METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________
VLIV PARAMETRŮ SMĚROVÉ KRYSTALIZACE NA MECHANICKÉ VLASTNOSTI A MIKROSTRUKTURU INTERMETALICKÉ SLITINY Ti-46Al-5Nb-1W (at. %) EFFECT OF DIRECTIONAL CRYSTALLIZATION PARAMETERS ON MECHANICAL PROPERTIES AND MICROSTRUCTURE OF INTERMETALLIC ALLOY Ti-46Al-5Nb-1W (at. %) Vítězslav Smíšeka Miroslav Kursaa a
VŠB-TU Ostrava, 17. listopadu 15, 708 33, Ostrava-Poruba, ČR,
[email protected],
[email protected]
Abstrakt Intermetalické slitiny ze systému Ti-Al, obzvláště slitiny typu γ-TiAl, jsou perspektivními materiály pro vysokoteplotní aplikace v automobilovém, leteckém i energetickém průmyslu. K tomu je předurčují jejich výhodné vlastnosti jako jsou příznivý poměr hustota/pevnost, dobrá korozní odolnost. Jsou však doprovázeny nepříznivými vlastnostmi, jako je nízká hodnota plastické deformace za pokojové teploty a obtížnou výrobou, která je limitována vysokou reaktivitou použitých materiálů, zejména titanu. Jedna z možností zlepšení houževnatosti slitiny Ti-46Al-5Nb-1W (at.%) spočívá v přeměně licí mikrostruktury na mikrostrukturu lamelární, a to například metodou směrové krystalizace. Tento experiment provedený Bridgmanovou metodou je popsán v článku. Zvolená slitina Ti46Al-5Nb-1W (at.%) byla připravena plazmovým tavením v plazmové peci s horizontálním, vodou chlazeným, měděným krystalizátorem. Nehomogenní mikrostruktura byla upravena vakuově-indukčním tavením. To zajistilo rovnoměrnou distribuci legujících prvků. Slitina byla následně odlita do grafitových kokil. Odlitky byly podrobeny směrové krystalizaci. Rychlosti ochlazování byly konstantní a pohybovaly se v rozmezí 5,56 ⋅10 −6 m⋅s-1 až 1,18 ⋅ 10 −4 m⋅s-1. Experiment byl prováděn v keramických korundových trubicích Al2O3. Mikrostruktura vzorků byly podrobena metalografickému zkoumání. Bylo zjištěno, že lamelární mikrostruktura je tvořena střídajícími se lamelami fází α2 a γ. Ve vzorcích byly detekovány keramické částice Al2O3, jako výsledek reakce taveniny s keramickou trubicí během procesu směrové krystalizace. Dosažená lamelární mikrostruktura byla zdokumentována. Byl změřen obsah kyslíku a dusíku v závislosti na parametrech směrové krystalizace. Pomocí DTA analýzy byla určena teplota tavení slitiny. Byl ověřen vliv rychlostí směrové krystalizace vzorků na jejich mikrotvrdost. S vyšší rychlostí ochlazování ( 5,56 ⋅10 −6 m⋅s-1 až 1,18 ⋅ 10 −4 m⋅s-1) se zvyšují hodnoty mikrotvrdosti. Abstract Intermetallic alloys from system Ti-Al, especially γ-TiAl alloys, are perspective materials for high-temperature applications aerospace, automotive and power industries. Their favourable properties such as beneficial ratio denstity/strength, good oxidation resistance are accompanied on the other hand by disadvantageous properties such as low value of room temperature plastic deformation and very difficult metallurgy, limited by high reactivity of used material, especially titanium. One of the possibilities to improve the toughness of Ti46Al-5Nb-1W (at.%) alloy consists in change of their microstructure into lamellar
1
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ microstructure, which can be reached moreover by directional crystallization. This experiment made by Bridgman method is described in this paper. Samples of the Ti-46Al-5Nb-1W (at.%) alloy were prepared by plasma melting in plasma furnace with horizontal water cooled copper crystallizer. Then the samples were remelted in vacuum-induction furnace becouse of the low homogenity. This method assured uniform distribution of alloying elements. Molten alloy was cast into graphite mould. Cast samples were subjected to directional crystallization. Cooling rates were constant and ranged from 5,56 ⋅10 −6 m⋅s-1 to 1,18 ⋅ 10 −4 m⋅s-1. Directional crystallization has been accomplished in ceramic tubes made of corundum – Al2O3. The samples were studied by metallographic analysis. Lamellar microstructure of the samples was found to consist of α2- and γ-phase lamellas. Moreover, ceramic particles Al2O3 were found to be present in the samples as a result of reaction between molten alloy and ceramic tube durin the directional crystallization. Obtained lamellar microstructures are documented, contents of nitrogen and oxygen in dependence on parameters of crystallisation were verified and temperature of melting of this alloy was measured on DTA analyser. The effect of cooling rate of directional crystallization on microhardness of samples on their microhardness. The higher the cooling rate ( 5,56 ⋅10 −6 m⋅s-1 to 1,18 ⋅ 10 −4 m⋅s-1) the higher the value of microhardness.
