Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
VARIABILITAS SPATIO-TEMPORAL CURAH HUJAN EKSTRIM DI KABUPATEN MALANG AMRAN1, NUR IRIAWAN2, SUBIONO3 , IRHAMAH2 1
Program Pasca Sarjana, Jurusan Statistika, ITS, email :
[email protected] 2 Jurusan Statistika, ITS, Surabaya. 3 Jurusan Matematika, ITS, Surabaya.
Abstrak—Curah hujan ekstrim dapat mengakibatkan kerugian yang sangat besar terhadap kehidupan manusia dan lingkungan. Oleh karena itu analisa terhadap karakteristiknya, dalam hal ini variabilitas spasial maupun temporal penting dilakukan dalam rangka mengembangkan upaya untuk menanggulangi dampak yang diakibatkannya. Variabilitas spatio-temporal hujan ekstrim diselidiki dengan menggunakan data hujan harian pada beberapa stasiun pengukuran di Kabupaten Malang periode 1996-2010. Variabilitas spasial dianalisis menggunakan keseluruhan data pengamatan melalui proses pengelompokan karakteristik hujan yang identik dalam satu kelompok dan karakteristik hujan yang berbeda dalam kelompok lainnya. Variabilitas temporal diselidiki pada setiap kelompok yang terbentuk menggunakan metode moving window. Model Poisson-Generalized Pareto (Poisson-GP) dengan pendekatan Peak Over Threshold (POT) akan diterapkan pada data aggregasi harian. Penaksiran parameter model Poisson-GP dilakukan dengan metode maksimum likelihood. Berdasarkan taksiran nilai parameter model Poisson-GP selanjutnya dihitung Return Level (RL) dan Precipitation Extremes Volatility Indeks (PEVI) untuk mengukur variabilitas ekstrim spatio-temporal yang dinyatakan sebagai rasio RL. Kata kunci—Curah hujan ekstrim, variabilitas spasial, variabilitas temporal, Model Poisson-Generalized Pareto, Return Level, Precipitation Extremes Volatility Indeks. 1. PENGANTAR Curah hujan ekstrim dapat mengakibatkan kerugian yang sangat besar bagi kehidupan manusia dan lingkungan alam. Salah satu bentuk akibat dari curah hujan ekstrim ialah terjadinya banjir. Banjir dapat mempunyai beberapa akibat diantaranya, kerugian materi, munculnya penyakit baik terhadap manusia, tanaman dan hewan [6]. Suatu upaya untuk mengatasi dampak yang mungkin terjadi pada suatu kejadian curah hujan ekstrim, ialah pembangunan infrastruktur yang dapat Manajemen dan Rekayasa Sumber Daya Air
bertahan pada kejadian ekstrim tersebut. Untuk itu diperlukan pemahaman yang baik akan intensitas dan frekuensi terjadinya curah hujan ekstrim. Pemahaman yang baik terhadap hujan ekstrim dapat membantu pihak terkait untuk meningkatkan pengetahuan tentang proses hujan yang bersifat ekstrim dan dapat menunjang pembangunan infrastruktur yang handal. Beberapa penelitian sebelumnya yang menyelidiki tentang trend dan variabilitas presipitasi ekstrim di berbagai wilayah diantaranya, di United States [15, 9], di India A-77
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
[8], di Asia tenggara dan Pasifik selatan [21], di Australia [26, 9], di Europe [11], di Caribia [24], di Italy [3], di Balkan [4], di Canada, Norwegia, Rusia, China, Mexico [9], di Japan [13], di Swedia [12], di Brasil [20]. Namun, penelitian tersebut tidak memberikan informasi tentang variabilitas spasial dan variabilitas temporal hujan ekstrim di Indonesia, khususnya di Kabupaten Malang, Jawa Timur. Untuk melakukan analisis terhadap banjir menggunakan data curah hujan harian atau variabel lainnya dapat dilakukan melalui Teorema nilai ekstrim (TNE). Berbagai bidang penelitian telah menggunakan TNE, diantaranya, hidrologi [16, 19], ekologi [7, 17], temperature [2], kecepatan angin [23]. Beberapa peneliti [10, 16, 22] menggunakan distribusi Generalized Extreme Value (GEV) yang dikembangkan oleh Jenkinson [14] untuk memodelkan presipitasi ekstrim. Pendekatan ini disebut sebagai blok maksima karena menggunakan pemodelan distribusi untuk data maksimum pada setiap interval waktu yang disebut blok. Ukuran blok dibentuk dengan panjang interval waktu yang sama, misalnya presipitasi maksimum tahunan menggunakan ukuran blok satu tahun pengamatan. Pendekatan ini mempunyai keuntungan, yakni membutuhkan data lebih sederhana dan blok maksima dapat diasumsikan sebagai variabel random yang independen. Namun, kekurangan utama pendekatan ini ialah tidak menggunakan seluruh informasi yang terdapat pada bagian ujung atas dari distribusi, padahal sangat memungkinkan adanya informasi ekstrim di bagian tersebut. Hal ini yang mendasari muncul pendekatan Peak Over Threshold (POT) yang awalnya diperkenalkan di bidang hidrologi [18]. Metode POT menggunakan suatu nilai threshold untuk mendefinisikan presipitasi Manajemen dan Rekayasa Sumber Daya Air
dengan nilai melebihi threshold sebagai presipitasi ekstrim [5]. POT menggunakan keseluruhan data pengamatan dalam memodelkan presipitasi ekstrim, hal ini yang membedakannya dengan pendekatan GEV. Model statistika yang mendasari metode POT ialah 1. Proses Poisson, untuk menggambarkan proses kejadian presipitasi yang melebihi nilai threshold, 2. Distribusi Generalized Pareto (GP) dengan parameter shape (ξ ) dan skala (σ). Distribusi GP menggambarkan bentuk distribusi presipitasi ekstrim. Model ini dikenal sebagai model Poisson-GP [25]. Beberapa peneliti menggunakan distribusi GP untuk memodelkan presipitasi ekstrim dengan menggunakan data presipitasi harian [19, 27]. Penelitian ini menggunakan model PoissonGP untuk mengamati variabilitas spasial dan temporal atau spasio-temporal curah hujan ekstrim, pada beberapa stasiun pengukuran curah hujan di Kabupaten Malang, Jawa Timur. Curah hujan non-stasioner terjadi di kabupaten Malang [1], oleh karena itu penelitian tentang curah hujan di kabupaten Malang dilakukan dengan menggunakan dua atau lebih stasiun pengukuran curah hujan agar lebih representatif. Dua stasiun pengukuran yang dapat merepresentasikan kelompok stasiun curah hujan di kabupaten Malang, digunakan dalam penelitian ini, yakni stasiun Tumpukrenteng, mewakili daerah dengan ketinggian sekitar 400 meter dari permukaan laut dan stasiun Pujon, mewakili daerah di kabupaten Malang dengan ketinggian sekitar 1000 m dari permukaan laut. Data presipitasi harian di kedua stasiun tersebut diukur selama periode 1996-2010. Model Poisson-GP mengasumsikan bahwa data pengamatan bersifat independen dan identik (IID) [5, 16]. Trend, pola musiman dan dependensi temporal jika muncul dalam data A-78
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
mengindikasikan bahwa sifat IID tidak dipenuhi. Oleh karena itu sebelum menganalisis data lebih lanjut, harus dipastikan bahwa ketiga indikator tersebut tidak terdapat dalam data. Untuk memastikan bahwa asumsi IID dari model Poisson-GP dipenuhi, akan diselidiki melalui tiga bentuk data yang berbeda yakni data harian, maksimum mingguan dan maksimum mingguan residual. Maksimum residual mingguan diperoleh dari selisih antara ratarata maksimum mingguan pada setiap tahun dengan maksimum mingguan tertentu pada minggu yang sama. Ketiga bentuk data tersebut dibandingkan untuk memilih data terbaik melalui deteksi pola dependensi temporal berupa autokorelasi dan trend musiman. Sedangkan untuk mengetahui kualitas kecocokan