© Typotex Kiadó, 2010
20. fejezet Irodalom III M. Adams, Evaluation of three unstructured multigrid methods on 3D nite element problems in solid mechanics. Int. J. Numer. Methods Eng. 55, 5 (2002), 519534. R.A. Adams, Sobolev Spaces. Academic Press, New York 1975. M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York 2000. M. Ainsworth, C. Carstensen, W. Dörer (eds.), Report 37/2005: MiniWorkshop: Convergence of Adaptive Algorithms (August 14th August 20th, 2005). Oberwolfach Rep. 2, No. 3, (2005), 20912138. Zbl 1106.65300. W.F. Ames, Nonlinear Partial Dierential Equations in Engineering, v. I, II. Academic Press, New York 1965, 1972. F. Ancona, A. Marson, On the convergence rate for the Glimm scheme. In : E. Tadmor, (ed.) et al., Hyperbolic problems. Theory, numerics and applications. Proceedings Symp. in Appl. Math. 67, 1 (2009), 175194. A.B. Andreev, The lumped mass nite element method for some elliptic eigenvalue problems. Proc. Conf. Optimal Algorithms (Bl. Sendov, ed.), Soa 1986, 614. W. Anzinger, A quantitative discrete H2 regularity estimate for the Shortley-Weller scheme in convex domains. Numer. Math. 52 (1988), 523537. A. Arakawa, F. Mesinger, Numerical Methods Used in Atmospheric Models. GARP Public. Series 17, WMO 1978. D.N. Arnold, D. Bo, R.S. Falk, Approximation by quadrilateral nite elements. Math. Comp. 71, 239 (2002), 909922. K. Arrow, L. Hurwicz, H. Uzawa, Studies in Nonlinear Programming. Stanfor Univ. Press, Stanford 1958. 631
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 632
FEJEZET 20. IRODALOM III
J.-P. Aubin, Approximation of Elliptic Boundary Value Problems. Wiley, New York 1972. O. Axelsson, V.A. Barker, Finite Element Solution of Boundary Value Problems : Theory and Computation. Academic Press, New York 1984. O. Axelsson, S.V. Gololobov, Stability and error estimates for the θmethod for strongly monotone and innitely sti evolution equations. Numer. Math. 89,1 (2001), 3148. I. Babuˇska, The nite element method with Lagrangian multipliers. Numer. Math. 20 (1973), 179192. I. Babuˇska, J. E. Osborn, Estimates for the Errors in Eigenvalue and Eigenvector Approximation by Galerkin Methods, with Particular Attention to the Case of Multiple Eigenvalues. SIAM Journal on Numerical Analysis, Vol. 24, No. 6 (1987), 1249-1276. I. Babuˇska, Advances in the p and h−p versions of the nite element method. A survey. In : Numerical Mathematics Singapore 1988 (R.P. Agarwal, Y.M. Chow, S.J. Wilson, eds.), Birkhäuser, Basel 1988, 3146. I. Babuˇska, J.E. Osborn, Eigenvalue Problems, pp. 641788 in: Handbook of Numerical Analysis v. II., Finite Element methods (Ciarlet P.G., Lions J., eds.) North-Holland 1991. I. Babuˇska, T. Strouboulis, The nite element methods and its reliability. Clarendon Press, Oxford 2001. D. Bahlmann, U. Langer, A fast solver for the rst biharmonic boundary value problem. Numer. Math. 63 (1992), 297313. N.Sz. Bahvalov, Egy relakcációs módszer konvergenciájáról, az elliptikus operátorra nézve természetes mellékfeltételek esetén. Zs. Vücs. Matem. i Matem. Fiz. 6, 5 (1966), 861883 (oroszul). G.A. Baker, J.H. Bramble, Semidiscrete and single step full discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13 (1979), 75100. R. Balder, C. Zenger, The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17, No.3 (1996), 631646. R.E. Bank, T.F. Chan, PLTMGC: a multi-grid continuation program for parameterized nonlinear elliptic systems. SIAM J. Sci. Stat. Comput. 7,2 (1986), 540559. R.E. Bank, T.F. Dupont, H. Yserentant, The hierarchical basis multigrid method. Numer. Math. 52 (1988), 427458. Á. Baran, G. Stoyan, Gauss-Legendre elements: a stable, higher order non-conforming nite element family. Computing 79 (2007), 121.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 633
J.B. Bell, C.N. Dawson, G.R. Shubin, An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions. J. Comp. Phys. 74 (1988), 124. G. Ben-yu, Z. Xiao-yong, Spectral method for dierential equations of degenerate type on unbounded domains by using generalized Laguerre functions. App. Numer. Math. 57 (2007), 455471. M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems. Acta Numerica 14 (2005), 1137. M. Benzi, A. Wathen, Some preconditiong techniques for saddle point problems. In: Model Order Reduction: Theory, Research Aspects and Applications (W.H.A. Schilders et al., eds.). Mathematics in Industry 13. Berlin, Springer (2008), 195-211. J. Bey, Simplicial grid renement: on Freudenthal's algorithm and the optimal number of congruence classes. Numer. Math. 85 (2000), 129. P. Binev, W. Dahmen, Wolfgang, R. DeVore, Adaptive nite element methods with convergence rates. Numer. Math. 97, 2 (2004), 219268. J.J. Blair, Bounds for the change in the solutions of second order elliptic partial dierential equations. SIAM J. Appl. Math. 24,3 (1973), 277285. J. Boland, R. Nikolaides, Stability of nite elements under divergence constraints. SIAM J. Numer. Anal. 20, 4 (1983), 722731. V.S. Borisov, On discrete maximum principles for linear equation systems and monotonicity of dierence schemes. SIAM J. Matrix Anal. Appls. 