Vibrations of Machine Foundations Richard P. Ray, Ph.D., P.E. Civil and Environmental Engineering University of South Carolina
USC USC
ATST Telescope and FE Model
Fundamentals-Modeling-Properties-Performance
USC USC
Summary and Conclusions (Cho, 2005) 1. 2. 3. 4. 5.
High fidelity FE models were created Relative mirror motions from zenith to horizon pointing: about 400 μm in translation and 60 μrad in rotation. Natural frequency changes by 2 Hz as height changes by 10m. Wind buffeting effects caused by dynamic portion (fluctuation) of wind Modal responses sensitive to stiffness of bearings and drive disks
6. Soil characteristics were the dominant influences in modal (dynamic) behavior of the telescopes. 7. 8. 9.
Fundamental Frequency (for a lowest soil stiffness): OSS=20.5hz; OSS+base=9.9hz; SS+base+Coude+soil=6.3hz A seismic analysis was made with a sample PSD ATST structure assembly is adequately designed: 1. Capable of supporting the OSS 2. Dynamically stiff enough to hold the optics stable 3. Not significantly vulnerable to wind loadings Fundamentals-Modeling-Properties-Performance
USC USC
Topics for Today
Fundamentals Modeling Properties Performance
Alapok Modellezés Tulajdonságok Gyakorlati Alkalmazás
USC USC
Foundation Movement Alapok Mozgáslehetőségei Z Y
θ
φ X
ψ
Fundamentals-Modeling-Properties-Performance
USC USC
Design Questions (1/4) Tervezés How Does It Fail?
Static Settlement Dynamic Motion Too Large (0.02 mm) Settlements Caused By Dynamic Motion Liquefaction What Are Maximum Values of Failure? (Acceleration, Velocity, Displacement)
Hogy rongálódik/megy tönkre?
Statikus süllyedés Dinamikus mozgás túl nagy (0,02 mm) Süllyedés dinamikus mozgás következtében Megfolyósodás Rongálódás maximális értékei (gyorsulás, sebesség, eltolódás)
Fundamentals-Modeling-Properties-Design-Performance
USC USC
Velocity Requirements Sebesség Követelmények
0,40
Massarch (2004) "Mitigation of Traffic-Induced Ground Vibrations"
Fundamentals-Modeling-Properties-Performance
USC USC
300
800
Fundamentals-Modeling-Properties-Performance
USC USC
Design Questions (2/4) Tervezés
What Are Relations Between Loads And Failure Quantities?
Loads -Harmonic, Periodic, Random Load→ Structure → Foundation → Soil → Neighboring Structures Model: Deterministic or Probabilistic
Mi a kapcsolat terhelési és törési mennyiségek között? Terhelések- Harmónikus, Periódikus, Véletlenszerü Terhelés → Épület → Alapozás → Talaj → Közeli Épületek Model: Determinisztikus és probabilisztikus
Fundamentals-Modeling-Properties-Performance
USC USC
Harmónikus
Periódikus
Véletlenszerű
USC USC
USC USC
Design Questions (3/4) Tervezés
Hogy határozzuk meg a tervezéshez szükséges paramétereket? (How do we measure what is necessary?)