model Poisson-GP dilakukan melalui sifat-sifat proses poisson kejadian presipitasi ekstrim dan kecocokan distribusi presipitasi ekstrim dengan distribusi GP. Pemilihan threshold dilakukan dengan memilih quantil 95% untuk data maksimum mingguan maupun data maksimum mingguan residual dan 99% untuk data harian. Threshold dihitung pada masing-masing kelompok stasiun. Variabilitas spasial diselidiki pada periode waktu 15 tahun (1996-2010) demikian pula dengan variabilitas temporal, menggunakan metode moving window 10 tahunan. Variabilitas temporal dinyatakan dengan kemiringan trend linear yang ditentukan dari model regresi moving window tersebut. Penyelidikan variabilitas dilakukan terhadap threshold, ξ dan σ, return level (RL), dan precipitation extremes volatility index (PEVI). RL digunakan untuk membuat disain infrastruktur, sementara PEVI mengukur presipitasi yang sangat ekstrim namun jarang terjadi. Variabilitas spasial dan temporal untuk threshold, parameter distribusi Manajemen dan Rekayasa Sumber Daya Air
GP, RL dan PEVI diselidiki untuk memberikan informasi indikasi naik atau turunnya trend presipitasi dalam periode waktu 1996-2010. 2. METODOLOGI Data Penelitian Data yang digunakan dalam penelitian ini adalah data sekunder yang diperoleh dari Badan Pengelolah Waduk dan Sungai di Kabupaten Malang. Data ini berupa data intensitas curah hujan harian pada dua stasiun pengukuran curah hujan, yakni stasiun Tumpukrenteng dan stasiun Pujon, Kabupaten Malang, periode 1996 – 2010. Variabilitas spasial dan temporal diamati pada periode waktu tersebut melalui moving window 10 tahunan. Model Poisson-GP Jika barisan, x 1 , …, x n IID, maka model Poisson-GP mengandung dua komponen, yaitu (i). deret waktu terjadinya presipitasi yang melebihi nilai threshold u dapat dinyatakan sebagai proses poisson, dan (ii). Distribusi limit untuk excesses atas u, yakni y i = x i – u, i = 1, …, n dapat didekati dengan distribusi GP [5, 16]. Suatu presipitasi x didefinisikan sebagai ekstrim apabila x > u. Jika x 1 , …, x k presipitasi ekstrim atas u maka excesses didefinisikan sebagai y i = x i – u, i = 1, …, k. Jika y 1 , …, y k barisan variabel random independen maka distribusi y i dapat dihampiri dengan anggota dari keluarga distribusi GP [5]. Fungsi distribusi kumulatif dari GP sebagai berikut: F(xξ,µ,σ)= (1)
A-79
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
dimana,
> 0, y > 0, ξ ∈ (- ∞, ∞ )
adalah parameter shape dan σ > 0 adalah parameter skala. Kedua parameter tersebut ditaksir menggunakan metode maksimum likelihood. Fungsi likelihood distribusi GP didefinisikan dalam persamaan (2) berikut:
(2) dimana, c i = (1 + ξy/σ) [5]. Model GP mudah diinterpretasi mengunakan quantil atas ekstrim atau return level, return level umumnya didefinisikan pada skala tahunan, misalnya untuk n return priode. N tahunan return level dapat dinyatakan sebagai berikut = RL N = (3) dimana u dan n y masing-masing adalah threshold dan banyaknya pengamatan dalam 1 tahun, dan τ = k/n adalah probabilitas suatu pengamatan lebih dari u [5]. Pemilihan threshold dalam model PoissonGP mempunyai peran yang penting. Jika u terlalu rendah, penaksiran parameter model bersifat bias jika u terlalu tinggi menghasilkan variansi penaksiran menjadi besar [5]. Dua metode untuk menyeleksi threshold yang banyak digunakan untuk memodelkan distribusi ekstrim ialah (i). Mean residual life plot, (ii). Penentuan threshold atas nilai taksiran ξ dan σ konstan [18]. Pemilihan threshold dengan kedua metode tersebut bergantung pada pertimbangan subyektif para peneliti. Namun dalam penelitian ini akan digunakan quantil 99% untuk data harian dan
