B A B IV
H A SIL P E N E L IT IA N D A N P E M B A H A S A N
4 .1
D e s k r i p s i H a s i l P e n e l it i a n P r e T e s t d a n P o s t T e s t
D a r i h a s il p e n g u ji a n d i p e r o l e h d a t a k e t e p a t a n s e r v i s a t a s p a d a p e r m a i n a n
b o l a v o l i p r e -t e s t d a n p o s t- t e s t . H a s il s e b a g a i m a n a p a d a t a b e l
I d an II
T abel 1 D a t a h a s il p e n e li ti a n p r e t e s t d a n p o s t t e s t N O
X 1
X 2
G A IN (D )
20
24
4
23
25
2
3
23
26
3
4
19
22
3
5
19
23
4
18
21
3
15
20
5
8
18
21
3
9
20
22
2
10
17
21
4
26
27
1
19
23
4
13
24
26
2
14
23
26
3
15
19
22
3
21
25
4
19
22
3
18
15
19
4
19
20
22
2
20
23
26
3
401
463
62
1 2
6 7
11 12
16 17
JU M L A H
4 .2 P e n g u j i a n P e r s y a r a t a n A n a l is i s
4 .2 .1 P e n g u j i a n P e r s y a r a t a n A n a l is i s P r e - T e s t
S e b e lu m
m e n g e ta h ui
k it a
apakah
m asuk
kita
pada
akan
p e n g ujia n
m engggunakan
sela n jutn y a ,
s tatistik
non
m aka
k ita
p a r a m e t tr i k
p erlu
ata u
s t a ti s ti k p a r a m e t ri k , o l e h k a r e n a i t u p e rl u a d a n y a p e n g u ji a n n o r m a l it a s d a t a d a r i
sam pel
yang
d i a n a li s i s
d i a m b il
a d a la h
dengan
d a ta
d ari
m enggunakan
p r e -t e s t
dan
h a sil
U ji
L i li e f o rs .
d ari
a n a l is i s
D a ta
in i,
yang
akan
be rla k u
u n tu k
p o p u la si dim a n a sa m p el b e rasa l. L a n g k a h -la n g k a h n y a se b a g a i be rik ut :
a.
L a n g k a h p e rtam a
: M e n e n t u k a n H i p o t e s is P e n g u j u i a n
H o : S a m p e l b e r a s a l d a r i p o p u l a s i y a n g b e r d i s tr i b u s i n o rm a l .
H a :
b.
S a m p e l b e r a s a l d a r i p o p u l a s i y a n g ti d a k b e r d i s tr i b u s i n o rm a l .
L a n g k a h k e d u a : M e n e n t u k a n k ri t e r i a p e n g u j i a n
T e rim a : H o jik a ≤ L t
T o la k
: H o jik a > L t
P a d a ta raf
c.
n y a t a α = 0 .0 5 ; 2 0
L a n g k a h k e t i g a : M e n g h i t u n g Z i , F ( Z i ) , S ( Z i ) , d a r i l a ti h a n k e c e p a ta n r e a k s i
s e r t a m e n y u s u n d a l a m t a b e l p e n g u j ia n n o r m a l it a s .
S e b e lu m
itu
p erlu
d i k e t a h u i n il a i ra t a - r a ta
p o s t - te s t ( X 2 ) s e r t a m e n g e t a h u i
d i g u n a k a n y a it u :
R u m u s ra ta-rata
:
d a r i d a ta
p r e -t e s t ( X 1 ) d a n
s ta n d a r d e v i a s i d a ta p r e - t e s t , r u m u s - r u m u s y a n g
K e te ra n g a n
:
= R a ta -ra ta (m ea n )
:
= ju m la h h arg a X
: n
= ju m la h sa m p el
R u m u s sta n d ar d e v iasi : “
K e te ra n g a n
: Sd
: (X -
= S ta n d a r D e v ia si
)²
= K u a d r a t a n t a r a h a si l p e n g u r a n g a n h a ra g X
d a n r a t a - r a ta X .