1.
ÚVOD
Slitiny na bázi γ(TiAl) jsou pro své vlastnosti považovány za vysokoteplotní materiály pro aplikace v automobilovém a leteckém průmyslu. Těmito vlastnostmi jsou zejména nízká hustota ( ~3,9–4,1 g/cm3), vysoká specifická mez kluzu (mez kluzu/hustota), vysoká specifická tuhost (modul pružnosti/hustota), dobrá korozní odolnost, příznivé creepové vlastnosti za zvýšených teplot. Zejména v teplotním rozsahu 600 až 800 °C slitiny na bázi γ(TiAl) převyšují běžné Ti-slitiny co se týče specifické pevnosti. Ve srovnání s Ni-slitinami, vykazují γ(TiAl) slitiny co do specifické pevnosti podobné hodnoty, či vyšší. Vzhledem k těmto skutečnostem se slitiny γ(TiAl) stále více dostávají do popředí zájmu a počítá se s nimi pro výrobu součástí, jako jsou lopatky vysokotlakých kompresorů leteckých motorů, lopatky nízkotlakého stupně spalovacích turbín, difuzory, výfukové ventily a oběžná kola turbodmychadel. Avšak i vlastnosti slitin γ(TiAl) se mohou lišit v závislosti na chemickém složení a mikrostruktuře [1]. Ve slitině se mohou vyskytovat tyto druhy mikrostruktur: čistě lamelární téměř lamelární duplexní téměř gama Lamelární struktura poskytuje lepší creepovou odolnost, vyšší odolnost vůči křehkému lomu a vyšší pevnost. Duplexní struktura poskytuje vyšší tažnost, mez pevnosti a delší únavovou životnost [2]. V odlitém ingotu se může vyskytnout dle Lapina [3] několik druhů mikrostruktur. Povrchová vrstva obsahuje rovnoosá zrna s plně lamelární mikrostrukturou tvořenou fázemi γ (TiAl) a α2 (Ti3Al) a vrstvu kolumnárních zrn, která jsou tvořena téměř lamelární mikrostrukturou obsahující regiony plně lamelární a regiony s γ-fází na hranících kolumnárních zrn. Uprostřed ingotu je oblast s rovnosými zrny, tvořená regiony lamelárními, γ-regiony a nepravidelnými lamelárními regiony fází α2, γ a B2. Binární fázový diagram (obr.1), navržený McCulloughem [4], je používán jako základní typ pro vysvětlení fázové transformace ve zkoumaných slitinách. Podle tohoto fázového diagramu, se tuhnutí studovaných slitin odehrává v podstatě z oblasti α, což je
2
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ v souladu s hexagonální fází struktury typu A3. Rozpad αfáze během následného ochlazování dává možnosti pro formování dvou uspořádaných fází, γ (TiAl) a α2 (Ti3Al). γ-fáze odpovídá tetragonálně uspořádané fázi struktury typu L10 s poměrem c/a přibližně 1,02. α2-fáze je výsledkem reakce uspořádání fáze α a odpovídá hexagonální struktuře typu DO19. Dvoufázová lamelární struktura vzniká touto reakcí: Obr. 1. Část binárního diagramu Ti-Al podle McCullougha [4]. α → α+γ → α2+γ [4]. Fig.1. Binary diagram Ti-Al, McCullougha[4].
2.