Teljes méretarányú teszt (Full scale Test) Prototípus teszt (Prototype Test) Kis méretű teszt (Small Scale Tests (Centrifuge)) Laboratóriumi teszt (Laboratory Tests (Specific Parameters)) Számítógépes program (Computer Model)
Fundamentals-Modeling-Properties-Performance
USC USC
USC USC
Design Questions (4/4)
Milyen biztonsági tényezőt használjunk? (What Factor of Safety Do We Use? )
Van a biztonsági tényezőnek értelme? (Does FOS Have Meaning) Mi történik törés után (What Happens After There Is Failure)
Életvesztés (Loss of Life) Tulajdonvesztéd (Loss of Property) Gyártás kihagyás (Loss of Production)
Mi a munka célja, tervezett élettartalma, értéke (Purpose of Project, Design Life, Value)
Fundamentals-Modeling-Properties-Performance
USC USC
r -2
r -2 r -0.5 +
-
+
Rayleigh wave Vertical Horizontal component component
+
Nyíró hullám
+
Relative amplitude
-
r -1
+
+ Shear window Nyíró ablak
r
r -1 Compresszió hullám Waves
Fundamentals-Modeling-Properties-Performance
Wave Type Hullám típus
Összes energia százaléka
Rayleigh
67
Shear
26
Compression
7
USC USC
Alapok Modellezése
(Modeling Foundations) Egyesített Tömb (m,c,k)Lumped Parameter (m,c,k) Block System
Ellenállási Függvények Impedance Functions
Function of Frequency (ω), Layers
Peremérték Feladatok Boundary Elements (BEM)
Parameters Constant, Layers, Special
Infinite Boundary, Interactions, Layers
Véges Elemes (Finite Element/Hybrid (FEM, FEM-BEM))
Complex Geometry, Non-linear Soil Fundamentals-Modeling-Properties-Performance
USC USC
Lumped Parameter (Egyesített tömb) P = Po sin(ω t )
r
m
Gνρ
m c
k
m &z& + c z& + kz = P0 sin( ω t )
Fundamentals-Modeling-Properties-Performance
USC USC
Egy szabadságfokú (Single Degree of Freedom)
mz &z& + c z z& + k z z = 0 ⎛ m ⎞ mz &z& = Inertia Force ( kg )⎜ or ( N ) c 2 ⎟ ⎝ sec ⎠ Tehetetlenségi erő ⎛ N − sec ⎞⎛ m ⎞ c z z& = Damping Force ⎜ ⎟⎜ ⎟ or ( N ) ⎝ m ⎠⎝ sec ⎠
z m k
Csillapító Erő
⎛N⎞ k z z = Spring Force ⎜ ⎟(m) or ( N ) ⎝m⎠ Rugó erő
USC USC
Egy szabadságfokú Single Degree of Freedom megoldás
mz &z& + c z z& + k z z = 0
állandó
solution will take form z = α e .......α = constant
where (ms 2 + cs + k )α e st = 0 ahol k st 2 divide by mα e and set ωn = m osztás c 2 2 then s + s + ωn = 0 m tehát solution for s depends on c s megoldása c-től függ
st
c=0…Undamped Nem csillapított
c=2mω…Critically Damped c<2mω…Underdamped Alul csillapított USC USC
Single Degree of Freedom
c 2 s + s + ωn = 0 undamped...s = ±iωn m iω n t − iω n t z (t ) = α1e + α 2 e where α1 , α 2 = f (init. cond .) 2
Euler ' s identity e iωnt = cos(ωnt ) + i sin(ωnt ) z (t ) = A sin(ωnt ) + B cos(ω t ) A, B = f (initial condition) z (0) = B and z& (0) = Aωn