:
n -1
P e r h i t u n g a n n i l a i r a t a -r a t a p r e -t e s t (
D ik e ta h u i
:
401
n
Jadi
2 0 ,0 5
= 20
= Ju m la h sam p e l dik u ra n gi 1
).
S e te la h
dik eta h u i
nilai
r a t a - r a ta
p re-test,
m aka
dila nju tk a n
dengan
p e r h i t u n g a n s t a n d a r d e v i a s i . U n t u k m e m p e r m u d a h p e r h it u n g a n , d a t a p r e - te s t p e r l u
d im a su k a n pa d a ta b el.
P e rh itu n g a n s ta n d ar d e v ias i d ata p re -te st
D ik e ta h u i
:
(S d1)
2 0 .0 5
T A B E L 2
P E R H IT U N G A N S T A N D A R D E V IA S I D A T A P R E -T E S T
N O
X 1
1
15
- 5 .0 5
2 5 .5 0 2 5
2
15
- 5 .0 5
2 5 .5 0 2 5
3
17
- 3 .0 5
9 .3 0 2 5
4
18
- 2 .0 5
4 .2 0 2 5
5
18
- 2 .0 5
4 .2 0 2 5
6
19
- 1 .0 5
1 .1 0 2 5
7
19
- 1 .0 5
1 .1 0 2 5
8
19
- 1 .0 5
1 .1 0 2 5
9
19
- 1 .0 5
1 .1 0 2 5
10
19
- 1 .0 5
1 .1 0 2 5
11
20
- 0 .0 5
0 .0 0 2 5
12
20
- 0 .0 5
0 .0 0 2 5
13
20
- 0 .0 5
0 .0 0 2 5
14
21
0 .9 5
0 .9 0 2 5
15
23
2 .9 5
8 .7 0 2 5
16
23
2 .9 5
8 .7 0 2 5
17
23
2 .9 5
8 .7 0 2 5
18
23
2 .9 5
8 .7 0 2 5
19
24
3 .9 5
1 5 .6 0 2 5
20
26
5 .9 5
3 5 .4 0 2 5
JU M L A
)
(
)²
1 6 0 .9 5 401
H
(
S e te la h dik e ta h ui
m a k a d i m a s u k a n d a la m r u m u s b e r i k u t i n i
=
=
=
=
= 2 ,9 1
T A B E L 3
P E R H IT U N G A N U JI N O R M A L IT A S D A T A
T A B E L P E N G U JIA N N O R M A L IT A S D A T A
N O
X 1
Zi
F (Z i)
S (Z i)
( F ( z i )- ( S (z i ))
1
15
- 1 .7 4
0 .0 4 0 9
0 .0 7 5
0 .0 3 4 1
2
15
- 1 .7 4
0 .0 4 0 9
0 .0 7 5
0 .0 3 4 1
3
17
- 1 .0 5
0 .1 4 6 9
0 .1 5
0 .0 0 3 1
4
18
- 0 .7 0
0 .2 4 2 0
0 .2 2 5
0 .0 1 7
5
18
- 0 .7 0
0 .2 4 2 0
0 .2 2 5
0 .0 1 7
6
19
- 0 .3 6
0 .3 5 9 4
0 .4
0 .0 4 0 6
7
19
0 .3 5 9 4
0 .4
0 .0 4 0 6
- 0 .3 6
8
19
9
19
10
19
11
- 0 .3 6
0 .3 5 9 4
0 .4
0 .0 4 0 6
0 .3 5 9 4
0 .4
0 .0 4 0 6
- 0 .3 6
0 .3 5 9 4
0 .4
0 .0 4 0 6
20
- 0 .0 2
0 .4 9 2 0
0 .6
0 .1 0 8
12
20
- 0 .0 2
0 .4 9 2 0
0 .6
0 .1 0 8
13
20
- 0 .0 2
0 .4 9 2 0
0 .6
0 .1 0 8
14
21
0 .3 3
0 .6 2 9 3
0 .7
0 .0 7 0 7
15
23
1 .0 1
0 .8 4 3 8
0 .8 2 5
0 .0 1 8 8
16
23
1 .0 1
0 .8 4 3 8
0 .8 2 5
0 .0 1 8 8
17
23
1 .0 1
0 .8 4 3 8
0 .8 2 5
0 .0 1 8 8
18
23
1 .0 1
0 .8 4 3 8
0 .8 2 5
0 .0 1 8 8
19
24
1 .3 6
0 .9 1 3 1
0 .9 5
0 .0 3 6 9
20
26
2 .0 4
0 .9 7 9 3
1
0 .0 2 0 7
- 0 .3 6
K e te ra n g a n :
U n tu k Z i d ig u n a k a n rum u s “
U n t u k m e n d a p a t k a n F ( Z i ) D il i h a t p a d a d a ft a r d i s tr i b u s i n o rm a l b a k u .