EXPERIMENT
2.1
Příprava slitiny Ti-46Al-5Nb-1W
Slitina Ti-46Al-5Nb-1W byla připravena na Katedře neželezných kovů, rafinace a recyklace, na VŠB – TU Ostrava. Příprava byla rozdělena na plazmovou metalurgii, jejímž produktem byl ingot o hmotnosti 800 g. V dalším kroku byl přetaven ve vakuově-indukční peci a tavenina byla odlita do grafitových kokil. Odlitky tyček o rozměrech 10x100 mm byly použity v následujícím experimentu. Byly podrobeny směrové krystalizaci v zařízení Bridgmanova typu v ochranné atmosféře argonu. Pro slitinu Ti-46Al-5Nb-1W byla zvolena teplota experimentu TM=1680°C. Na této teplotě byla prodleva 900 s. Poté bylo započato se směrovou krystalizací. Pro posuv bylo zvoleno pět konstantních rychlostí v rozmezí 5,56 ⋅10 −6 m⋅s-1 až 1,18 ⋅ 10 −4 m⋅s-1 . Po vytažení trubic s krystalizovanou slitinou z prostoru pece byly vzorky vyjmuty a podélně rozřezány. Pak byly vzorky připraveny na metalografické pozorování leptadlem se složením: HNO3, HF a destilovaná voda. Tabulka 1. Chemické složení připravené slitiny. Table 1. Chemical composition of alloy.
označení slitiny Ti-46Al-5Nb-1W
Ti 48
chemické složení [at %] Al Nb 46 5
3.
VÝSLEDKY
3.1
Mikrostruktura slitiny Ti-46Al-5Nb-1W
W 1
Po směrové krystalizaci bylo zjištěno, že mikrostruktura slitiny Ti-46Al-5Nb-1W (at. %) doznala značných změn. Struktura je tvořena lamelárními zrny, která jsou orientována ve směru souhlasném se směrem odvodu tepla. V nich se střídají lamely TiAl (γ) a Ti3Al (α2). Tyto lamely jsou orientovány převážně ve směru kolmém na směr krystalizace.
3
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ V mikrostruktuře vzorků se vyskytly tmavé částice. Pomocí mikroanalýzy chemického složení fází pomocí EDAX byly tyto částice identifikovány jako keramické částice Al2O3. Původ těchto částic spočívá v reakci roztavené slitiny s materiálem keramické trubice (korund Al2O3). K reakci dochází přednostně na hranicích zrn formy [5]. Keramické částice jsou a)
b)
Obr. 2. a) Lamelární mikrostruktura slitiny Ti-46Al-5Nb-1W (at. %) tvořená lamelami fází α2 a γ. Rychlost krystalizace V=5,56·10-6 ·m·s-1 b) Keramické částice Al2O3 ve slitině Ti-46Al-5Nb-1W (at. %) Rychlost krystalizace V=5,56·10-6·m·s-1. Fig. 2. a) Lamellar microstructure of Ti-46Al-5Nb-1W (at. %) alloy formed by lamellae of phases α2 a γ. Cooling rate V=5,56·10-6 ·m·s-1. b) Ceramic particles Al2O3 in Ti-46Al-5Nb-1W (at. %) alloy. Cooling rate V=5,56·10-6 ·m·s-1.
v objemu taveniny distribuovány poměrně rovnoměrně díky pohybujícímu se rozhraní solidlikvid, které zajišťuje přesun částic z blízkosti stěn trubice do celého objemu ingotu. Tvar částic vykazuje závislost na rychlosti krystalizace. S vyšší rychlostí krystalizace se velikost částic snižovala a tvar přecházel od laťkovitých útvarů (rychlost krystalizace V=5,56·10-6·m·s1 ) přes hrubé a jemné útvary nepravidelného tvaru až ke shlukům jemných částic u vzorků s nejvyšší rychlostí krystalizace (V=1,18·10-4 ·m·s-1). Tuto skutečnost dokládají snímky na obr. 2.
α2
γ
Obr. 3. TEM Snímek z slitiny Ti-46Al-5Nb-1W (at. %) Rychlost krystalizace V=2,78·10-5·m·s-1. Lamely fáze α2 – tmavé a fáze γ-světlá. Fig. 3. TEM micrograph of Ti-46Al-5Nb-1W (at. %) alloy. Cooling rate V=2,78·10-5·m·s-1. Lamellae α2 – dark and phase γ-light.
4
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ Snímek z transmisního elektronového mikroskopu na obr. 3 zobrazuje detail lamelární mikrostruktury, kde jsou zachyceny lamely fáze α2 – tmavé lamely. Mezi nimi je lamelární fáze γ. Obecná krystalografická orientace mezi fázemi γ a α2 , určená pomocí TEM, je:
(111)
γ
(0001)α
2
[ ]
a [110]γ 1120 α 2
Mechanismus vzniku lamelární mikrostruktury není zatím zcela jasný, ale je velmi pravděpodobné, že γ lamely vznikají v oblasti fáze α v binárním diagramu Ti-Al. Přeměnu mřížky z HTU na KSC zajišťuje pohyb Shockleyho parciálních dislokací. Tato mřížková transformace je spojena s difúzními procesy, které vyrovnávají chemické složení a zajišťují takové chemické složení, které odpovídá složení γ fáze.