Manajemen dan Rekayasa Sumber Daya Air
quantil 95% untuk data mingguan sebagai threshold pada setiap stasiun pengukuran. Beberapa penelitian memilih quantil atas seperti 97,5% dan 95% dari distribusi empirik sebagai threshold [5, 18]. Precipitation Extremes Volatility Index (PEVI) Struktur hidrologi atau infrastruktur biasanya di desain agar tahan terhadap kejadian ekstrim dengan besaran tertentu, namun infrastruktur kemungkinan gagal bertahan jika terjadi kejadian ekstrim yang jarang dan dengan intensitas yang sangat tinggi. Suatu ukuran untuk membandingkan kenaikan dalam intensitas dengan kejadian ekstrim yang jarang terjadi dapat menjadi suatu indikator untuk mengukur tingkat kerawanan suatu infrastruktur, dengan asumsi kondisi lain yang mempengaruhinya tetap sama. Asumsikan T > t, dengan t, T masingmasing merupakan kejadian t tahunan dan T tahunan. Jika kejadian T tahunan dengan probabilitas (1/T ), memiliki intensitas lebih tinggi daripada kejadian t tahunan dengan probabilitas 1/t, maka infrastruktur dapat dikatakan sangat rentan apabila terdapat perbedaan yang signifikan antara intensitas pada kedua periode waktu tersebut. Perbedaan intensitas tersebut dapat diukur melalui Precipitation Extremes Volatility Index. PEVI adalah suatu ukuran untuk menghitung dan memvisualisasikan ukuran perbedaan intensitas yang disebabkan oleh kejadian presipitasi yang sangat ekstrim. Ukuran ini dinyatakan sebagai rasio return level. Secara teoritis PEVI memiliki hubungan dengan shape parameter sebagai berikut:
A-80
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
PEVI
=
=
(4) PEVI bernilai lebih dari atau sama dengan satu. Suatu desain RL untuk t tahun berkorespondensi dengan struktur hidrolik atau sistem mitigasi yang telah disain sehingga relatif aman sampai dengan periode waktu t. Jika PEVI=1 batas atas RL tepat sama dengan desain RL yang diaplikasikan pada kejadian sangat ekstrim dengan probabilitas rendah. Namun, derajat perbedaan pada saat terdapat kejadian sangat ekstrim, akan meningkat seiring dengan peningkatan nilai PEVI. Sehingga PEVI dapat juga digunakan sebagai faktor keamanan untuk desain infrastruktur. Dalam penelitian ini digunakan T = 200 dan t =50 yang dapat mewakili rata-rata jangka waktu infrastruktur yang dapat bertahan terhadap terjadinya presipitasi ekstrim dalam waktu 50 tahun dan kejadian sangat ekstrim dengan return periode 200 tahunan.
yaitu, data harian, maksimum mingguan, dan maksimum mingguan residual, untuk memilih data yang memenuhi asumsi model PoissonGP. Hasil validasi dapat dilihat pada gambar 1 untuk data harian, gambar 2 untuk maksimum mingguan dan gambar 3 untuk maksimum mingguan residual. Hasil pencocokan model Poisson-GP terhadap data dapat diamati melalui probability plot (b) dan pola musiman serta dependensi temporal (c). Umumnya ketiga bentuk data mempunyai kecocokan yang baik melalui probability plot kecuali pada data harian stasiun Tumpukrenteng (gambar 1, bagian a.1). Hal yang menarik, ialah indikasi pola musiman dan dependensi temporal sangat signifikan pada gambar 1, bagian c.1 dan c.2 dan gambar 2, bagian c.1 dan c.2, namun hal ini tidak terjadi pada gambar 3, bagian c.1 dan c.2, sehingga dapat dikatakan bahwa asumsi IID model PoissonGP lebih cocok digunakan pada data maksimum mingguan residual. Berdasarkan hal tersebut, analisis selanjutnya dilakukan menggunakan data curah hujan maksimum mingguan residual.
