SOAL DAN SOLUSI UJIAN SEKOLAH SUSULAN TAHUN 2013 1. Diketahui premis-premis: Premis P1: Mathman lulus Ujian Nasional atau Mathman tidak rajin belajar. Premis P2: Mathman tidak lulus Ujian Nasional. Kesimpulan yang sah dari premis-premis tersebut adalah …. A. Jika Mathman tidak rajin belajar maka ia lulus Ujian Nasional. B. Jika Mathman malas, maka ia tidak lulus Ujian Nasional. C. Mathman lulus Ujian Nasional. D. Mathman malas belajar. E. Mathman rajin belajar dan lulus Ujian Nasional. Solusi: Sifat: 1. p q ~ q ~ p ~ p q p q : Jika Mathman rajin belajar maka ia lulus Ujian Nasional
2. Kaidah Modus Tollens p q (Premis 1)
~ p (Premis 2)
~ q (Kesimpulan/Konklusi) Soal tersebut di atas dapat dinyatakan sebagai berikut. p q (Premis 1)
p ~ q (Premis 1) Ekuivalen ~ p (Premis 3)
~ p (Premis 2)
....
~r
Jadi, kesimpulan yang sah dari premis-premis tersebut adalah “Mathman malas belajar.” [D] 2. Ingkaran dari pernyataan “Pada saat ujian nasional sedang berlangsung semua siswa tidak diperkenankan membawa kalkulator atau hand phone.” adalah ….
A. Pada saat ujian nasional sedang berlangsung ada siswa diperkenankan membawa kalkulator atau hand phone. B. Pada saat ujian nasional sedang berlangsung semua siswa diperkenankan membawa kalkulator dan hand phone . C. Pada saat ujian nasional sedang berlangsung semua siswa diperkenankan membawa kalkulator atau hand phone. D. Pada saat ujian nasional sedang berlangsung ada siswa yang diperkenankan membawa kalkulator dan hand phone. E. Pada saat ujian nasional sedang berlangsung beberapa siswa tidak diperkenankan membawa kalkulator dan hand phone. Solusi : 1 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
Sifat: ~ p q ~ p ~ q Jadi, ingkaran dari pernyataan adalah “Pada saat ujian nasional sedang berlangsung ada siswa yang diperkenankan membawa kalkulator dan hand phone.” [D] 3. Ingkaran dari pernyataan “Jika tanggul bobol maka kota akan terendam air dan semua warga kota tidak hidup menderita.” adalah ….
A. Tanggul bobol dan kota tidak akan terendam air dan semua warga kota yang hidup menderita. B. Jika tanggul bobol dan kota tidak akan terendam air atau ada warga kota yang hidup menderita. C. Jika tanggul tidak bobol maka kota tidak akan terendam air dan semua warga kota hidup menderita. D. Tanggul bobol dan kota tidak akan terendam air atau ada warga kota yang hidup menderita. E. Tanggul bobol dan kota tidak akan terendam air atau ada warga kota yang hidup menderita. Solusi : Sifat: ~ p q p ~ q ~ p q r p ~ q ~ r
Jadi, ingkaran dari pernyataan adalah “Tanggul bobol dan kota tidak akan terendam air atau ada warga kota yang hidup menderita.” [E] 4. Bentuk sederhana dari 2 6 5
1 2 6 5
adalah….
A. 2 6 B.
6
C. 4 6 D. 4 6 10 E. 2 6 5 Solusi:
2 6 5
1 1 2 6 5 2 6 5 2 6 5 2 6 5 24 25 2 6 5 2 6 5 2 6 5 2 6 5 2 6 5 4 6 [C]
5. Diberikan 2 log 3 a dan 2 log 7 b . Nilai dari 6 log196 .... b ab a 1 B. 2b 4 a 1 C. 2b 2 2b 1 D. 2a 2
A.
2 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
E.
a 1 b2
Solusi: 6
log196
2 2 a 1 log 6 log 3 2 log 2 log 3 1 [C] 2 2 2 2 log196 log 49 log 4 2 log 7 2 2b 2 2
6. Diberikan persamaan kuadrat 2 x 2 p 4x 10 0 dengan akar-akarnya adalah dan . Jika 5 , maka nilai p adalah …. A. 1 atau 1 B. 2 atau 2 C. 6 atau 6 D. 12 atau 12 E. 20 atau 20 Solusi:
2 x 2 p 4x 10 0 , akar-akarnya adalah dan
b p 4 p 4 a 2 2
5 b p4 a 2 p4 12 5 p 20 12 c 10 5 a 2 5 p 20 p 4 5 12 12 5
5 p 4 5 144 2
p 42 144
p 4 12 B
7. Jika persamaan kuadrat px 2 1 2 p x 1 0 mempunyai dua akar yang sama , maka nilai p adalah …. 1 A. 4 1 B. 2 1 C. 4 1 D. 2 E. 2 Solusi:
Syarat persamaan kuadrat px 2 1 2 p x 2 0 mempunyai dua akar sama adalah D 0 3 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
1 2 p 2 4 p 2 0 1 4 p 4 p2 8 p 0 4 p2 4 p 1 0
2 p 12 0 1 [C] 2 8. Batas-batas nilai p
p
yang
memenuhi,
jika
grafik
fungsi
kuadrat
f x x 2 2k 4x 2k k 2 selalu berada di bawah sumbu X adalah ….