24, 4 (2003), 11101135. A. Bowyer, Computing Dirichlet tesselations. Comput. J. 24 (1981), 162 166. D. Braess, W. Hackbusch, A new convergence proof for the multigrid method including the V-cycle. SIAM J. Numer. Anal. 20,5 (1983), 967975. D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. 2nd. ed., Cambridge Univ. Press 2001. D. Braess, R. Sarazin, An ecient smoother for the Stokes problem. Appl. Numer. Math. 23 (1997), 319. J.H. Bramble, J.E. Pasciak, A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring, IIV. Math. Comp. 47 (1986), 103134; 49 (1987), 116; 51 (1988), 415430; 53 (1989), 124. A. Brandt, Guide to Multigrid Programming. Lecture Notes in Math. 960, Springer 1982.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 634
FEJEZET 20. IRODALOM III
A. Brandt, Guide to CFD Multigrid Programming. GMD-Studie, St. Augustin 1984. A. Brandt, S. McCormick, J. Ruge, Multigrid methods for dierential eigenproblems. SIAM J. Sci. Stat. Comput. 4 (1983), 244260. S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York 1994. F. Brezzi, On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrange multipliers. R.A.I.R.O., Anal. Numer. 8, 129151 (1974). F. Brezzi, R.S. Falk, Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28, 3 (1991), 581590. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, New York 1991. W.L. Briggs, E. van Henson, S.F. McCormick, A Multigrid Tutorial. 2nd. ed., SIAM, Philadelphia 2000. H-J. Bungartz, M. Griebel, Sparse grids. Acta Numerica 13 (2004), 147 269. C. Canuto, M.Y. Hussaini, A. Quarteroni, Spectral Methods in Fluid Dynamics. Springer, Berlin 1987. C. Carstensen, An adaptive mesh-rening algorithm allowing for an H 1 stable L2 projection onto Courant nite element spaces. Constructive Approximation 20, 4 (2004), 549564. F. Chatelin, Spectral Approximations of Linear Operators. Academic Press, New York 1983. C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. Math. Model. Numer. Anal. 33, 1 (1999), 129156. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Amsterdam, NorthHolland 1978. P.G. Ciarlet, Discrete maximum principle for nite-dierence operators. Aequat. Math. 4 (1970), 338352. P.G. Ciarlet, P.A. Raviart, Maximum principle and uniform convergence for the nite element method. Comp. Meth. Appl. Mech. & Eng. 2 (1973), 1731. Ph. Clément, Approximation by nite element functions using local regularization. RAIRO Anal. Numér. 9 (1975), 7784.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 635
B. Cockburn, C. Johnson, C.-W. Shu, E. Tadmor, Advanced numerical approximation of nonlinear hyperbolic equations (A. Quarteroni, ed.). Lecture Notes in Mathematics 1697. Berlin: Springer 1998. R. Courant, K.O. Friedrichs, H. Lewy, Über die Dierenzengleichungen der Mathematischen Physik. Math. Annalen, 100 (1928), 3274. R. Courant, D. Hilbert, Methoden der Matematischen Physik II, 2. Auflage, Springer-Verlag, Berlin 1968. M. Crouzeix, P.A. Raviart, Conforming and non-conforming nite elements for solving the stationary Stokes equations. RAIRO Anal. Numér. Method. 7 (1973), 3376. E.V. Csizsonkov, Iterációs módszerek nyeregpont feladatok megoldására. IVM RAN, Moszkva 2002 (oroszul). J.K. Cullum, R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, v. I (Theory), II (Programs). Birckhäuser, Basel 1985. A. Dedner, C. Makridakis, M. Ohlberger, Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws. SIAM J. Numer. Anal. 45, 2 (2007), 514538. J.W. Demmel, Applied Numerical Linear Algebra. SIAM, Philadelphia 1997. P. Destuynder, B. Métivet, Explicit error bounds in a conforming nite element method. Math. Comp. 68, 228 (1999), 13791396. J.G. Djakonov, Többdimenziós instacionárius feladatok megoldását szolgáló, faktorizált operátorú dierenciálsémákról. Zs. Vücs. Mat. i Mat. Fiz. 2,4 (1962), 549568 (oroszul). J.G. Djakonov, A Stokesoperátorú peremérték feladatok megoldásához szükséges aritmetikai m¶veletek számának becslése. Izv. Vuzov, Matematika, No. 7 (1983), 4658 (oroszul). J.G. Djakonov, A numerikus m¶veletek minimálizálása. Elliptikus egyenleteket megoldó, aszimptotikusan optimális algoritmusok. Nauka, Moszkva (1989) (oroszul). J.G. Djakonov, Energia-terek és alkalmazásai. Moszkva (2001) (oroszul).