Pengukuran kualitas model Poisson-GP 3. HASIL Kualitas proses Poisson-GP diselidiki melalui probability dan quantil plot dari pencocokan distribusi GP terhadap excesses serta deteksi pola musiman dan dependensi temporal melalui plot autokorelasi data curah hujan. Validitas model poisson -GP didasarkan pada asumsi bahwa data bersifat IID. Munculnya indikasi seperti trend jangka panjang, pola musiman, dan korelasi temporal melanggar asumsi IID [7]. Data presipitasi mempunyai kemungkinan berkorelasi secara temporal dan memiliki trend jangka panjang atau pola musiman [7]. Penelitian ini menganalisis tiga himpunan data yang berbeda Manajemen dan Rekayasa Sumber Daya Air
Penelitian ini meneliti data curah hujan harian yang dinyatakan dalam bentuk maksimum mingguan residual untuk mengamati variabilitas spasial dan temporal dari threshold, RL50 tahunan, RL 200 tahunan dan PEVI. Peningkatan atau penurunan trend curah hujan periode 1996-2010 dapat dievaluasi dari variabilitas temporal threshold. Pada setiap stasiun, threshold dipilih berdasarkan quantil 95% dari distribusi empirik data curah hujan. Variabilitas spasial maupun temporal diamati pada periode 19962010 dan analisis pada variabilitas temporal A-81
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
yang dinyatakan dengan pencocokan garis regresi pada moving window 10 tahunan, yakni, 1996-2005, 1997-2006, …, 2001-2010. Analisis trend dengan model regresi dalam tabel 4, menunjukkan bahwa variabilitas threshold di stasiun Tumpukrenteng mempunyai kecenderungan meningkat (nilai koefisien regresi 0.182) dan variabilitas threshold di stasiun Pujon justru mempunyai kecenderungan menurun yang ditandai dengan koefisien kemiringan garis regresi bernilai 0.444. Variabilitas spasial dan temporal yang terjadi pada kedua stasiun tersebut berdampak pada manajemen pengelolaan infrastruktur pada masing-masing lokasi. Variabilitas spasial dan temporal parameter distribusi GP yaitu: shape dan skala parameter dianalisis melalui tabel 2 dan tabel 3, nilai ξ cenderung konstan dengan variasi dari -0.415 sampai dengan -0.039 di stasiun Tumpukrenteng dan di stasiun Pujon parameter shape mempunyai kecenderungan meningkat dengan variasi nilai dari -0.071 sampai dengan 0.276, dan memiliki nilai yang lebih tinggi daripada stasiun Tumpukrenteng. Berbeda dengan parameter shape, parameter skala mempunyai kecenderungan yang meningkat di kedua stasiun. Variabilitas parameter σ yakni, 15.926 mm sampai dengan 33.017 mm di stasiun Tumpukrenteng dan 13.962 mm sampai dengan 20.910 mm di stasiun Pujon. Namun, nilai parameter skala di stasiun Tumpukrenteng lebih tinggi daripada stasiun Pujon. Nilai PEVI mempunyai kecenderungan yang berbeda pada kedua stasiun sebagaimana terlihat dalam tabel 2 dan tabel 3. Kecenderungan konstan terjadi pada stasiun Tumpukrenteng disebabkan oleh nilai parameter shape yang bernilai negatif. Di stasiun Pujon, nilai PEVI cenderung mengalami kenaikan meskipun kenaikan tersebut berukuran cukup kecil. Manajemen dan Rekayasa Sumber Daya Air
.KESIMPULAN Penelitian ini menganalisis variabilitas spasial dan temporal dari curah hujan ekstrim berdasarkan data curah hujan harian melalui model Poisson-GP. Kecocokan model dengan data akan diselidiki dalam tiga bentuk data yang berbeda, yakni harian, maksimum mingguan dan maksimum mingguan residual melalui deteksi pola musiman dan dependensi temporal pada ketiga data tersebut. Berdasarkan analisis terhadap ketiga bentuk data menggunakan data curah hujan di stasiun Tumpukrenteng dan stasiun Pujon, kabupaten Malang periode 1996-2010, disimpulkan bahwa bentuk data maksimum mingguan residual cocok digunakan pada model Poisson-GP karena bentuk data ini dapat dikatakan tidak mengandung pola musiman dan dependensi temporal. Hal ini berbeda dengan dua bentuk data lainnya, yang mengandung pola musiman dan dependensi temporal. Berdasarkan model Poisson-GP yang diperoleh melalaui penggunaan data maksimum mingguan residual pada stasiun Tumpukrenteng dan Pujon disimpulkan bahwa variabilitas spasial untuk nilai threshold pada kedua stasiun tersebut mempunyai kecenderungan naik di Tumpukrenteng dan kecenderungan turun di Pujon. Variabilitas parameter shape di stasiun Tumpukrenteng cenderung konstan, namun cenderung meningkat di stasiun Pujon, sedangkan variabilitas parameter skala mempunyai kecenderungan menaik pada kedua stasiun. PEVI mempunyai kecenderungan konstan di Tumpukrenteng dan mempunyai kecenderungan untuk naik di stasiun Pujon. Informasi tersebut dapat membantu dalam menyusun kebijakan manajemen pengelolaan
A-82
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
infrastruktur yang baik, di wilayah stasiun Pujon dan di wilayah stasiun Tumpukrenteng. REFERENSI [1] Amran, Iriawan N., Subiono, Irhamah, (2011), Analysis of stationary of spatial-temporal extreme rainfalls in Malang Residence, Prosiding International Conference and Workshops on Basic and Applied SciencesICOWOBAS, 21-22 September, Surabaya. [2] Brown B.G. dan Katz R.W. (1995), Regional analysis of temperature extremes: spatial analog for climate change?, J.Clim., Vol. 8. [3] Brunetti, M., M. Maugeri, T. Nanni, dan A. Navarra (2002), Droughts and extreme events in regional daily Italian precipitation series, Int. J. Climatol., Vol. 22. [4] Cavazos, T. (2000), Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans, J. Clim., Vol.13. [5] Coles, S. G. (2001), An introduction to statistical modeling of extreme values, Springer-Verlag, London, UK. [6] Curriero, F. C., J. A. Patz, J. B. Rose, dan S. Lele (2001), The association between extreme precipitation and waterborne disease outbreaks in the United Status, 1948– 1994, Am. J. Public Health, Vol. 91. [7] Gaines, S. D., dan M. W. Denny (1993), Smallest, highest, lowest, longest, dan shortest: Extremes in ecology, Ecology, Vol.74. [8] Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, dan P. K. Xavier (2006), Increasing trend of extreme rain events over India in a warming environment, Science, Vol. 314. [9] Groisman, P. Y., et al. (1999), Changes in the probability of heavy precipitation important indicators of climatic change, Climatic Change, Vol. 42. [10] Gumbel, E. J. (1958), Statistics of extremes, Columbia Univ. Press, New York.