U n tu k m e n d a p a tk a n S(Z i) dig u n a k a n rum u s
D a r i p e r h i t u n g a n p a d a t a b e l II I d i p e r o l e h n il a i s e l i s i h y a n g t e r ti n g g i a ta u L
o b s e r v a s i ( L o ) y a it u 0 .1 0 8 . B e r d a s a k a n t a b e l n i l a i k r it is L U j i L i li e f o r s p a d a α =
0 .0 5 ; n = 2 0 , d i t e m u k a n L t a b e l a t a u ( L t ) y a i t u 0 .1 9 0 j a d i L o b s e r v a s i ( L o ) le b i h
k e c i l d a ri p a d a L t . K r it e r ia p e n g u j ia n m e n y a ta k a n b a h w a j i k a L o ≤ L t , m a k a H o
d i t e r im a . D e n g a n d e m i k i a n p e n g u ji a n n o r m a l it a s i n i d a p a t d i s i m p u l k a n b a h w a
sam pel
p e n e l it i a n
b e rasa l
d a ri
p o p u la si
yang
b e r d i st ri b u s i
n o rm a l ,
se hin g g a
p e n g u j i a n s e l a n j u t n y a d i g u n a k a n u ji t .
4 .2 .2 P e n g u j i a n P e r s y a r a t a n A n a l is i s P o s t - T e s t
D a t a y a n g a k a n d i a n a li s i s a d a l a h d a t a d a ri p o s t - te s d a n h a s il d a ri a n a l i s i s
i n i , b e rl a k u u n t u k p o p u l a s i d im a n a s a m p e l b e ra s a l .
L a n g k a h -l a n g k a h n y a s e b a g a i
b e rik u t :
a.
L a n g k a h p e rtam a
: M e n e n t u k a n H i p o t e s is P e n g u j u i a n
H o : S a m p e l b e r a s a l d a r i p o p u l a s i y a n g b e r d i s tr i b u s i n o rm a l .
H a :
b.
S a m p e l b e r a s a l d a r i p o p u l a s i y a n g ti d a k b e r d i s tr i b u s i n o rm a l .
L a n g k a h k e d u a : M e n e n t u k a n k ri t e r i a p e n g u j i a n
T e rim a : H o jik a ≤ L t
T o la k
: H o jik a > L t
P a d a ta raf
c.
n y a t a α = 0 .0 5 ; 2 0
L a n g k a h k e t i g a : M e n g h i t u n g Z i , F ( Z i ) , S ( Z i ) , d a ri l a t i h a n k e k u a t a n o t o t
t a n g a n s e rt a m e n y u s u n d a l a m ta b e l p e n g u j i a n n o r m a l it a s .