Kiinduló feltétel
⎛ z& (0) ⎞ ⎟⎟ sin(ωnt ) + z (0) cos(ωnt ) z (t ) = ⎜⎜ z& (0) ⎝ ωn ⎠ z(0)
t USC USC
Single Degree of Freedom
c 2 s + s + ωn = 0 if damping present m 2
2
c ⎛ c ⎞ 2 then s = − ± ⎜ ⎟ − ωn 2m ⎝ 2m ⎠
critical
c if = 0 then c = ccrit = 2mωn and s = − = −ωn 2m −ω n t z (t ) = (α1 + α 2t )e where α1 , α 2 = f (init. cond .) z& (0) z(0)
z (t ) = [z (0)(1 + ωnt ) + z& (0)t ]e −ωnt t
USC USC
Single Degree of Freedom if c < 2mωn then suppose D =
c ccrit
then s = − Dωn ±
< 0 underdampe d
= damping ratio and ω D = ωn 1 − D 2
(Dωn ) − ωn 2
2
= − Dωn ± iω D
(
z (t ) = α1e − Dωnt +iω Dt + α 2 e − Dωnt −iω Dt = e − Dωnt α1eiω Dt + α 2 e −iω Dt z (t ) = e
− Dω n t
z (t ) = e
− Dω n t
( A sin(ω D t ) + B cos(ω D t ) ⎡ z& (0) + z (0) Dωn ⎤ sin(ω D t ) + z (0) cos(ω D t )⎥ ⎢ ωD ⎣ ⎦ See Chart
USC USC
)
Single Degree of Freedom mz &z& + c z z& + k z z = P0 sin(ω P t ) z=e +
( −ωn Dt )
{A sin(ωDt ) + B cos(ωDt )} P0
(k − mω ) + c ω 2 2
P
cω P tan φ = 2 k − mω P
k ωn = m
P = Po sin(ω P t )
2
2
m
sin (ω P t − φ ) c
k
P
ω ⎛ ⎞ P 2 D⎜ ⎟ ω n⎠ ⎝ = 2 ω ⎛ 1 − ⎜ P ⎞⎟ ⎝ ωn ⎠
ω D = ωn 1 − D 2
D=
c ccrit
ccrit = 2 km USC USC
SDOF Átmenti és Állandó Transient and Steady-State
USC USC
z (t ) =
P0
(k − mω ) + c ω 2 2
P
z max
P0 = k
z max = z static
2
2
sin (ω P t − φ )
P
1 ⎡ ⎛ω ⎞ ⎢1 − ⎜⎜ P ⎟⎟ ⎢⎣ ⎝ ωn ⎠
2
2
⎤ ⎡ ω ⎤2 ⎥ + ⎢2 D P ⎥ ωn ⎦ ⎥⎦ ⎣
1 ⎡ ⎛ω ⎞ ⎢1 − ⎜⎜ P ⎟⎟ ⎢⎣ ⎝ ωn ⎠
2
2
⎤ ⎡ ω ⎤2 ⎥ + ⎢2 D P ⎥ ωn ⎦ ⎥⎦ ⎣ USC USC
Dynamic Magnification (Logarithmic) 100 D=0.02 D=0.05 D=0.10 D=0.20 D=0.50
Magnification
10
1
0.1 0.1
1 Frequency Ratio (ωP/ωn)
Fundamentals-Modeling-Properties-Performance
10
USC USC
Lumped Parameter System Z
mz &z& + c z z& + k z z = P0 sin(ω P t )
Cz
Kz
Iψ
m
ψ
Kx X Cx
Cψ/2
Kψ
Cψ/2
Fundamentals-Modeling-Properties-Performance
USC USC
Rendszer paraméterek Lumped Parameter Values Mode
Vertical z
Horizontal x
Rocking ψ
Torsion θ
Stiffness k
4Gr 1 −ν
8Gr 2 −ν
8Gr 3 3(1 − ν )
16Gr 3 3
Mass Ratio m ˆ m
m(1 − ν ) 4 ρr 3
m( 2 − ν ) 8 ρr 3
3Iψ (1 − ν ) 8 ρr 5
Iθ ρr 5
Damping Ratio, D
0.425 mˆ 1 / 2
0.288 mˆ 1/ 2
0.15 (1 + mˆ )mˆ 1/ 2
0.50 1 + 2mˆ
D=c/ccr G=Shear Modulus ν=Poisson's Ratio r=Radius ρ=Mass Density Iψ,Iθ=Mass Moment of Inertia Fundamentals-Modeling-Properties-Performance
USC USC
Design Example 1 (Példa) VERTICAL COMPRESSOR Unbalanced Forces (kiegyensúlyozatlan erők) •Vertical = 45 kN függőleges •Horizontal Primary = 0,5 kN vízszintes •Operating Speed = 450 rpm üzemelő seb. •Wt Machine + Motor = 5 000 kg Gép+motor súlya DESIGN CRITERION: Tervezési feltétel Talaj jellemzők Soil Properties Smooth Operation At Speed Nyíró hullám Shear Wave Velocity Vs = 250 m/sec Velocity <0,10 in/sec Density, ρ = 1600 kg/m3 Displacement < 0,002 in <0,05mm Shear Modulus, G = 1,0e8 Pa Poisson's Ratio, ν = 0,33 Jump to Chart