VMiK MGU kiadója,
M. Dobrowolski, K. Thomas, On the use of discrete solenoidal nite elements for approximating the Navier-Stokes equation. In: Proc. GermanItalian Symp. Appls. of Math. in Technology (Bo V., Neunzert H., eds.). Teubner, Stuttgart 1984, 246262.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 636
FEJEZET 20. IRODALOM III
M. Dobrowolski, A discrete solenoidal nite dierence scheme for the numerical approximation of incompressible ow. Numer. Math. 54 (1989), 533542. W. Dörer, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996), 11061124. M. Dryja, Metoda Galerkina przemiennych kierunków dla quasiliniowych równan parabolicznych. Roczniki Polsk. Tow. Mat., Ser. III: Matematyka Strowana XV (1979) 523. M. Dryja, A capacitance matrix method for Dirichlet problems on polygonal regions. Numer. Math. 39 (1982), 5164. A. Ecker, W. Zulehner, On the smoothing property for the non-symmetric case. University Linz, Inst.-ber. Nr. 489, Linz 1995. N. Egidi, P. Maponi, A robust direct variational approach for generation of quadrangular and triangular grids on planar domains. Math. Comput. Simul. 75, No. 5-6 (2007), 171181. B. Einfeldt, Ein schneller Algorithmus zur Lösung des Riemann-Problems. Computing 39 (1987), 7786. B. Einfeldt, On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25, 2 (1988), 294318. B. Engquist, A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. 32 (1979), 313357. Faragó I., H. Hariton, Komáromi N., Pfeil T., A h®vezetési egyenlet és numerikus megoldásának kvalitatív tulajdonságai. I. Az els®fokú közelítések nemnegativitása. Alk. Matem. Lapok 17 (1993), 101121; II. A másodfokú közelítés nemnegativitása, a maximumelv és az oszcillációmentesség. Alk. Matem. Lapok 17 (1993), 123141. I. Faragó and J. Karátson, Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Advances in Computation: Theory and Practice v. 11. NOVA Science Publishers, New York 2002. R.P. Fedorenko, Diszkrét elliptikus egyenleteket megoldó relakcációs módszer. Zs. Vücs. Matem. i Mat. Fiz. 1,5 (1961), 922927 (oroszul). R.P. Fedorenko, Egy iterációs módszer konvergencia sebességér®l. Zs. Vücs. Matem. i Mat. Fiz. 4,5 (1964), 559564 (oroszul). R.P. Fedorenko, Diszkrét elliptikus egyenleteket megoldó iterációs módszerekr®l. Uszpehi Matem. Nauk 28,2 (1973), 121182 (oroszul). M. Feistauer, Computational Fluids Dynamics. Longman Scientic & Technical, Harlow 1993.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 637
J.E. Flaherty, R.M. Loy, M.S. Shephard, J.D. Teresco. Software for the parallel adaptive solution of conservation laws by discontinuous Galerkin methods. In : B. Cockburn (ed.) et al., Discontinuous Galerkin methods. Theory, computation and applications. Springer. Lect. Notes Comput. Sci. Eng. 11 (2000), 113123. M. Fortin, An analysis of the convergence of mixed nite element methods. RAIRO Anal. Numér. 11, 3 (1977), 341354. M. Fortin, Finite element solution of the NavierStokes equations. Acta Numerica 1993, 239284. I. Fried, D.S. Malkus, Finite element mass matrix lumping without convergence rate loss. Int. J. Solids & Structures 11 (1976), 461466. A. Friedman, Partial Dierential Equations of Parabolic Type. PrenticeHall, Englewood Clis 1964. O. Friedrich, A new method for generating inner points of triangulations in two dimensions. Comp. Meth. Appl. Mech. & Eng. 104 (1993), 7786. I.V. Frjazinov, A Poissonegyenletet approximáló dierenciasémákról, polár-, hengerszimmetrikus és gömbszimmetrikus koordinátá-rendszerekben. Zs. Vücs. Matem. i Matem. Fiz. 11,5 (1971), 12191228 (oroszul). G.P. Galdi, An Introduction to the Navier-Stokes Equations I: Linearized Steady Problems, II: Nonlinear Steady Problems. Springer, New York 1994. B.G. Galjorkin, Vesztnyik Inzsenera No. 19 (1915), 897908. Gáspár Cs., Józsa J., Two-dimensional Lagrangian ow simulation using fast quadtree-based adaptive multigrid solver. Proc. 9th GAMM Conf. 1991, Vieweg-Verlag 1992. Gáspár Cs., Elliptikus peremérték feladatok perem tipusú numerikus megoldási módszerei. Thesis, Budapest 1993. Gáspár Cs., Józsa J., P. Simberowicz, Új szemléletmód a numerikus hidraulikában. Hidrológiai Közlöny 3. és 4. sz. (1994), 1. és 2. sz. (1995). P.L. George, E. Seveno, The advancing front mesh generation method revisited. Int. J. Numer. Methods Eng. 38 (1995), 36053619. U. Ghia, K.N. Ghia, C.T.Shin, HighRe solutions for incompressible ow using the NavierStokes equations and a multigrid method. J. Comp. Phys. 48 (1982), 387411. V. Girault, P.A. Raviart, Finite Element Methods for NavierStokes Equations, Springer 1986.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 638
FEJEZET 20. IRODALOM III
J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697715. R. Glowinski, J. Periaux, Numerical methods for nonlinear problems in uid dynamics. Proc. Int. Seminar on Sci. Supercomputers. North-Holland, Amsterdam 1987. H. Godlewski, P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York 1996. S.K. Godunov, Dierencia-módszer a gázdinamikai egyenletek numerikus megoldására. Mat. Zbornik 47 (89), 3 (1959), 271306 (oroszul). S.K. Godunov, G.P. Prokopov, A konform leképezések kiszámításáról és a dierencia rácsok szerkesztésér®l. Zs. Vücs. Matem. i Matem. Fiz. 7,5 (1967), 10311059 (oroszul). Sz.K. Godunov, V.Sz. Rjabenykij, Dierenciasémák. Nauka, Moszkva 1973 (oroszul). Sz.K. Godunov, A Matematikai Fizika Egyenletei. Nauka, Moszkva 1979 (oroszul). H. Goering, H.