S e b e lu m
it u p e r l u d i k e t a h u i n i la i r a t a -r a t a d a r i d a ta p o s t t e s ( X 1 ) d a n
t e s ( X 2 ) s e r ta m e n g e ta h u i
d i g u n a k a n y a it u :
post
s ta n d ar d e v ia si d a t a p re-tes t, rum u s - rum u s y a n g
R u m u s ra ta-rata
:
K e te ra n g a n
:
= R a ta -ra ta (m ea n )
:
= ju m la h h arg a X
: n
= ju m la h sa m p el
R u m u s sta n d ar d e v iasi : “
K e te ra n g a n
: Sd
: (X -
= S ta n d a r D e v ia si
)²
= K u a d ra t a n ta ra h a sil p e n g ura n g a n h a ra g X
d a n r a t a - r a ta X .
:
n -1
P e r h i t u n g a n n i l a i r a t a -r a t a p o s t te s (
D ik e ta h u i
:
463
n
Jadi
2 3 ,1 5
= 20
= Ju m la h sam p e l dik u ra n gi 1
).
S e te la h
d ik eta h u i
nilai
ra ta-rata
post
te s ,
m aka
d il a n j u t k a n
dengan
p e r h i t u n g a n s t a n d a r d e v i a s i . U n t u k m e m p e rm u d a h p e r h i t u n g a n , d a t a p o s t t e s p e r l u
d im a su k a n pa d a ta b el.
T A B E L 4
P E R H IT U N G A N ST A N D A R D E V IA SI D A T A P O ST T E S
N O
X 2
1
19
- 4 .1 5
1 7 .2 2 2 5
2
20
- 3 .1 5
9 .9 2 2 5
3
21
- 2 .1 5
4 .6 2 2 5
4
21
- 2 .1 5
4 .6 2 2 5
5
21
- 2 .1 5
4 .6 2 2 5
6
22
- 1 .1 5
1 .3 2 2 5
7
22
- 1 .1 5
1 .3 2 2 5
8
22
- 1 .1 5
1 .3 2 2 5
9
22
- 1 .1 5
1 .3 2 2 5
10
22
- 1 .1 5
1 .3 2 2 5
11
23
- 0 .1 5
0 .0 2 2 5
12
23
- 0 .1 5
0 .0 2 2 5
13
24
0 .8 5
0 .7 2 2 5
14
25
1 .8 5
3 .4 2 2 5
15
25
1 .8 5
3 .4 2 2 5
16
26
2 .8 5
8 .1 2 2 5
17
26
2 .8 5
8 .1 2 2 5
18
26
2 .8 5
8 .1 2 2 5
19
26
2 .8 5
8 .1 2 2 5
20
27
3 .8 5
1 4 .8 2 2 5
JU M L A H
S e te la h dik e ta h ui
(
)
(
)²
1 0 2 .5 5 463
m a k a d i m a s u k a n d a la m r u m u s b e r i k u t i n i
=
=
=
=
= 2 .3 2
4 .3 P e n g u j i a n H o m o g e n i t a s V a r i a n s
P e n g u jia n
k e sam a a n
v a ri a n s
d ari
la t i h a n
F ren ch
P re ss . U n tu k
m e n g uji
h o m o g e n i ta s a t a u k e s a m a a n v a ri a n s d a r i p o p u l a s i y a n g d i a m b i l m e n j a d i s a m p e l
p e n e l it i a n p a d a l a ti h a n d i g u n a k a a n r u m u s s e b a g a i b e r k u t :
F =
P e n g u jia n
k e sam a a n
v a ri a n s
a ta u
p e n g u jia n
h o m o g e n it a s
d il a k u k a n
d e n g a n l a n g k a h -l a n g k a h s e b a g a i b e r i k u t:
F =
F =
F = 1 ,5 7
H a s i l p e n g u j i a n k e s a m a a n v a ri a n s . B e r d a s a r k a n h a s il
p e n g ujia n dip e role h
F o b s e r v a s i ( F o ) y a i t u 1 .5 7 . D a r i t a b e l d is t ri b u s i F a t a u ( F t ) p a d a α = 0 .0 5 ; ja d i
( F o ) l e b i h k e c i l d a r i p a d a ( F t) , b e r d a s a r k a n c r it e ri a p e n g u j i a n j i k a
F o ≤ F t = 2 .2 1 ,
m a k a H o d i te r im a . D e n g a n d e m i k ia n k e s im p u la n p e n g u ji a n l a t i h a n F r e n c h P re s s
m e m il i k i k e s a m a a n a t a u h o m o g e n .