Fundamentals-Modeling-Properties-Performance
USC USC
4Gr 4 × 1,0 ×108 × r k= = (1 −ν ) 0,667 Q0 (1 −ν )Q0 0,667(45 000)1000 = = 0,05mm = kz 4Gr 4 ×1,0 ×108 × r 0.075 r= = 1.5m 0.05 tömbalaptest Try a 3 x 2,5 x 1 foundation block, r = 1,55 m
Z static =
Mass = 18 000 kg Total Mass = 18 000 + 5 000 = 23 000 kg tömeg
m(1 −ν ) mˆ = 4 ρr 3
mˆ =
(1 −ν ) m 0,67 × 23 000 = = 0,65 3 3 4r ρ 4 ×1600(1,55)
0,425 ⎛ 1 ⎞ = 0,53 M z ≈ 1,0 ⎜ D= ⎟ mˆ ⎝ 2D ⎠ Z dynamic = Z static = 0,05mm Fundamentals-Modeling-Properties-Performance
Jump to Figure
USC USC
Design Example - Table Top
5m
Q0=1800 N
10m 4m
Iψ=1,0 x 107 N-m-sec2 DESIGN CRITERION
X
5m
Emelt (asztal) alap m=250 000 kg
ψ
Soil Properties Shear Wave Velocity Vs = 200 m/sec Shear Modulus, G = 6,80x107 Pa Density, γ = 1700 kg/m3 Poisson's Ratio, ν = 0,33
5.0 mm/sec Horizontal Motion at Machine Centerline X = 0,04 mm from combined rocking and sliding együttes rocking, csúszás Speed = 320 rpm sebesség Slower speeds, X can be larger Kisebb sebességnél, x megnőhet
Fundamentals-Modeling-Properties-Performance
USC USC
Horizontal Translation Only Equivanlent D=
r=
lw
π
=
10 × 5
π
0,288 = 0,41 ∴ Mag x ≈ 1,2 1/ 2 mˆ
csak vízszintes mozgás 2 −ν m = 0,49 3 8 ρr Q 1800 2 − 0,33 −3 = 0 = = 1 , 3 × 10 mm 7 kx 8 6,8 ×10 × 3,99
= 3,99m mˆ = X static
Rocking About Point "O"
Ax = 40x10-3 mm
3 3 lw × 10 5 ω = 320 rpm = 33,5 rad / sec Equivalent r = 4 =4 = 3,39m 3π 3π 8Gr 3 8 × 6,80 × 107 × 3,393 kψ = = = 1,054 ×1010 N / rad 3(1 −ν ) 3(1 − 0,33)
ωn =
kψ Iψ
1,054 ×1010 = 32,4 rad / sec = 1,0 ×10 7
3(1 −ν ) Iψ 3(0,67) 1,0 ×10 7 mˆ ψ = = = 3,29 5 5 ρr 8 8 1700(3,39) 0,15 0,15 Dψ = = = 0,019 ∴ Magψ = 25,0 (1 + mˆ ψ ) mˆ ψ (1 + 3,29) 3,29
Fundamentals-Modeling-Properties-Performance
USC USC
Static Moment About Base = M 0 = 1800 × 5 = 9000 N − m Static Angular Deflection = ψ s =
Mo 9000 −7 = = 8 . 54 × 10 rad 10 kψ 1.054 ×10
Horizontal Motion = X ψ = ψ s × h = 8.54 ×10 −7 × 4 = 3,4 ×10 −3 mm At Resonance = 25,0(3,4 ×10 −3 ) = 85,0 ×10 −3 mm
X = 40x10-3 mm
Dynamic Magnification (Linear)
X
30
0,02
ψ
Magnification
25
0,05
20 15
0,1
10
0,2
5
0,5
0 0,0
0,5
1,0 1,5 Frequency Ratio (ω P /ω n)
Fundamentals-Modeling-Properties-Performance
2,0
USC USC
Impedance Methods Ellenállási függvények
