© Typotex Kiadó
Irodalom
[1] B.D.O. Anderson and J.B. Moore. Linear Optimal Control. Prentice Hall, Englewood Cliffs, New Jersey, 1971. [2] B.D.O. Anderson and J.B. Moore. Optimal Filtering. Prentice Hall, Englewood Cliffs, New Jersey, 1979. [3] B.D.O. Anderson and J.B. Moore. Optimal Control. Linear Quadratic Methods. Prentice Hall, Englewood Cliffs, New Jersey, 1989. [4] M Athans. The role and use of stochastic linear quadratic gaussian problem in control system design. IEEE Trans. Automatic Control, 16:529–552, 1971. [5] M. Athans and P.L. Falb. Optimal control. McGraw-Hill Book Company, New York, 1966. [6] G. Balas, J. Bokor, and Z. Szabo. Invariant subspaces for LPV systems and their applications. IEEE Transactions on Automatic Control, 48:2065–2069, 2003. [7] G. Balas, J.C. Doyle, K. Glover, A. Packard, and R. Smith. µ-analysis and snthesis toolbox. The Mathworks Inc., 1993. [8] G. Balas, I. Fialho, L. Lee, V. Nalbantoglu, A. Packard, W. Tan, G. Wolodkin, and F. Wu. Theory and application of linear parameter varying control techniques. Proc. of the American Control Conference, 1997.
www.interkonyv.hu
© Bokor József, Gáspár Péter
© Typotex Kiadó
270
Irodalom
[9] G. Becker and A. Packard. Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback. System Control Letters, 23:205–215, 1994. [10] P.R. Belanger. Control Engineering. A Modern Approach. Saunders College Publishing, 1995. [11] R. Bellman. The structure of dynamic programming processes. Princeton University Press, 1957. [12] H.W. Bode. Relations between attenuation and phase in feedback amplifier design. Bell Systems Technology, 19:421–454, 1940. [13] H.W. Bode. Hálózatok és visszacsatolt er˝osít˝ok tervezése. M˝uszaki Könyvkiadó, Budapest, 1961. [14] J. Bokor and G. Balas. Linear parameter varying systems: A geometric theory and applications. 16th IFAC World Congress, Prague, 2005. [15] J. Bokor and L. Keviczky. Structural properties and structure determination of vector difference equations. International Journal of Control, 36(3):461–475, 1982. [16] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. [17] J.B. Burl. Linear Optimal Control. H2 and H∞ methods. McGraw-Hill International Editions, 1998. [18] C.T. Chen. Introduction to Linear Systems Theory. Holt, Rinehart and Winston, New York, 1970. [19] F. Csáki. Szabályozások dinamikája. Akadémiai Kiadó, Budapest, 1966. [20] F. Csáki. Fejezetek a szabályozástechnikából. Állapotegyenletek. Akadémiai Kiadó, Budapest, 1973. [21] M. Dahleh and J. Pearson. l 1 -optimal feedback controllers for mimo discrete-time systems. IEEE Trans. Automatic Control, 32(4):314 – 322, 1987. [22] M.A. Dahleh and I. Diaz-Bobillo. Control of Uncertain Systems: A Linear Programming Approach. Prentice-Hall, 1995. [23] R.C. Dorf and R.H. Bishop. Modern Control Systems. Addison-Wesley Publ. Comp.Inc., 1984.
www.interkonyv.hu
© Bokor József, Gáspár Péter
© Typotex Kiadó
Irodalom
271
[24] J. Doyle, B. Francis, and A. Tannenbaum. Feedback Control Theory. Macmillan Publishing Co., 1990. [25] J.C. Doyle. Analysis of feedback systems with structured uncertainties. IEE Proc., 129(6):242–252, 1982. [26] J.C. Doyle and G. Stein. Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Transactions on Automatic Control, 26(1):4–16, 1981. [27] G. Franklin and J.D. Powell. Digital Control of Dynamic Systems. Addison-Wesley, New York, 1980. [28] J.S. Freudenberg and D.P. Looze. Frequency Domain Properties of Scalar and Multivariable Feedback Systems. Springer-Verlag, 1988. [29] A. Frigyes, L. Schnell, I. Szita, and R. Tuschák. Elektrotechnika. Tankönyvkiadó Vállalat, 1959. [30] T.D. Gillespie. Fundamentals of Vehicle Dynamics. Society of Automotive Engineers, Inc., 1992. [31] M.J. Green and D.J.N. Limebeer. Linear Robust Control. Prentice Hall, Englewood Cliffs, New Jersey, 1995. [32] P. Gáspár, I. Szászi, and J. Bokor. Design of robust controllers for active vehicle suspension using the mixed µ synthesis. Vehicle System Dynamics, 40(4):193–228, 2003. [33] P. Gáspár, I. Szászi, and J. Bokor. Rollover stability control in steerby-wire vehicles based on an LPV method. International Journal of Heavy Vehicle Systems, 13(1-2):125–143, 2006. [34] K. Hangos, J. Bokor, and G. Szederkényi. Analysis and Control of Nonlinear Process Systems. Springer Verlag, 2004. [35] T. Kailath. Linear systems. Prentice-Hall, Inc., Englewood Cliffs, 1980. [36] R. Kalman. On the general theory of control systems. Proc. 1st IFAC Congress, Moscow, 1:481–492, 1960. [37] R. Kalman and R.S. Bucy. New results in linear filtering and prediction theory. Journal Basic Engineering, 83D:95–108, 1961. [38] R.E. Kalman. A new approach to linear filtering and prediction problems. ASME Journal of Basic Engineering, 82D:35–45, 1960. [39] L. Keviczky, R. Bars, J. Hetthéssy, and Cs. Bányász. Szabályozástechnika. M˝uegyetemi Kiadó, Budapest, 2006.