-G. Roos, L. Tobiska, Die Finite-Element-Methode. Akademie-Verlag, Berlin 1988. V.Ja. Golgyin, N.N. Kalitkin, T.V. Sisova, Nemlineáris dierenciasémák hiperbolikus egyenletek megoldására. Zs. Vücs. Matem. i Matem. Fiz. 5, 5 (1965), 938944 (oroszul). A.L. Goncsarov, I.V. Frjazinov, A NavierStokes egyenleteket megoldó dierenciasémák kilencpontos keresztalakú dierencia-csillagon. Zs. Vücs. Matem. i Matem. Fiz. 28, 6 (1988), 867878 (oroszul). S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 1 (2001), 89112. P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element Method. I: Advection - Diusion, Isothermal Laminar Flow. J. Wiley, Chichester 1998. D.F. Griths, Finite elements for incompressible ow. Math. Meth. Appl. Sci. 1 (1979), 1631. D.F. Griths, D. Silvester, Unstable modes of the Q1 − P0 element. Numerical Analysis Report No. 257, UMIST 1994. Ch. Groÿmann, H.-G. Roos, Numerik partieller Dierentialgleichungen. Teubner, Stuttgart 1992. A 3. német kiadás angol fordítása : Ch. Grossmann, H.-G. Roos, M. Stynes, Numerical treatment of partial dierential equations. Universitext. Springer Verlag, Berlin 2007.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 639
A.V. Gulin, Néhány nemönadjungált háromréteges séma stabilitási kritériumai. Di. Urav. XVI,7 (1980), 12051210 (oroszul). A.V. Gulin, A.A. Szamarszkij, A dierenciasémák stabilitási elméletének néhány eredményér®l és problémájáról. Mat. Zborn. 99 (141), (1976), 290 330 (oroszul). A.V. Gulin, I.V. Frjazinov, A h®vezetési egyenletet megoldó, váltakozó irányok módszereinek pontosságáról, általános tartomány esetén. Di. Uravnyenija XII, 10 (1976), 19061914 (oroszul). Qi Guo-Ben, The h − p version of the nite element method for elliptic equations of order 2m. Numer. Math. 53, (1988), 1-2, 199-224. V.A. Guscsin, Henger körüli, leváló viszkózus áramlások numerikus vizsgálata. Szovjet Akadémia Számítóközpontja, Moszkva 1985 (oroszul). B. Gustafsson, H.O. Kreiss, J. Oliger, Time dependent problems and dierence methods. Wiley-Interscience, New York 1995. G. Haase, U. Langer, A. Meyer, The approximate Dirichlet domain decomposition method. I.: An algebraic approach. Computing 47 (1991), 137151; II: Applications to 2nd order elliptic boundary value problems. Computing 47 (1991), 153157. G. Haase, U. Langer, A. Meyer, S.V. Nepomnyascsih, Hierarchical extension and local multigrid methods in domain decomposition preconditioners. Preprint SPC 948, TH Chemnitz 1994. W. Hackbusch, On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal. 16 (1979), 201215. W. Hackbusch, U. Trottenberg (eds.), Multigrid Methods. Lecture Notes in Mathematics 960. Springer, Berlin 1982. W. Hackbusch, Multi-Grid Methods and Applications. Springer, Berlin 1985. W. Hackbusch, U. Trottenberg (eds.), Multigrid Methods II. LNM 1228. Springer, Berlin 1986. W. Hackbusch, Theorie und Numerik elliptischer Dierentialgleichungen. Teubner, Stuttgart 1986. W. Hackbusch, On rst and second order box schemes. Computing 41 (1989), 277296. W. Hackbusch, A. Reusken, Analysis of a damped nonlinear multilevel method. Numer. Math. 55,2 (1989), 225246.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 640
FEJEZET 20. IRODALOM III
F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible ow of uid with free surface. Phys. Fluids 8 (1965), 2183-2189. A. Harten, B. Engquist, S. Osher, S. Chakravarthy, Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Physics 71 (1987), 231 303. A. Harten, P.D. Lax, B. van Leer, On upstream dierencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review 25 (1983), 3561. Heged¶s Cs., Conjugate gradient methods for general matrices. Diszszertáció, Magyar Tudományos Akadémia 1995. B. Heinrich, Finite Dierence Methods On Irregular Networks. Akademie-Verlag, Berlin 1987. R.L. Higdon, Numerical absorbing boundary conditions for the wave equation. Math. Comp. 49,179 (1987), 6590. R.W. Hockney, A fast direct solution of Poisson's equation using Fourier analysis. J. ACM 12 (1965), 95113. P. Hood, C. Taylor, A numerical solution of the Navier-Stokes equations using nite element technique. Comp. Fluids 1 (1973), 73100. P. Hood, Frontal solution program for unsymmetric matrices. Int. J. Num. Meth. Eng. 10 (1976), 379398. E. Hopf, Elementare Bemerkungen über die Lösungen partieller Dierentialgleichungen vom elliptischen Typus. Sitzungsberichte d. Preuÿischen Akad. Wiss. Berlin, 19 (1927), 147152. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1951), 213231. T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, Englewood Clis 1987. Z. Horváth and A. Horváth, Application of CFD numerical simulation for intake port shape design engine. J. Comput. Appl. Mech. 4, 2, (2003), 129146. Z. Horváth and A. Horváth, Numerical simulation of compressible uids with moving boundaries: an eective method with applications. In : Numerical mathematics and advanced applications. Proceedings of ENUMATH 2003 (M. Feistauer et al., eds.). Springer-Verlag, Berlin 2004, 471-482. T.J.R. Hughes, Multiscale phenomena: Green's functions, the Dirichletto-Neumann formulation, subgrid scale models, bubbles and the origin of stabilized methods. Comp. Meth. Appl. Mech. & Eng. 127 (1995), 387401.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 641
