untuk memenuhi kebutuhan baru; dan perfective – menambahkan fitur kecil untuk meningkatkan performa software.