3.2
Vliv parametrů směrové krystalizace na vlastnosti slitiny Ti-46Al-5Nb-1W
Vzorky slitiny Ti-46Al-5Nb-1W byly po směrové krystalizaci podrobeny měření mikrotvrdosti. Měření tvrdosti bylo provedeno podle Vickerse. Doba zatížení byla 10 s. Měření mikrotvrdosti bylo prováděno na optickém mikrotvrdoměru LECO LM-100. Z naměřených hodnot byla vypočítána průměrná mikrotvrdost. Výsledné hodnoty jsou znázorněny v grafu na obr. 4. Závislost mikrotvrdosti slitiny Ti-46Al-5Nb-1W rychlosti ochlazování
na
mikrotvrdost (HV 0,025)
430
421,63
420 410
402,63
400 390
388,07
380 370
367,77
360 350
348,22
340
0
100
200
300
400
500
rychlost ochlazování (mm/h)
Obr.4. Vliv rychlosti ochlazování na mikrotvrdost slitiny Ti-46Al-5Nb-1W. Fig.4. Effect of cooling rate on microhardness of Ti-46Al-5Nb-1W alloy.
Z grafu je zřejmé, že rostoucí rychlost ochlazování má vliv na hodnoty mikrtotvrdosti. Vyšší rychlost ochlazování má za následek vyšší hodnoty mikrotvrdosti. Z předchozích prací [6,7] vyplývá, že lamelární mikrostruktura se s rostoucí rychlostí ochlazování zjemňuje. S tím souvisí postupný nárůst hodnot mikrotvrdosti, neboť mezilamelární rozhraní typu α2/γ působí jako překážky pro pohyb dislokací. Tato skutečnost se promítá do rostoucích hodnot mikrotvrdosti. Další sledované hodnoty byly obsahy plynů – kyslíku a dusíku. Stanovení obsahů plynů ve vzorcích po směrové krystalizaci bylo provedeno ve VÚHŽ Dobrá na analyzátoru LECO TC. Z grafů uvedených na obr. 5, 6 je patrné, že obsah plynu ve vzorku je závislý na délce doby, po kterou je tavenina vystavena reakci s keramickou trubičkou z Al2O3. Čím nižší
5
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ rychlost ochlazování, tím delší je reakční čas. S tím souvisí vyšší obsah kyslíku a dusíku ve slitině. Z literatury je známo, že obsah kyslíku má vliv na výsledné mechanické vlastnosti vyšší obsahy kyslíku mají za následek nižší houževnatost a vyšší pevnost lamelární TiAl slitiny. Slitiny v důsledku vyššího obsahu kyslíku mají nižší pohyblivost dislokací.
rychlost ochlazování (mm/h)
Závislost obsahu kyslíku ve slitině Ti-46Al-5Nb-1W na rychlosti ochlazování 500 0,231
400 300
0,2714
200
0,2958
100
0,3975 0,4647
0 0,2
0,25
0,3
0,35
0,4
0,45
0,5
obsah kyslíku (hm. % )
Obr.5. Vliv rychlosti ochlazování na obsah kyslíku ve slitině Ti-46Al-5Nb-1W. Fig.5. Effect of cooling rate on oxygen content of Ti-46Al-5Nb-1W alloy.
rychlost ochlazování (mm/h)
Závislost obsahu dusíku ve slitině Ti-46Al-5Nb-1W na rychlosti ochlazování 500 400
0,0004
300 200
0,0006 0,00073
100
0,001 0,0013
0 0,0002
0,0006
0,001
0,0014
obsah dusíku (hm. %) Obr.6. Vliv rychlosti ochlazování na obsah dusíku ve slitině Ti-46Al-5Nb-1W. Fig.6. Effect of cooling rate on nitrogen content of Ti-46Al-5Nb-1W alloy.
Pomocí DTA jsme určili teplotu tavení slitiny Ti-46Al-5Nb-1W. Z obr. 7 vyplývá, že tento údaj vzhledem k složitosti diagramu není jednoznačný: teplota tavení se pohybuje v rozmezí 1522°C a 1529°C.