B.H. Irons, A. Razzaque, Experience with the patch test for convergence of nite elements. In : The Mathematical Foundations of the Finite Element Method with Applications to Partial Dierential Equations. (A.K. Aziz, ed.) New York, Academic Press 1973, 557587. A. Iserles, G. Strang, The optimal accuracy of dierence schemes. Trans. Amer. Math. Soc. 277,2 (1983), 779803. A. Iserles, On the method of Neumann series for highly oscillatory equations. BIT 44, 3 (2004), 473488. A. Iserles, On the numerical quadrature of highly-oscillating integrals. II: Irregular oscillators. IMA J. Numer. Anal. 25, 1 (2005), 2544. Istvány E., Tápvonalak, antennák, hullámterjedés. Tankönyvkiadó, Budapest 1967. N.N. Janenko, Egy, a többdimenziós h®vezetési egyenletet megoldó dierenciasémáról, Doklady AN SSSR, 125, 6 (1959) 12071210 (oroszul). G-S. Jiang, C-W. Shu, Ecient implementation of weighted ENO schemes. J. Comput. Phys. 126,1 (1996), 202-228. G-S. Jiang, E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM j. Sci. Comp. 19,6 (1998), 1892 1917. V. John, P. Knobloch, G. Matthies, L. Tobiska, Non-nested multi-level solvers for nite element discretisations of mixed problems. Computing 68, 4 (2002), 313341. V. John, L. Tobiska, A coupled multigrid method for nonconforming nite element discretizations of the 2D-Stokes equation. Computing 64 (2000), 307321. V. John, Higher order nite element methods and multigrid solvers in a benchmark problem for the 3D-Navier-Stokes equations. Int. J. Numer. Meth. Fluids 40 (2002), 775798. B.S. Jovanovicˇ, L.D. Ivanovicˇ, E.E. Süli, Convergence of nite-dierence schemes for elliptic equations with variable coecients. IMA. J. Numer. Anal. 7 (1978), 301305. J. Kadlec, A Poissonegyenlet megoldásának regularitásáról olyan tartomány esetén, amelynek pereme lokálisan konvex tartomány peremére hasonló. Czehosl. Math. J. 14 (1964), 386393. (oroszul). R.B. Kellog, J.E. Osborn, A regularity result for the Stokes problem in a convex polygon. Funct. Anal. 21 (4) (1976), 397431. Kiss B., Krebsz A., On the relational database type numerical programming. Paper 48 in: Proc. 3rd Intern. Conference on Engineering Computati-
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 642
FEJEZET 20. IRODALOM III
onal Technology: ECT 2002 (B.H.V. Topping, Z. Bittnar, eds.). Civil-Comp Press, Stirling 2002. Kiss B., Krebsz A., On the relational database style numerical programming. In: Numerical Mathematics and Advanced Applications: ENUMATH 2003 (M. Feistauer et al., eds.). Springer 2004, 559568. V.G. Kornyejev, Magasrend¶ végeselem módszerek. Állami Leningradi Egyetem 1977 (oroszul). V.G. Kornyejev, Az egzakt dierencia-approximációkról. Zs. Vücs. Matem. i Matem. Fiz. 22, 3 (1982), 646654. H.O. Kreiss, Über die Stabilitätsdenition für Dierenzengleichungen, die partielle Dierentialgleichungen approximieren. BIT 2 (1962), 153181. T. Kröger, T. Preusser, Stability of the 8-tretrahedra-shortest-interioredge partitioning method. Numer. Math. 109 (2008), 435457. D. Kröner, Numerical Schemes for Conservation Laws. Wiley and Teubner, Chichester 1997. D. Kröner, M. Ohlberger, A posteriori error estimates for upwind nite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comput. 69, 229 (2000), 2539 . J.R. Kuttler, Direct methods for computing eigenvalues of the nite difference Laplacian. SIAM J. Numer. Anal. 11,4 (1974), 732740. N.N. Kuznetszov, Az els®rend¶ kvázilineáris egyenletek gyenge megoldásait számító néhány közelít® módszer pontossága. Zs. Vücs. Matem. i Matem. Fiz. 16 (1976), 105119 (oroszul). O.A. Ladüzsenszkaja, V.A. Szolonnikov, N.N. Uralceva, Lineáris és kvázilineáris parabolikus egyenletek. Nauka, Moszkva 1967 (oroszul, angol fordítás: AMS, Providence 1968). O.A. Ladüzsenszkaja, A viszkózis összenyomhatatlan folyadék matematikai kérdései. Nauka, Moszkva 1970 (2. kiadás, oroszul). H. Lamb, Hydrodynamics. 3rd. ed., Cambridge, University Press 1906. Lánczos C., An iteration method for the solution of the eigenvalue problem of linear dierential and integral operators. J. Res. Nat. Bur. Standards 45, (1950), 255282. E. Landau, Vorlesungen über Zahlentheorie. Hirzel, Leipzig 1927 (Chelsea Publ. Co. 1946). J. Lang, J. Verwer, ROS3P An accurate third-order Rosenbrock solver designed for parabolic problems. BIT 41,4 (2001), 731-738. K.H. Law, A parallel nite element solution method. Computers and Structures 23, 6 (1989), 855858.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 643
P.D. Lax, L. Nirenberg, On stability for dierence schemes: a sharp form of Gårding's inequality. Commun. Pure Appl. Math. 19,4 (1966), 437492. P.D. Lax, B. Wendro, Systems of conservation laws. Comm. Pure Appl. Math. 13 (1960), 217237. P.D. Lax, B. Wendro, Dierence schemes for hyperbolic equations with high order of accuracy. Comm. Pure Appl. Math. 17 (1964), 384398. P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Conf. Series in Appl. Math., Philadelphia 1973. W.J. Layton, P.J. Rabier, PeacemanRachford procedure and domain decomposition for nite element problems. Numer. Lin. Algebra Appls., 2,4 (1995), 363393. V.I. Lebedev , Dierence analogons of orthogonal decompositions, of the basic dierential operators and of some boundary value problems of Mathematical Physics. Soviet J. Numer. Math. and Math. Physics, part I: 4, 3 (1964), 449465; part II: 4, 4 (1964), 649659 (oroszul). M. Lees, A linear three-level dierence scheme for quasilinear parabolic equations. Math. Comp. 20 (1966), 516522. Leonard B.P., A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comp. Meth. Appl. Mech. & Eng. 19 (1979), 5998. J. Leray, Sur le mouvement d'un liquid visqueux emplissant l'espace. Acta Math. 63 (1934), 193248. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Univ. Press, Cambridge UK 2002. J.L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications I. Springer 1972. D.V. Liseikin, Grid Generation Methods, Springer Verlag, New York 1999. D.V. Liseikin, A computational dierential geometry approach to grid generation. Springer Verlag, Berlin 2004. A. Liu, B. Joe, On the shape of tetrahedra from bisection. Math. Comp. 63 (1994), 141154. T.P. Liu, The Riemann problem for general systems of conservation laws. J. Di. Equations 18 (1975), 218234. Z. Lozina, A comparison of harmonic acceleration method with other commonly used methods for calculation of dynamic transient response. Computers & Structures 29,2 (1988), 227-240.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 644