Manajemen dan Rekayasa Sumber Daya Air
[11] Haylock, M., dan C. Goodess (2004), Interannual variability of European extreme winter rainfall and links with mean largescale circulation, Int. J. Climatol., Vol. 24. [12] Hellstrom, C., dan B. A. Malmgren (2004), Spatial analysis of extreme precipitation in Sweden 1961– 2000, AMBIO: A J. Human Environment, Vol.33. [13] Iwashima, T., dan R. Yamamoto (1993), A statistical analysis of the extremes events: Long-term trend of heavy daily precipitation, J. Meteorol. Soc. Jpn., Vol.71. [14] Jenkinson, A. F. (1955), The frequency distribution of the annual maxima (or minima) values of meteorological elements, Q. J. Meteorol. Soc., Vol. 81. [15] Karl, T. R., R. W. Knight, dan N. Plummer (1995), Trends in high-frequency climate variability in the twentieth century, Nature, Vol. 377. [16] Katz, R. W., M. B. Parlange, dan P. Naveau (2002), Statistics of extremes in hydrology, Adv. Water Resour., Vol. 25. [17] Katz, R. W., G. S. Brush, dan M. B. Parlange (2005), Statistics of extremes: Modeling ecological disturbances, Ecology, Vol. 86(5). [18] Khan, S., Kuhn G., Ganguly A.R., Erickson, D.J., dan Ostrouchov G. (2007), Spatiotemporal variability of daily and weekly precipitation extremes in South America, Water Resources Research, Vol. 43. [19] Li, Y., W. Cai, dan E. P. Campbell (2005), Statistical modeling of extreme rainfall in southwest western Australia, J. Clim., Vol.18. [20] Liebmann, B., C. Jones, dan L. M. V. Carvalho (2001), Interannual variability of daily extreme precipitation events in the state of Sa˜o Paulo, Brazil, J. Clim., 14. [21] Manton, M. J., et al. (2001), Trends in extreme daily rainfall and temperature in southeast Asia and the south Pacific: 1961– 1998, Int. J. Climatol., Vol.21.
A-83
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
[22]
[23]
[24]
[25]
[26]
[27]
Nadarajah, S. (2005), Extremes of daily rainfall in west central Florida, Climatic Change, Vol. 69. Palutikof, J. P., B. B. Brabson, D. H. Lister, dan S. T. Adcock (1999), A review of methods to calculate extreme wind speeds, Meterological Applications, Vol. 6. Peterson, T. C., et al. (2002), Recent changes in climate extremes in the Caribbean region, J. Geophys. Res., 107(D21). Picklands, J. (1975), Statistical inference using extreme order statistics, Ann. Stat., 3, 119–131. Suppiah, R., dan K. J. Hennessy (1998), Trends in total rainfall, heavy rainfall events, and number of dry events in Australia, Int. J. Climatol., Vol.18. Wilson, P. S., dan R. Toumi (2005), A fundamental probability distribution of heavy rainfall, Geophys. Res. Lett., Vol. 32.