Based on Elasto-Dynamic Solutions Compute Frequency-Dependent Impedance Frekvenciától függő Values (Complex-Valued) ellenállási értékek Solved By Boundary Integral Methods Peremérték integrál módszer Require Uniform, Single Layer or Special Soil Property Distribution Egyenletes, egy réteg, speciális talajérték eloszlás szükséges Solved For Many Foundation Types Többfajta alap típusra megoldott Fundamentals-Modeling-Properties-Performance
USC USC
Impedance Functions P = Poeiωt = Po (cos(ω t ) + i sin(ω t ) )
Sz ⎛ ⎞ Rz 2K = K + iω C = (K STATIC × k (ω ) ) + iω ⎜⎜ C + Sz = DSOIL ⎟⎟ ω Az ⎝ ⎠ Radiation Damping
Energia csillapítás
Jump Wave
Fundamentals-Modeling-Properties-Performance
Soil Damping Talaj csillapítás USC USC
Impedance Functions a0 = ω r
ρ G
=
ωr Vs
ψ Luco and Westmann (1970)
Fundamentals-Modeling-Properties-Performance
USC USC
Impedance Functions
ψ
Fundamentals-Modeling-Properties-Performance
USC USC
Boundary Element Peremérték feladatok
Stehmeyer and Rizos, 2006 Fundamentals-Modeling-Properties-Performance
USC USC
B-Spline Impulse Response Approach
Fundamentals-Modeling-Properties-Performance
USC USC
[M ]{u&&}+ [K ]{u} = {p}e
i ωt
{u} = {U}eiωt then 2 {[K ] − ω [M ]}{U} = {p}
Fundamentals-Modeling-Properties-Performance
USC USC
u1
u7 G1,ρ1,ν1
u2
u8
[K1 ] = fn(G1 , ρ1 ,ν 1 ) [m1 ] = fn( ρ1 ) ui = ai x + bi y + cxy + d
⎧ k1,1 ⎪k ⎪⎪ 2,1 ⎨ ⎪k ⎪ 7 ,1 ⎪⎩k8,1
k1, 2
k1, 7
k 2, 2
k 2, 7
k7 , 2
k7 , 7
k8 , 2
k8 , 7
ε = linear k1,8 ⎫⎧u1 ⎫ σ = linear
k 2,8 ⎪⎪⎪u2 ⎪ ⎪⎪⎪ ⎪⎪ ⎬⎨ ⎬ k7 ,8 ⎪⎪u7 ⎪ ⎪⎪ ⎪ k8,8 ⎪⎭⎪⎩u8 ⎪⎭
Fundamentals-Modeling-Properties-Performance
USC USC
[M ]{u&&}+ [K ]{u} = {p}eiωt ⎡m1 ⎢ m2 ⎢ ⎢ ⎢ ⎢ ⎢⎣
m3 m4
⎤ ⎧u&&1 ⎫ ⎡ k1,1 k1, 2 ⎥ ⎪u&& ⎪ ⎢k k ⎥ ⎪⎪ 2 ⎪⎪ ⎢ 2,1 2, 2 ⎥ ⎨u&&3 ⎬ + ⎢k3,1 k3, 2 ⎥⎪ ⎪ ⎢ k 4, 2 ⎥ ⎪u&&4 ⎪ ⎢ m5 ⎥⎦ ⎪⎩u&&5 ⎪⎭ ⎢⎣
k1,3 k 2,3
k 2, 4
k3,3 k3, 4 k 4,3 k 4, 4 k5, 3
k5, 4
⎤ ⎧u1 ⎫ ⎧ p1 ⎫ ⎥⎪ ⎪ ⎪ ⎪ ⎥ ⎪⎪u2 ⎪⎪ ⎪⎪ p2 ⎪⎪ k3,5 ⎥ ⎨u3 ⎬ = ⎨ p3 ⎬eiωt ⎥ k4,5 ⎥ ⎪u4 ⎪ ⎪ p4 ⎪ ⎪ ⎪ ⎪ ⎪ k5,5 ⎥⎦ ⎪⎩u5 ⎪⎭ ⎪⎩ p5 ⎪⎭
if {z} = {Z}eiωt then {&z&} = −ω 2 {Z}e iωt and
{[K ] − ω [M ]}{Z} = {p} given ω , solve for {Z} 2
[K ], {Z} are complex − valued
(
G* = G 1 − 2 D 2 + 2iD 1 − D 2
) USC USC
Dynamic p-y Curves
Tahghighi and Tonagi 2007
Fundamentals-Modeling-Properties-Performance
USC USC
Soil Properties
Shear Modulus, G and Damping Ratio, D
Talaj jellemzők
Soil Type Talajtípus Confining Stress Void Ratio Hézagtényező Strain Level Nyúlás szint
Field: Cross-Hole, Down-Hole, Surface Analysis of Seismic Waves SASW Laboratory: Resonant Column, Torsional Simple Shear, Bender Elements Fundamentals-Modeling-Properties-Performance
USC USC
Oscilloscope
Crosshole Testing ASTM D 4428 Pump
Δt Shear Wave Velocity: Vs = Δx/Δt Downhole Hammer (Source) Test Depth
Δx
packer Note: Verticality of casing must be established by slope inclinometers to correct distances Δx with depth.