FEJEZET 20. IRODALOM III
J.N. Lyness, R. Cools, A survey of numerical cubature over triangles. Proc. Symp. Appl. Math. 48 (1994), 127150. D.S. Malkus, Eigenproblems associated with the discrete LBB-condition for incompressible nite elements. Int. J. Eng. Sci. 19 (1981), 12991310. G.I. Marcsuk, V.V. Sajdurov, Raising the Accuracy of Solutions of Dierence Schemes. Nauka, Moszkva 1979. G. Matthies, F. Schieweck, A multigrid method for incompressible ow problems using quasi-divergence free functions. SIAM J. Sci. Comput. 28 (2006), 141171. disc G. Matthies, L. Tobiska, The inf-sup condition for the mapped Qk − Pk−1 element in arbitrary space dimensions. Computing 69 (2002), 119139. A. Meister, Zur zeitgenauen numerischen Simulation reibungsbehafteter, kompressibler, turbulenter Strömungsfelder mit einer impliziten Finite-Volumen-Methode vom Box-Typ. Dissertation Darmstadt 1996. A. Meyer, Modern Algorithms for Large Sparse Eigenvalue Problems. Mathematical Research v. 35., Akademie-Verlag, Berlin 1987. J.H. Michael, A general theory for linear elliptic partial dierential equations. J. Di. Eqs. 23 (1977), 129. A.R. Mitchell, G. Fairweather, Improved forms of the alternating direction methods of Douglas, Peaceman and Rachford for solving parabolic and elliptic equations. Numer. Math. 6 (1964) 285292. A.R. Mitchell, D.F. Griths, The Finite Dierence Method in Partial Dierential Equations. Wiley-Interscience, New York 1980. M. Mohr, R. Wienands, Cell-centred multigrid revisited. Comput. Vis. Sci. 7, 3-4 (2004), 129140. P. Monk, Finite Element Methods for Maxwell's Equations. Oxford University Press, Oxford 2003, K. Morgan, J. Periaux, F. Thomasset (eds.), Analysis of Laminar Flow over a Backward Facing Step. A GAMM workshop. Notes on Numerical Fluid Mechanics v. 9, Vieweg, Braunschweig 1984. P. Morin, R.H. Nochetto, K.G. Siebert, Convergence of adaptive nite element methods. SIAM Review 44,4 (2000), 631658. J. Necˇas, Equations aux dérivées partielles. Presse de l' Université de Montréal, 1965. J. Necˇas, Les méthodes directes en théorie des équationes elliptiques. Prága, Academia 1967. J. v. Neumann, R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21,3 (1950), 232243.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 645
N.M. Newmark, A method of computation for structural dynamics, ASCE J. Engineering Mechanics Division, 85 (1959), 6794. Nyers J., G. Stoyan, A dynamical model adequate for controlling the evaporator of a heat pump. Int. J. Refrig. 17,2 (1994), 101108. L.A. Oganeszjan, V.J. Rivkind, L.A. Ruhovec, Elliptikus egyenletek megoldása variációs dierencia módszerekkel. I, II. Dierencialegyenletek és alkalmazásai, 5,8, Vilniusz 1973, 1974 (oroszul). L.A. Oganeszjan, L.A. Ruhovec, Elliptikus egyenletek megoldása variációs dierencia módszerekkel. Erevan, Örmény Tud. Akadémia 1979 (oroszul). J.M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems. Plenum Press, New York 1988. S.V. Patankar, Numerical Heat Transfer. Academic Press, New York 1980. S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic ows. Int. J. Heat and Mass Transfer 15 (1972), 17871806. D.W. Peaceman, H.H. Rachford, The numerical solution of parabolic and elliptic dierential equations. J. Soc. Ind. Appl. Math. 3,1 (1955), 2841. A.G. Peano, Hierarchies of conforming nite elements for plane elasticity and plate bending problems. Comp. Math. Appl. 2 (1975), 211224. P.P. Pébay, T.J. Baker, Analysis of triangle quality measures. Math. Comp. 72 (2003), 18171839. D. Pelletier, A. Fortin, R. Camarero, Are FEM solutions of incompressible ows really incompressible? (Or how simple ows can cause headaches!) Int. J. Numer. Methods in Fluids 9 (1989), 99112. M. Peric, R. Kessler, G. Scheuerer, Comparison of nite-volume numerical methods with staggered and non-staggered grids. Computers and Fluids 16 (1988), 389403. J.B. Perot, An analysis of the fractional step method. J. Comp. Phys. 108 (1993), 5158. V.G. Prikazcsikov, A.N. Himics, Iterációs módszer lemezek és héjak stabilitási és rezgési feladatainak megoldására. Prikl. Mechanika 20, 1 (1984), 8894 (oroszul). M.H. Protter, H.F. Weinberger, Maximum Principles in Dierential Equations. Prentice-Hall, Englewood Clis 1967. J.S. Przemieniecki, Matrix structural analysis of substructures. AIAA J. 1 (1963), 138147.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 646
FEJEZET 20. IRODALOM III
J. Qiu, C-W. Shu, On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183,1 (2002), 187209. C. Rajakumar, Lanczos algorithm for the quadratic eigenvalue problem in engineering applications. Comp. Meth. Appl. Mech. & Eng. 105,1 (1993), 122. R. Rannacher, Finite element solution of diusion problems with irregular data. Numer. Math. 43 (1984), 309327. A. Reusken, A new lemma in multigrid convergence theory. RANA 91-07, Eindhoven 1991.