4 .4 A n a l i s i s P e n g u ji a n P e n e l it i a n
B erd asark an
p e n g u ji a n
p e rs y a r a t a n
a n a l is i s d a t a y a n g m e n g g u n a k a n U j i
n o r m a li t a s d a t a , d e n g a n t e h n i k U ji L il i e f o r s d a n U j i h o m o g g e n i t a s d e n g a n
U ji v a ria n s d ip ero le h b a h w a
n o rm al
dan
m e m iliki
sam pel
k e sam a a n
se la n jutn y a m e n g g u n a k a n rum u s
b e ra sal
v a ri a n s
te h n i k
d a ri p o p u la si y a n g b e rd istrib b us i
a ta u
h o m o g e n it a s ,
dengan
p e n g u ji a n
U ji t.
P e n g u j i a n H i p o t e s is P e r t a m a
D a r i p e r u m u sa n h i p o t e s i s p e rt a m a , m e n y a t a k a n b a h w a t e r d a p a t
p en g aru h
l a t i h a n F r e n c h p r e s s t e r h a d a p k e t e p a t a n s e r v i s a t a s p a d a p e rm a i n a n b o l a v o l i d a n
u n t u k m e m b u k ti k a n h a l t e r s e b u t d a p a t d i la k u k a n d e n g a n l a n g k a h - l a n g k a h s e b a g a i
b e r i k u t:
a.
L a n g k a h p e r t a m a : R u m u s a n p e n g u ji a n h i p o t e s is
H o
:
d
=
0
:
T id a k
te rd a p a t
p en g aru h
l a ti h a n
fren ch
p ress
te rh a d a p
k e t e p a t a n s e r v i s a t a s p a d a p e rm a i n a n b o l a v o l i .
H a :
d > 0 : T erd ap at
p e n g a r u h l a ti h a n f re n c h p r e s s t e r h a d a p k e t e p a t a n
s e r v i s a t a s p a d a p e r m a i n a n b o l a v o li .
l a n g k a h k e d u a : M e n e n t u k a n k r it e ri a p e n g u ji a n
T e r i m a H o ji k a to
≤
t t (α = 0 . 0 5 ; p a d a n - 1 )
T o la k
b.
H o j i k a to
> tt (α
= 0 .0 5 ; p a d a n - 1 )
L a n g k a h k e t i g a : M e n e n t u k a n s ta t is ti k U j i t
U n tu k
m e n g u ji
h i p o t e s is
dan
p o s -te st
p en g aru h
la tih a n
fr e n c h
p r e s s t e r h a d a p k e t e p a t a n s e r v i s a ta s p a d a p e r m a i n a n b o l a v o l i y a n g a d a
p a d a ta b el 1
serta de n g a n m e n g g u na k a n rum u s uji t p a sa n g a n o bse rv asi,
m a k a d a p a t d i a j u k a n d e n g a n t e h n i k u ji b e ri k u t i n i .
