Egykristály és polikristály képlékeny alakváltozása A Frenkel –féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges folyáshatár jóval kisebb. Egykristály képlékeny alakváltozása
A fémek alakváltozása úgy megy végbe, hogy a csúszási irányok mentén a csúszó síkok elcsúsznak egymáson. A hengeres egykristály keresztmetszete legyen A, míg a bejelölt csúszó sík felülete Ag , n a normál vektort g a csúszási irányba mutató vektort jelöli. Az F húzóerő hatására a csúszó síkban ébredő τ csúsztató feszültség figyelembe véve , hogy a csúszó sík felülete Ag = A / cos α és a húzóerő síkba eső komponense
Fg = F cos β
τ=
Fg Ag
=
F cos β cos α = σ cos β cos α = σ m A
ahol m-Schmid –vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ krit , amely ahhoz kell, hogy a képlékeny alakváltozás meginduljon az adott csúszási rendszerben. Alapvető feltevés, hogy tetszőleges csúszási rendszerhez azonos kritikus csúsztatófeszültség tartozik. Csúszási rendszer: csúszó sík és hozzátartozó csúszási irány. Az m Schmidt tényező maximális értéke 0.5. A csúszó síkokon való elcsúszás, rétegesen jelentkezik, ami jól tükröződik a mikroszkópi felvételeken is.
1
Réteges elcsúszás a mikroszkópi felvételen Kristály szerkezet
t.k.k
f.kk hex
Csúszó sík
Csúszási irány
{110}
111
Csúszási rendszerek száma 12
{112}
111
12
{123}
111
24
{111} {0001}
110
12
1120
3
Egyszerű csúszás, ha az F erő helyzete olyan, hogy a kristályban csak egy csúszási rendszeren indul meg az elcsúszás. Pl ha F párhuzamos <321> iránnyal, akkor csak egy csúszási rendszeren van a csúsztató feszültségnek maximuma, és ott indul meg az elcsúszás. F.k.k rendszerben, ha a terhelő erő [ 001] iránnyal párhuzamos, akkor a négy {111} sík
két-két 110 irányában azonos a Schmid tényező értéke és ekkor többszörös, vagy bonyolult csúszás jön létre.
2
Többszörös csúszási rendszer Fkk kristályban Egykristály teljes alakváltozási folyamata a feszültség ( τ )- alakváltozási ( γ ) görbén követhető nyomon.
Egykristály képlékeny alakváltozásának jellegzetes szakaszai A görbe I.tartománya az egyszerű csúszás szakasza, amikor egy csúszási rendszeren megy végbe az elcsúszás. A kezdeti csúsztató feszültség τ 0 , ami csak kevéssé változik és a görbe meredeksége dτ θI = dγ kicsi. Az elcsúszás makroszkopikus formában is jól érzékelhető, az egyes rétegek között eléri a mm-es nagyságrendet. Ehhez azonban nagyon sok diszlokációra van szükség.
3
Minden egyes diszlokáció b vektornyi elmozdulást okoz. 1 mm makroszkopikus elmozduláshoz ∆l 10−1 cm n= = = 5 ⋅108 −8 b 2 ⋅10 cm számú diszlokáció elmozdulására van szükség. Ez a szám jelentősen több mint amennyi diszlokáció található az alakítási folyamat elején a kristályban. A diszlokáció növekedés egyik lehetséges mechanizmusa az un. Frank –Read források működése. A térbeli díszlokáció AB szakasza fekszik csak csúszó síkban, a további részei más síkokra illeszkednek. A csúszó síkban ható feszültség csak ezt a részt mozdítja ki a helyéről.
Térbeli diszlokáció Frank-Read forrása
Diszlokációs hurok kihajlása
4
Frank -Read forrás működése
TEM felvétel Frank-Read forrás Si kristályban való működéséről Ezt követően újabb diszlokációs vonalak keletkeznek és ez a hatás együttesen a csúsztató feszültség növekedését eredményezi. A terhelés közben megváltozik az erő és a kristály kölcsönös irányítottsága és a kristály úgy fordul, hogy előbb utóbb két csúszási rendszerben indul meg az elcsúszás. Az alakváltozás ettől kezdve bonyolulttá válik, a görbe a II. szakaszra vált. Ez a szakasz is közel lineáris keményedéssel jellemezhető dτ G ≈ 10θ I ≈ 300 dγ A létrejövő diszlokációs szerkezet nem egyenletes
θ II =
5
A II szakaszon amikor legalább két csúszási rendszeren megy végbe az elcsúszás, a feszültség alakváltozás görbe az I. szakaszhoz képest meredekebbé válik, az alakítási keményedés erőteljesebb lesz A diszlokáció reakciók során egy lehetséges kialakuló diszlokáció a ( 001) síkban van, ami az f .k .k rendszerben nem tartozik a csúszó síkok közé, vagyis az új diszlokáció nem mozgásképes. Ahhoz, hogy további elcsúszás is megvalósuljon, másik csúszási rendszerekben indul be az alakváltozás, a F-R forrás, de ehhez többlet feszültségre van szükség. Ez a hatás fejeződik ki a feszültség-alakváltozás görbe iránytangensének növekedésében. A III. szakaszra az a jellemző, hogy a rögzített diszlokációkat megkerülik a mögöttük lévők. Ezt a folyamatot keresztcsúszásnak nevezzük. Egy zárt diszlokációs vonal növekedése figyelhető meg a lent elhelyezkedő ábrán. A diszlokáció, amelynek Burgers vektora párhuzamos az 101 íránnyal, az (111) csúszósíkban mozog. Amint diszlokáció vonala párhuzamos lesz a fenti iránnyal, a diszlokáció keresztcsúszásnak nevezett mozgása kezdődik, mivel ez a rész csavardiszlokációnak fogható fel. A csavardiszlokációnak nincs rögzített csúszósíkja, emiatt egyik síkból a másikba tud lépni. A rögzített diszlokációhoz olyan diszlokáció a érkezik, amelynek Burgers vektora b = 1 10 , ez párhuzamos a két sík 2 metszésvonalával, vagyis csavar diszlokációról van szó, amelynek nincs határozott csúszósíkja. Ez a diszlokáció az egyik síkról a másikra lép át., ahol ellentétes előjelű diszlokációval találkozhat. Az alakítás magasabb feszültségszinten de az ellentétes diszlokációk találkozása miatt, kevésbé erőteljes keményedés mellett megy végbe.
(111) 101
a. b b.
(1 11)
c.
d.
(111) Keresztcsúszás
6
Ikerképződés Az elcsúszáson kívül jellegzetes alakváltozási mechanizmus az ikerképződés. Polikristályos test alakváltozása A polikristályos testek sok szemcséből állnak, amelyek különböző orientációval rendelkeznek. Amiatt, hogy a test folytonossága fennmaradjon, szükség van annak feltételezésére, hogy több csúszási rendszer működik minden egyes szemcsében (5). Polikristályos test keményedése mindig intenzívebb, mint az egykristályé. Taylor elmélete szerint a makroszkópikus alakváltozás teljesítménye, kifejezhető az egyes csúszási rendszereken végzett képlékeny teljesítmények összegével. Polikristályos test esetében a jellemző feszültség-alakváltozás görbe felette fut az egykristályénak és az I.szakasz gyakorlatilag nem is létezik.
Feszültség (τ)
polikristály
egykristály III. II. τ0
I. alakváltozás (γ)
Egykristály és polikristály feszültség-alakváltozás görbéi
7