Report
R.D. Richtmyer, K.W. Morton, Dierence Methods for Initial-Value Problems. WileyInterscience, New York 1967. P.J. Roache, Computational Fluid Dynamics. Hermosa Publ., Albuquerque 1976. P.L. Roe, D. Sidilkover, Optimum positive linear scheme for advection in two and three dimensions. SIAM J. Numer. Anal. 29 (1992), 15421568. J.B. Rosser, Eect of discontinuous boundary conditions on nite-dierence solutions. ZAMP 27 (1976), 249272. Rózsa P., Lineáris algebra és alkalmazásai. 3. kiadás, Tankönyvkiadó, Budapest 1991. Y. Saad, Iterative Solution of Sparse Linear Systems. 2nd. ed., SIAM, Philadelphia 2007. V.V. Sajdurov, Végeselem alapú többrácsos módszerek. Nauka, Moszkva, 1989 (oroszul). Multigrid Methods for Finite Elements. Kluwer Acad. Publ., Dordrecht 1995. V.V. Sajdurov, On the convergence of the cascadic multigrid method. Proceedings of the Miskolc Conference on Numerical Methods, 1994. Mathematics and Computers with Applications, 1996. A.A. Samarskij, Theorie der Dierenzenverfahren. Teubner, Leipzig 1984. Fordítás oroszból : Nauka, Moszkva 1973. J.M. SanzSerna, C. Palencia, A general equivalence theorem in the theory of discretization methods. Math. Comp. 45,171 (1985), 143152. M. Schäfer, S. Turek, Benchmark computations of laminar ow around cylinder. In: E.H. Hirschel (ed.), Flow Simulation with High-Performance Computers II. Notes in Numerical Fluid Mechanics, v. 52, Vieweg, Oldenburg 1996, 547566.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 647
F. Schieweck, Numerische Integration bei der Finite-Element-Diskretisierung singulär gestörter elliptischer Randwertaufgaben. Wiss. Zt. TU Magdeburg 31 (1987) 5, 95101. F. Schieweck, On the order of two nonconforming nite element approximations of upwind type for the NavierStokes equations. In : Numerical Methods for the NavierStokes Equations (F.K. Hebeker et al., eds.), Notes on Numerical Fluid Mechanics v. 47, Vieweg, Braunschweig 1994, pp. 249258. F. Schieweck, L. Tobiska, A parallelization strategy for a NavierStokes multigrid solver based on macroelements. In : Computational Fluid Dynamics on Parallel Systems (S. Wagner, ed.), Notes on Numerical Fluid Mechanics v. 50, Vieweg, Braunschweig 1995, pp. 176187. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox Alberta. Springer, Berlin 2005. A. Schüller, Mehrgitterverfahren für Schalenprobleme. GMD-Bericht 171. Oldenbourg Verlag, München 1988. L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (190) (1990), 483493. I. Senjanovicˇ, Harmonic acceleration method for dynamic structural analysis. Computers & Structures, 18, 1 (1984), 7180. G. Shortley, R. Weller, The numerical solution of Laplace's equation. J. Appl. Phys. 9 (1938), 334345. C-W. Shu, S. Osher, Ecient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83 (1989), 3278. Simon L., E.A. Baderko, Másodrend¶ lineáris parciális dierenciálegyenletek. Tankönyvkiadó, Budapest 1983. Sleijpen G.L.G., Optimal a priori error bounds for the RayleighRitz method. Math. Comp. 72 (2003), 677684. G.A. Sod, A survey of several nite dierence methods for systems of nonlinear hyperbolic conservation laws. J. Comp. Phys. 27 (1978), 131. H. Sohr, The Navier-Stokess Equations. An Elementary Functional Analytic Approach. Birkhäuser, Basel 2001. M.N. Spijker, On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem. BIT 31,3 (1991), 551555. M.N. Spijker, Numerical stability, resolvent conditions and delay dierential equations. Appl. Numer. Math. 24,2-3 (1997), 233246. S. Spekreijse, Multigrid solution of monotone second order discretizations of hyperbolic conservation laws. Math. Comp. 49 (179), (1987), 135155.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 648
FEJEZET 20. IRODALOM III
R. Stenberg, Analysis of mixed nite element methods for the Stokes problem: a unied approach. Math. Comp. 165 (1984), 923. R. Stevenson, Discrete Sobolev spaces and regularity of elliptic dierence schemes. M2 AN 25,5 (1991), 607640. G. Stoyan, A parabolikus típusú, többdimenziós egyenletek peremérték feladatai megoldását szolgáló néhány gazdaságos sémáról. Zs. Vücs. Matem. i Matem. Fiz. 10,3 (1970), 644653 (oroszul). G. Stoyan, Az additív dierenciasémák peremérték szerinti stabilitásáról. Zs. Vücs. Matem. i Matem. Fiz. 11,4 (1971), 934947 (oroszul). G. Stoyan, Néhány ekonomikus séma aszimptotikus stabilitásáról. Zs. Vücs. Matem. i Matem. Fiz. 20,2 (1980), 350358 (oroszul). G. Stoyan, On maximum principles for matrices, and on conservation of monotonicity. With applications to discretization methods. ZAMM 62 (1982), 375381. G. Stoyan, On maximum principles for monotone matrices. Lin. Algebra and Its Appls. 78 (1986), 147161. G. Stoyan, On the monotone approximation of a two-dimensional partial dierential equation with nonnegative characteristic form. Proceedings NUMDIFF-5, Teubner, Leipzig 1991, 259266. G. Stoyan, Iterative Stokes solvers in the harmonic Velte subspace. Computing, 67 (2001), 1333. G. Stoyan, G. Strauber, Á. Baran, Generalizations to discrete and analytical Crouzeix-Velte decompositions. Numer. Linear Algebra Appls. 11 (2004), 565590. G. Stoyan, Á. Baran, Crouzeix-Velte decompositions for higher-order nite elements, Comp. Math. with Appls. 51, 967986 (2006). G. Strang, G.J. Fix, An Analysis of the Finite Element Method. PrenticeHall, Englewood Clis 1973. A.A. Szamarszkij, Bevezetés a dierenciasémák elméletébe. Nauka, Moszkva 1971 (oroszul). A.A. Szamarszkij, V.B. Andrejev, Dierencia módszerek elliptikus egyenletek megoldására. Nauka, Moszkva 1976 (oroszul). A.A. Szamarszkij, A.V. Gulin, Moszkva 1973 (oroszul).