T A B E L 5
P e n g u j i a n H i p o te s i s
S u b jek
D
1
4
0 .9
0 .8 1
2
2
- 1 .1
1 .2 1
3
3
- 0 .1
0 .0 1
4
3
- 0 .1
0 .0 1
5
4
0 .9
0 .8 1
6
3
- 0 .1
0 .0 1
7
5
1 .9
3 .6 1
8
3
- 0 .1
0 .0 1
9
2
- 1 .1
1 .2 1
10
4
0 .9
0 .8 1
11
1
- 2 .1
4 .4 1
12
4
0 .9
0 .8 1
13
2
- 1 .1
1 .2 1
14
3
- 0 .1
0 .0 1
15
3
- 0 .1
0 .0 1
16
4
0 .9
0 .8 1
17
3
- 0 .1
0 .0 1
18
4
0 .9
0 .8 1
19
2
- 1 .1
1 .2 1
20
3
- 0 .1
0 .0 1
62
J a d i d a p a t d i h it u n g :
d
1 7 .8
t =
t =
t =
t =
t = 1 4 .0 9
K r i t e ri a p e n g u ji a n :
B e r d a s a r a k a n h a s i l p e r h i t u n g a n d i p e r o l e h t o b s e r v a s .i . =
a ta u
=
t ta b el p a d a
1 .7 2 9 . d e n g a n
a lfa
α
=
d e m ik ia n
0 .0 5 ; d k
t
=
n -1
o b serv a si le bih
p e n g u j i a n m e n y a t a k a n b a h w a t o la k H o ji k a
H ip o te sis
a l t e r n a ti v e
H a
(2 0 -1
d a p a t d i te r im a
1 4 .0 9 d a ri ta b e l n i la i t
= 1 9 ) d ip e ro le h
b e sar
d a ri
pada
t
h arg a
t
te be l
t e b e l , k ri t e ri a
t o b s e r v a s i ( t o ) > (t t) , o le h k a re n a i t u
ata u te rda p a t pe n g a ru h latih a n F re n c h
P r e s s t e r h a d a p k e t e p a t a n s e r v i s a t a s p a d a p e rm a i n a n s e r v i s a ta s .
4 .5
P e n g u j i a n H i p o te s is
H i p o t e s i s p e n e li ti a n a p a k a h te r d a p a t p e n g a r u h p e l a ti h a n F r e n c h
te rh a d a p
P re s s
k e tera m p ila n
k e t e p a t a n s e r v is a t a s .L a n g k a h a w a l p a d a p e n g u ji a n h i p o t e s i s a d a l a h t e k n i k s t a ti s ti k
yang
d i g u n a k a n u n t u k m e n g u j i h i p o t e s i s a d a l a h u ji -
t .U j i i n i d il a k u k a n s e t e l a h s e l e s a im e l a k u k a n u j i h o m o g e n it a s
d ata
te rh a d a p pre -
t e s t d a n p o s t -t e st .
D a r i h a s i l d a t a e k s p e r i m e n h a s il d a t a p re t e s t d a n p o s t t e s t p a d a p e n g u ji a n t
yang
d i p e r o l e h y a i t u d i p e r o l e h t hitun g s e b e s a r
1 4 ,0 9 s e d a n g k a n h a r g a t d afta rd i p e r o le h s e b e s a r
t a b e lm a k a
t a b e l 1 ,7 2 9 .
d a ta
d a ta
1 .7 2 9 .
t e r s e b u tm e m i li k i p e n g a r u h . T
B e r a rt i
t
h itu n gle bih b e sa rd ari
t
ta b e l
ji k a
=
t
h it u n g l e b i h b e s a r d a r i
N -1 =
2 0 -1
=
19.
Jadi
t
t
t a b e l .M a k a d a p a t d is im p u l k a n b a h w a
p e n e li ti a n i n i s i g n i f i k a n d a n l a t i h a n f r e n c h
p re s s
m e m i l i k i p e n g a r u h d a n h a r g a t h it u n g t e l a h b e r a d a d i d a l a m d a e r a h p e n e r i m a a n H
A
H
0
d e n g a n d e m ikia n d a p atd isim p ulk a n b a h w a
.
H A
d i t e r i m a d a n t i d a k d a p a t m e n e r im a
J a d i d a p a t d i s i m p u l k a n b a h w a l a ti h a n fr e n c h
p re s s
m e m il i k i p e n g a r u h p o s it i ft e r h a d a p p e n i n g k t a n k e t e p a t a n s e r v i s a t a s d a l a m p e r m a i n a n
b o la v o li.