Slope Inclinometer
PVC-cased Borehole
Velocity Transducer (Geophone Receiver) Slope
Inclinometer
PVC-cased Borehole
USC USC
Resonant Column Test
G, D for Different γ Fundamentals-Modeling-Properties-Performance
USC USC
Torsional Shear Test
Schematic
Stress-Strain
Fundamentals-Modeling-Properties-Performance
USC USC
Hollow Cylinder RC-TOSS
Fundamentals-Modeling-Properties-Performance
USC USC
TOSS Test Results
Fundamentals-Modeling-Properties-Performance
USC USC
Steam Turbine-Generator (Moreschi and Farzam, 2003)
Fundamentals-Modeling-Properties-Performance
USC USC
Machine Foundation Design Criteria
Deflection criteria: maintain turbine-generator alignment during machine operating conditions El/kihajlási kritérium: a turbina-generátor szintben maradjon működése alatt
Dynamic criteria: ensure that no resonance condition is encountered during machine operating conditions Jump to Resonance
Dinamikus feltétel: nincs rezonancia a gép működése alatt
Strength criteria: reinforced concrete design Erősségi feltétel: előfeszített beton tervezés
Fundamentals-Modeling-Properties-Performance
USC USC
STG Pedestal Structure
Fundamentals-Modeling-Properties-Performance
USC USC
Vibration Properties Evaluation Identification of the foundation natural frequencies for the dominant modes Az alap saját frekvenciáinak meghatározása a domináns lengésekre/módokra Frequency exclusion zones for the natural frequencies of the foundation system and individual structural members (±20%) Kihagyási frekvencia zónák a természetes frekvenciákra Eigenvalue analysis: natural frequencies, mode shapes, and mass participation Eigenérték elemzés:természetes frekvenciák, factors lengésmódnál alakok, tömeg együttdolgozása
Fundamentals-Modeling-Properties-Performance
USC USC
Finite Element Model Structure and Base
Z Y
X
Fundamentals-Modeling-Properties-Performance
USC USC
Low Frequency Modes 1st mode 6.5 Hz 95 % m.p.f.