Dierenciasémák stabilitása. Nauka,
A.A. Szamarszkij, R.D. Lazarov, V.L. Makarov, Dierenciasémák vizsgálata dierenciálegyenletek általánosított megoldásain. Vüszsaja skola, Moszkva 1987 (oroszul).
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 649
A.A. Szamarszkij, E.Sz. Nyikolajev, Dierencia egyenletek megoldási módszerei. Nauka, Moszkva 1978 (oroszul). A.A. Szamarszkij, P.N. Vabiscsevics, P.P. Matusz, Dierencia sémák operátor-együtthatókkal. COTZS kiado, Minszk 1998 (oroszul). B.A. Szabó, I. Babuˇska, Finite Element Analysis. J. Wiley, New York 1991. Sz.I. Szerdjukova, A h®vezetési egyenlet megoldását szolgáló, hatpontos magasabbrend¶ dierenciaséma egyenletes stabilitásáról. Zs. Vücs. Matem. i Matem. Fiz. 7,1 (1967), 214218 (oroszul). E. Tadmor, The equivalence of L2-stability, the resolvent condition, and strict H-stability. Lin. Algebra and Its Appls. 41 (1981), 151159. R. Temam, Theory and Numerical Analysis for NavierStokes Equations. NorthHolland, Amsterdam 1977. A. Thom, The ow past circular cylinders at low speeds. Proc. Royal. Soc., A 141 (1933), 651666. L.H. Thomas, Elliptic problems in linear dierence equations over a network. Watkins Sci. Lab., Columbia, New York 1949. V. Thomeé, Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag, New York 1997. E.F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 1 (1994), 2534. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 3rd ed. Springer Verlag, Berlin 2009. A. Toselli, O. Widlund, Domain Decomposition Methods Algorithms and Theory. Springer Series in Computational Mathematics 34. Berlin 2005. J.A. Trangenstein, Numerical Solution of Hyperbolic Partial Dierential Equations. Cambridge Univ. Press, Cambridge 2009. D.J. Tritton, Physical Fluid Dynamics. 2nd. ed. Clarendon Press, Oxford 1988. S. Turek, Ecient Solvers for Incompressible Flow Problems. An Algorithmic Approach. Springer, Berlin 1999. S. Vanka, Block-implicit multigrid calculation of two-dimensional recirculating ows. Comp. Meth. Appl. Mech. & Eng. 59 (1) (1986), 2948. H. Versteeg, W. Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd Edition. Prentice Hall, Englewood Clis 2007.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 650
FEJEZET 20. IRODALOM III
W.H. Verwer, J.G. Hundsdorfer, Stability and convergence for the Peaceman-Rachford ADI method for initial-boundary value problems. Math. of Comp. 53, 187 (1989), 81101. R. Vichnevetsky, J.B. Bowles, Fourier Analysis of Numerical Appoximations of Hyperbolic Equations. SIAM, Philadelphia 1982. G. Vijayasundaram, Transonic ow simulations using an upstream centered scheme of Godunov in nite elements. J. Comput. Phys. 63 (1986), 416-433. R. Vilsmeier, D. H¨anel, Adaptive methods on unstructured grids for Euler and Navier-Stokes equations. Computers & Fluids 22, 4/5 (1993), 485499. V.R. Voller, C.R. Swaminathan, B.G. Thomas, Fixed grid techniques for phase change problems : A review. Int. J. Num. Meth. Eng. 30 (1990), 875898. H.A. van der Vorst, A fast and smoothly converging variant of BICG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 13 (1990), 631644. W. Weinelt, Untersuchungen zur Konvergenzgeschwindigkeit bei Dierenzenverfahren. Wiss. Z... H. Karl-Max-Stadt, 20 (1978), 763769. H. Weyl, The method of orthogonal projection in potential theory. Duke Math. J. 7, No. 1 (1940), 411-444. G. Wittum, Multi-grid methods for Stokes and Navier-Stokes equations. Numer. Math 54 (1989), 543563. W.R. Wolf, J.L.F. Azevedo, High-order ENO and WENO schemes for unstructured grids. Int. J. Numer. Methods Fluids 55, No. 10, (2007), 917 943. Y. Wu, K.F. Cheung, Explicit solution to the exact Riemann problem and application in nonlinear shallow-water equations. Int. J. Numer. Methods Fluids 57, 11 (2008), 16491668. H. Yserentant, Die maximale Konzistenzordnung von Dierenzenapproximationen nichtnegativer Art. Numer. Math. 42 (1983), 119123. H. Yserentant, Über die Maximumnormkonvergenz der Methode der niten Elemente bei geringsten Regularit¨atsvoraussetzungen. ZAMM 65 (1985), 91100. E. Zeidler, Nonlinear Functional Analysis and Its Applications I-VI, Springer-Verlag, New York 1990. Chr. Zenger, Sparse grids. In: Parallel Algorithms for Partial Dierential Equations. Proc. 6. GAMM Seminar, Kiel 1990 (W. Hackbusch, ed.). Notes on Numer. Fluid Mechanics, v. 31, Vieweg, Braunschweig 1991.
www.interkonyv.hu
© Stoyan Gisbert
© Typotex Kiadó, 2010 651
S. Zhang, Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Math. 21(3) (1995), 541556. J.Z. Zhu, O.C. Zienkiewicz, Adaptive techniques in the nite element method. Comm. Appl. Numer. Methods 4 (1988), 197204. O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Num. Meth. Eng. 24 (1987), 337357. W. Zulehner, A class of smoothers for saddle point problems. Computing 65 (2000), 227246. W. Zulehner, Analysis of iterative methods for saddle point problems. A unied approach. Math. Comp. 71, No. 238 (2001), 479505.
www.interkonyv.hu
© Stoyan Gisbert