Manajemen dan Rekayasa Sumber Daya Air
A-84
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
LAMPIRAN
a.1
a.2
b.1
b.2 Harian Pujon9 1.0
0.8
0.8
0.6
0.6
0.4
0.4
Autocorrelation
Autocorrelation
Tumpukrentengm 1.0
0.2 0.0 -0.2 -0.4
0.2 0.0 -0.2 -0.4
-0.6
-0.6
-0.8
-0.8
-1.0
-1.0
1
5
10
15
20
25
30
35
40 Lag
45
50
55
60
65
70
75
1
10
20
30
40
50
60 Lag
70
80
90
100
110
c.1 c.2 Gambar 1. Profil data curah hujan harian stasiun Tumpukrenteng (a1, b1, c1) dan Pujon (a2, b2, c2), bagian a) menyatakan plot curah hujan, b). validasi model GPD, c) plot autokorelasi
Manajemen dan Rekayasa Sumber Daya Air
A-85
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
a.1
a.2
b.1
b.2 Maks Mingguan Pujon9 1.0
0.8
0.8
0.6
0.6
0.4
0.4
Autocorrelation
Autocorrelation
Tumpukrentengm 1.0
0.2 0.0 -0.2 -0.4
0.2 0.0 -0.2 -0.4
-0.6
-0.6
-0.8
-0.8
-1.0
-1.0
1
5
10
15
20
25
30
35
40 Lag
45
50
55
60
65
70
75
c.1
1
5
10
15
20
25
30
35 40 Lag
45
50
55
60
65
70
c.2
Gambar 2. Profil data curah hujan maksimum mingguan stasiun di Tumpukrenteng (a1, b1, c1) dan di stasiun Pujon (a2, b2, c2), masing-masing bagian menyatakan a). plot curah hujan, b). validasi model GPD, dan c). plot autokorelasi.
Manajemen dan Rekayasa Sumber Daya Air
A-86
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
a.1
a.2
b.1
b.2 Maks Mingguan Residual Pujon9 1.0
0.8
0.8
0.6
0.6
0.4
0.4
Autocorrelation
Autocorrelation
Maksimum Mingguan Residual 1.0
0.2 0.0 -0.2 -0.4
0.2 0.0 -0.2 -0.4
-0.6
-0.6
-0.8
-0.8
-1.0
-1.0
1
5
10
15
20
25
30
35 40 Lag
45
50
55
60
65
70
1
5
10
15
20
25
30
35 40 Lag
45
50
55
60
65
70
c.1 c.2 Gambar 3. Profil data curah hujan maksimum mingguan residual stasiun di Tumpukrenteng (a1, b1, c1) dan di stasiun Pujon (a2, b2, c2), masing-masing bagian menyatakan a). plot curah hujan, b). validasi model GPD, dan c). plot autokorelasi.
Manajemen dan Rekayasa Sumber Daya Air
A-87
Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah (ATPW), Surabaya, 11 Juli 2012, ISSN 2301-6752
Tabel 1: Deskripsi Curah hujan stasiun Tumpukrenteng dan stasiun Pujon. Statistik Tumpukrenteng Pujon mean 5.888 6.044 StDev 14.803 13.33 Variance 219.137 177.691 Skewness 3.8349 3.6729 Kurtosis 18.0318 21.137 N 5479 5479 Minimum 0 0 Median 0 0 Maksimum 147 182 Tabel 2: Variabilitas threshold, parameter GPD dan PEVI Stasiun Tumpukrenteng (400 m dpl) σ (mm) ξ no u PEVI 1
-0.039
15.926
44.500
1.000
2
-0.182
21.457
45.000
1.000
3
-0.224
23.886
45.800
1.000
4
-0.129
21.228
44.670
1.000
5
-0.052
19.064
43.670
1.000
6
-0.416
33.017
46.800
1.000
Tabel 3: Variabilitas threshold, parameter GPD dan PEVI Stasiun Pujon (1100 m dpl) σ (mm) ξ no u PEVI 1
-0.071
18.039
32.133
1.000
2
0.186
13.962
34.600
1.293
3
0.276
15.224
34.600
1.467
4
0.152
20.910
32.133
1.235
5
0.212
19.667
32.133
1.342
6
0.220
19.279
31.000
1.357
Tabel 4: Trend linear threshold masing-masing stasiun: Stasiun Tumpukrenteng Pujon
Manajemen dan Rekayasa Sumber Daya Air
konstanta kemiringan 44.4 0.182 34.3 -0.444
A-88