6
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________ Figure: SETSYS - 1750
Experiment:Ti46Al5Nb1W
Crucible:Al 100 µl
Atmosphere:He
25.05.2005 Procedure: BLANK (Zone 2)
Mass (mg): 57
HeatFlow /µV Exo -30
Peak :1303,4390 °C Onset Point :1292,8390 °C Enthalpy /µV.s/mg : 9,5510 (Endothermic ef f ect)
-35
-40
-45
-50 1477 - 1487
-55
Peak 1 :1522,2590 °C Peak 2 :1529,4150 °C Onset Point :1500,1310 °C Enthalpy /µV.s/mg : 75,5254 (Endothermic ef f ect) (50,6517 + 24,8737)
-60
-65
1030 1060 1090 1120 1150 1180 1210 1240 1270 1300 1330 1360 1390 1420 1450
Sample temperature/°C
Obr.7. Výsledný graf z DTA slitiny Ti-46Al-5Nb-1W. Fig. 7. DTA diagram of Ti-46Al-5Nb-1W alloy.
4.
ZÁVĚRY
Vzorky slitiny Ti-46Al-5Nb-1W (at. %) byly podrobeny směrové krystalizaci s konstantními rychlostmi ochlazování v rozmezí Mikrostruktura slitiny byla po směrové krystalizaci tvořena lamelárními zrny, která byla orientována rovnoběžně se směrem odvodu tepla. V lamelárních zrnech byly uspořádány lamely TiAl (γ) a Ti3Al (α2), a to kolmo na směr odvodu tepla. Ve struktuře byly detekovány keramické částice Al2O3. Orientace mezi fázemi TiAl (γ) a Ti3Al (α2) byla pomocí TEM určena jako
(111)
γ
(0001)α
2
[ ]
a [110]γ 1120 α 2 .
Rostoucí rychlost ochlazování vedla k postupnému zvyšování hodnot mikrotvrdosti HV. Závislost na rychlosti ochlazování vykazoval rovněž obsah kyslíku a dusíku. Nižší rychlost ochlazování vedly k delšímu reakčnímu času mezi taveninou slitiny Ti-46Al-5Nb1W (at. %) a keramickou korundovou trubicí. To mělo za následek vyšší obsah kyslíku a dusíku. Pomocí DTA byla určena teplota tavení slitiny Ti-46Al-5Nb-1W (at. %), a to v rozmezí 1522 – 1529°C.
Předložené výsledky byly získány při řešení výzkumného záměru MSM6198910013 „Procesy přípravy a vlastnosti vysoce čistých a strukturně definovaných speciálních materiálů“.
7
METAL 2006 23.-25.5.2006, Hradec nad Moravicí ___________________________________________________________________________
LITERATURA [1] APPEL, F., WAGNER, R. Microstructure and deformation of two-phase γ-titanium aluminides. Materials Science and Engineering, 1998, s. 187-268. [2] JEŽOVÁ,Z. , BAJANA, O., LAPIN, J. Effect of heat treatments on the microstructure and mechanical properties of a část intermetallic TiAl-based alloy. In Technológia 2005, Bratislava, 2005, s. 132-137. [3] LAPIN, J., KLIMOVÁ, A., On the grain growth in a část intermetallic Ti-46Al-2W-0,5Si alloy. Journal of Materials Science Letters 2003, roč. 22. s. 1275-1277, ISSN 02618028. [4] DENQUIN, A., NAKA, S. Phase transformation mechanisms involved in two-phase TiAl-based alloys-I. Lamellar structure formation. Acta materiala, 1996, roč. 44, č. 1, s. 343-352. [5] LAPIN, J. , ONDRÚŠ, L. Directional solidification of intermetallic Ti-46Al-2W-0,5Si alloy in alumina moulds. Intermetallics, 2002, Vol. 10, no 9, p. 1019 – 1031. [6] SMÍŠEK, V, KURSA, M. Effect of the directional crystallization on microstructure of Ti-46Al-5Nb-1W, In Journal of Guangdong Non-ferrous Metals, Guangzhou, China, 2005, p. 289-293ISSN 1003-7837. [7] SMÍŠEK,V, KURSA, M. Možnosti ovlivnění lamelární mikrostruktury slitiny Ti-46Al5Nb-1W pomocí směrové krystalizace, Acta Metallurgica Slovaca, 2005, ročník 11, číslo 3, p. 293-300, ISSN 1335-1532.
8