Ho
HA
HA
A A -1 4 .0 9
-1 .7 2 9
0
1 .7 2 9
1 4 .0 9
G A M B A R 2 : K u rv a P e n e rim a a n D a n P e n ola k a n H ip o tesis
4 .6
P em bahasan
P r o s e s p e m b e l a j a r a n d e n g a n m e n g g u n a k a n b e n t u k l a ti h a n f r e n c h p r e s s i n i
d i a w a l i d e n g a n p e m b e r ia n s u a t u p e n je l a s a n t e n t a n g l a ti h a n f r e n c h p re s s it u s e n d ir i
se rta
pe n jela sa n
te n ta n g
k e tep a ta n
m e la k u k a n
serv is
a ta s
dengan
b aik
pada
p e r m a i n a n b o l a v o l i . S e l a n j u t n y a p e n e li t i m e m p r a k ti k k a n c o n t o h k e t e p a t a n s e r v i s
a ta s
dengan
ba ik
dan
b enar,
s e t e la h
it u
s is w a
d i b e ri k a n
tu ga s
g erak
u n tu k
m e la k u k a n
k e t e p a ta n
se rvis
a tas
yang
b a ik
dan
b e n a r s e b a g a im a n a
yang
tela h
d ic o n to h k a n .
B e r d a s a r k a n h a s il p e n e l i ti a n p r e -t e s t m e n u n j u k k a n s k o r
a n a l is i s d i p e r o l e h
n i l a i r a t a - ra t a 2 0 ,0 5 s e d a n g k a n n i l a i v a r i a n s s e b e s a r 8 ,4 7 d a n n i l a i st a n d a r d e v i a s i
2 ,9 1 .
Sedangkan
pada
h a sil
d i p e r o l e h n i la i r a t a -r a t a 2 3 ,1 5
U n tu k
p e n g u jia n
p e n e l i ti a n
p o s t -t e st
m e n u n ju k k a n
skor
a n alisis
d a n s t a n d a r d e v ia s i 2 ,3 2 .
h o m o g e nita s
d ata
a n tara
h a s il
p e n e l it i a n
p re - t e s t
dan
p o s t - te s t s e l u r u h v a r ia b e l m e m il i k i v a ri a n s p o p u l a s i y a n g h o m o g e n s e rt a m e m i li k i
p o p u l a s i y a n g b e r d i s t r i b u s i n o rm a l . U n t u k k e p e r l u a n p e n g u j i a n h i p o t e s i s d a la m
p e n e l it i a n
in i,
m aka
d ala m
p e n g u ji a n
hip o tesis
d ig u n a k a n
u ji
a n alisis
d ata
p e n e l it i a n e k s p e ri m e n . U n t u k m e n g a n a li s i s d a t a e k s p e ri m e n y a n g m e n g g u n a k a n
p r e - t e s t d a n p o st -t e s t o n e g r o u p d e si g n .
D a r i h a s il p e n g u j ia n h a s il p r e -t e s t d a n p o s t -t e s t
sebesar
T e rn y a ta
1 4 ,0 9 .
harg a
Sedangkan
t h it u n g t e l a h
d a ri
d a ft a r
b era d a
di
d e m i k ia n d a p a t d i s i m p u l k a n b a h w a H
Jadi
dapat
d isim p ulk a n
bahw a
d i st ri b u s i
d ala m
A
la tiha n
m e n u n j u k k a n h a r g a t hitun g
d ip ero le h
d a e ra h
h arg a
p e n e r im a a n
t d a f ta r H
A .
2 .0 9 3 .
D engan
d i t e r im a d a n t i d a k d a p a t m e n e ri m a H
fren ch
p re ss
m e m i li k i
s i g n i fi k a n te r h a d a p k e t e p a t a n s e r v i s a t a s p a d a p e r m a i n a n b o l a v o l i .
p en g aru h
o
.
yang