www.interkonyv.hu
© Bokor József, Gáspár Péter
© Typotex Kiadó
272
Irodalom
[40] U. Kiencke and L. Nielsen. Automotive control systems. For engine, driveline and vehicle. Springer, 2000. [41] K. Kurutz. Szabályozástechnika I. M˝uegyetemi Kiadó, Budapest, 1981. [42] B. Lantos. Irányítási rendszerek elmélete és tervezése. Akadémiai Kiadó, Budapest, 2001. [43] B Lantos. Robotok irányítása. Akadémiai Kiadó, Budapest, 2002. [44] Maciejowski. Multivariable Feedback Design. Addison-Wesley, 1989. [45] D. McLean. Automatic Flight Control Systems. Prentice-Hall, New York, 1990. [46] P. Michelberger, J. Bokor, A. Keresztes, and P. Várlaki. Identification of a multivariable linear model for road vehicle (bus) dynamics from test data. International Journal of Vehicle Design, 8(1):96–114, 1987. [47] P. Michelberger, J. Bokor, A. Keresztes, and P. Várlaki. Determination of mass, damping and stiffness matrices using structural and parametric identification of linear vehicle frame models. Vehicle System Dymanics, 17:252–264, 1988. [48] P. Michelberger and L. Nádai. Strategic development of intelligent transportation systems. In 7th World Automation Congress, Budapest, Hungary, 24–26 July 2006. (on CD-ROM). [49] R.C. Nelson. Flight stability and Automatic Control. Prentice-Hall, Englewood Cliffs., London, 1984. [50] N.S. Nise. Control Systems Engineering. The Benjamin Cummings Publ. Comp., Inc., 1995. [51] H. Nyquist. Regeneration theory. Bell Systems Technology, 11:126– 147, 1932. [52] K. Ogata. Modern Control Engineering. Prentice-Hall, Englewood Cliffs., London, 1984. [53] K. Ogata. Discrete-time Control Systems. Prentice-Hall, Englewood Cliffs., London, 1989. [54] H.B. Pacejka. Tire and Vehicle Dynamics. Society of Automotive Engineers, Inc., 2005.
www.interkonyv.hu
© Bokor József, Gáspár Péter
© Typotex Kiadó
Irodalom
273
[55] L. Palkovics and A. Fries. Intelligent electronic systems in commerical vehicles for enhanced traffic safety. Vehicle System Dynamics, 35:227– 289, 2001. [56] L.S. Pontryagin. Optimal regulation process. American Math Society Translations, 18:321–339, 1961. [57] R. Rajamani. Vehicle Dynamics and Control. Springer, 2006. [58] J. Reimpell, H. Soll, and J.W. Betzler. The Automotive Chassis: Engineering Principles. Butterworth Heinemann, 2001. [59] H.H. Rosenbrock. State space and multivariable theory. T. Nelson and Sons Ltd, 1970. [60] P. Rózsa. Lineáris algebra és alkalmazásai. Tankönyvkiadó, Budapest, 1991. [61] M. Safonov, A. Laub, and G. Hartmann. Feedback properties of multivariable systems: The role and use of the return difference matrix. IEEE Transactions on Automatic Control, 26(1):47 – 65, 1981. [62] E. Simonyi. Digitális sz˝ur˝ok. A digitális jelfeldolgozás alapjai. M˝uegyetemi Kiadó, Budapest, 1984. [63] A. Soumelidis, P. Gáspár, P. Bauer, B. Lantos, and Z. Prohászka. Design of an embedded microcomputer based mini quadrotor UAV. European Control Conference, Kos, 2007. [64] G. Stein and M. Athans. The LQG/LTR procedure for multivariable feedback control design. IEEE Transactions on Automatic Control, 32(2):105–114, 1987. [65] Z. Szabó. Lp norm convergence of rational operators on the unit circle. Mathematica Pannonica, 9:281–292, 1998. [66] R. Tuschák. 1994.
Szabályozástechnika.
M˝uegyetemi Kiadó, Budapest,
[67] I. Vajk. Identification methods in a unified framework. Automatica, 41:1385–1393, 2005. [68] T. Vámos and J. Bokor. Bird’s eye view on control theory - motion, spaces, transformations. Annual Reviews in Control, 21:1–11, 1997. [69] N. Wiener. Extrapolation, interpolation and smoothing of stationary time series. MIT Press, 1949.
www.interkonyv.hu
© Bokor József, Gáspár Péter
© Typotex Kiadó
274
Irodalom
[70] M. Wonham. Linear multivariable control: a geometric approach. Springer Verlag, 1985. [71] G. Zames. Feedback and optimal sensitivy: Model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on Automatic Control, 26(2):301–320, 1981. [72] G. Zames and B.A. Francis. Feedback, minmax sensitivy, and optimal robustness. IEEE Transactions on Automatic Control, 28(5):585–601, 1983. [73] K. Zhou and J.C. Doyle. Essentials of Robust Control. Prentice Hall, Englewood Cliffs, New Jersey, 1998. [74] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall, Englewood Cliffs, New Jersey, 1996.
www.interkonyv.hu
© Bokor József, Gáspár Péter