2nd mode 7.2 Hz 76 % m.p.f Fundamentals-Modeling-Properties-Performance
USC USC
High Frequency Modes
28th mode 46.3 Hz 0.3% m.p.f
42nd mode 64.6 Hz 0.03% m.p.f
Excitation frequency: 50-60 Hz Fundamentals-Modeling-Properties-Performance
USC USC
Local Vibration Modes
Identification of natural frequencies for individual structural members
Quantification of changes on vibration properties due to foundation modifications
Fundamentals-Modeling-Properties-Performance
USC USC
ATST Telescope and FE Model
Fundamentals-Modeling-Properties-Performance
USC USC
Assumptions in FE analyses
Optics Lab mass/Instrument weight = 228 tons Wind mean force = 75 N, RMS = 89 N Ground base excitation PSD = 0.004 g2/hz Concrete Pier
High Strength Concrete (E=3.1×1010 N/m2, ν=0.15)
Soil Stiffness, k
Four different values using Arya & O’Neil’s formula based on the site test data (Shear modulus:30~75ksi, Poisson’s ratio:0.35~0.45) Fundamentals-Modeling-Properties-Performance
USC USC
Frequency vs Soil Stiffness Stiffness units = SI, frequency mode (hz) Stiffness Kx Ky Kz Krx Kry Krz
MODE 1 2 3 4 5 6
min 1.19E+10 1.19E+10 1.48E+10 1.34E+12 1.34E+12 1.74E+12
1.83E+10 1.83E+10 2.45E+10 2.21E+12 2.21E+12 2.61E+12
2.48E+10 2.48E+10 3.41E+10 3.09E+12 3.09E+12 3.49E+12
max 3.12E+10 3.12E+10 4.38E+10 3.96E+12 3.96E+12 4.36E+12
6.3 6.4 9.4 9.4 10.4 11.2
7.0 7.1 9.7 10.3 11.9 13.0
7.4 7.5 9.9 11.1 12.6 13.6
7.5 7.7 10 11.8 13.3 13.7
m in+33.3% m in+66.6%
• Soil property range: Shear modulus (30~75ksi), Poisson’s ratio (0.35~0.45) • Pier Footing: Diameter (23.3m) • “min” for shear modulus of 30 ksi; “max” for 75 ksi Fundamentals-Modeling-Properties-Performance
USC USC
Summary and Conclusions (Cho, 2005) 1. 2. 3. 4. 5.
6. 7. 8. 9.
High fidelity FE models were created Relative mirror motions from zenith to horizon pointing: about 400 μm in translation and 60 μrad in rotation. Natural frequency changes by 2 hz as height changes by 10m. Wind buffeting effects caused by dynamic portion (fluctuation) of wind Modal responses sensitive to stiffness of bearings and drive disks
Soil characteristics were the dominant influences in modal behavior of the telescopes. Fundamental Frequency (for a lowest soil stiffness): OSS=20.5hz; OSS+base=9.9hz; SS+base+Coude+soil=6.3hz A seismic analysis was made with a sample PSD ATST structure assembly is adequately designed: 1. Capable of supporting the OSS 2. Dynamically stiff enough to hold the optics stable 3. Not significantly vulnerable to wind loadings Fundamentals-Modeling-Properties-Performance
USC USC
Free-Field Analytical Solutions uz
ur
⎛ ω L0V ⎞ 2⎛ ωr ⎞ ⎟⎟ u z (r ,θ ,0) = −i ⎜⎜ 3 ⎟⎟ RV (a0 ) H 0 ⎜⎜ ⎝ 2β ρ ⎠ ⎝ CR ⎠ ⎛ ω M 0V ur (r ,θ ,0) = i ⎜⎜ 3 β ρ 2 ⎝
⎞ 2⎛ ωr ⎞ ⎟⎟ ⎟⎟ RV (a0 ) H1 ⎜⎜ ⎠ ⎝ CR ⎠
Fundamentals-Modeling-Properties-Performance
USC USC
Fundamentals-Modeling-Properties-Performance
USC USC
Fundamentals-Modeling-Properties-Performance
USC USC
Fundamentals-Modeling-Properties-Performance
USC USC
Fundamentals-Modeling-Properties-Performance
USC USC
Fundamentals-Modeling-Properties-Performance
USC USC
Trench Isolation
Karlstrom and Bostrom 2007 Fundamentals-Modeling-Properties-Performance
USC USC
Chehab and Nagger 2003 Fundamentals-Modeling-Properties-Performance
USC USC
Celibi et al (in press)
USC USC
Thank-you
Questions?
USC USC
r -2
r -2 r -0.5 +
-
+
Rayleigh wave Vertical Horizontal component component
+
Shear wave
+
Relative amplitude
-
r -1
+ Shear window
r -1
+ r Wave Type
Percentage of Total Energy
Rayleigh
67
Shear
26
Compression
7 USC USC
Waves Compression, P Primary Shear,S Secondary
Rayleigh, R Surface
USC USC
Machine Performance Chart Performance Zones A=No Faults, New B=Minor Faults, Good Condition C = Faulty, Correct In 10 Days To Save $$
0.002
D = Failure Is Near, Correct In 2 Days E = Stop Now
450
USC USC