A. 2 k 1 B. 2 k 1 C. 1 k 2 D. k 2 atau k 1 E. k 1 atau k 2 Solusi:
Syarat grafik fungsi kuadrat f x x 2 2k 4x 2k k 2 selalu berada di bawah sumbu X adalah a 0 dan D 0 . a 1 0
2k 42 4 12k k 2 0 4k 2 16k 16 8k 4k 2 0
8k 2 24k 16 0 k 2 3k 2 0 k 2k 1 0
+
2
+ 1
2 k 1 [B] 9. Mathman dan Martha adalah bersaudara kandung. Jumlah umur Mathman, Martha dan Ayahnya adalah 140 tahun. Lima belas tahun yang lalu umur Mathman adalah 2 kali umur 4 Martha; 15 tahun yang akan datang umurnya kali umur Martha. Umur ayah sekarang adalah 3 …. A. 80 tahun B. 75 tahun C. 70 tahun D. 65 tahun E. 60 tahun Solusi: Ambillah sekarang umur Mathman x tahun dan umur Martha y tahun, dan umur ayah adalah z tahun. x y z 140 …. (1)
x 15 2 y 15 x 2 y 15 …. (2)
4 y 15 3 3x 45 4 y 60 x 15
3x 4 y 15 …. (3)
4 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
Persamaan (3) – 2 Persamaan (2) menghasilkan: x 45 x 45 x 2 y 15 45 2 y 15
y 30 x 45 dan y 30 45 30 z 140 z 65 Jadi, ayah adalah 65 tahun . [D]
10. Salah satu garis singgung pada lingkaran x 2 y 2 16x 6 y 16 0 yang sejajar pada garis 4 x 3 y 24 0 adalah ….
A. 4 x 3 y 10 0 B. 4 x 3 y 10 0 C. 4 x 3 y 22 0 D. 4 x 3 y 10 0 E. 4 x 3 y 10 0 Solusi: x 2 y 2 16x 6 y 16 0
x 42 y 32 9 Pusat dan jari-jari lingkaran adalah 4,3 dan 3. Gradien garis 4 x 3 y 24 0 adalah m
4 . 3
Persamaan garis singgung adalah y b mx a r m 2 1 2
3 4 y 3 x 4 3 1 4 3 4 x 4 3 5 3 3 3 y 9 4x 4 15 y 3
3 y 9 4 x 16 15 dan 3 y 9 4 x 16 15
4 x 3 y 10 0 dan 4 x 3 y 22 0
Jadi, persamaan garis singgung yang diminta adalah 4 x 3 y 10 0 . [E] 11. Hasil bagi suku banyak 2 x 4 6 x 3 2ax2 2 x 6b yang habis dibagai oleh x 2 4 x 3 adalah …. A. 2 x 2 2 x 1 B. 2 x 2 2 x 1 C. 2 x 2 x 1 D. 2 x 2 x 2 E. 2 x 2 2 x 2 Solusi:
x 2 4 x 3 x 3x 1
5 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
x 1 2 x 4 6 x 3 2ax2 2 x 6b
2 14 6 13 2a 12 2 1 6b 0 2 6 2a 2 6b 0 2a 6b 2 a 3b 1 …. (1) x 3 2 x 4 6 x 3 2ax2 2 x 6b
2 34 6 33 2a 32 2 3 6b 0 162 162 18a 6 6b 0 18a 6b 6 9a 3b 3 …. (2) Persamaan (2) – persamaan (1) menghasilkan: 8a 4 1 a 2 Selanjutnya 1 3b 1 2 3 3b 2 1 b 2
Sehingga suku banyak itu adalah 2 x 4 6 x 3 x 2 2 x 3 . 2x2 2x 1 x 4x 3 2x 6x x2 2x 3 2
4
3
2x 4 8x3 6x 2 2x3 7 x 2 2x 3 2x3 8x 2 6x x2 4x 3 x2 4x 3 0 Jadi, hasil baginya adalah 2 x 2 x 1 [A] 12. Suku banyak Px , jika dibagi x 4 bersisa 6 dan jika dibagi x 1 bersisa 2. Jika suku 2
banyak Px dibagi x 2 3x 4 , maka sisanya adalah …. 2 22 x 5 5 6 6 B. x 5 5 9 6 C. x 5 5 8 2 D. x 5 5
A.
6 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
2 3 x 1 5 5 Solusi: Ambillah sisa pembagian adalah ax b .
E.
P4 4 4
Px x 2 3x 4 hx ax b
2
3 4 4 h4 a 4 b 6 4a b 6 …. (1)
P 1 3 1 4 h 1 a 1 b 2 a b 2 …. (2) 2
Persamaan (1) persamaan (2) menghasilkan: 5a 8 8 a 5 8 b 2 5 8 2 b 2 5 5 8 2 Jadi, sisanya adalah x . [D] 5 5 13. Jika fungsi f didefinisikan sebagai g x 2 x 4 dan fungsi yang lain didefinisikan sebagai
f o g x x 2 4 x 10 , maka fungsi f 2 adalah …. A. 1 B. 2 C. 4 D. 5 E. 7 Solusi:
f o g x x 2 4 x 10 f g x x 2 4 x 10 f 2 x 4 x 2 4 x 10
1 t 2x 4 x t 2 2 2
1 1 f t t 2 4 t 2 10 2 2 1 g t t 2 2t 4 2t 8 10 4 1 g t t 2 6 4 1 g 2 2 2 6 7 [E] 4 2x 1 14. Jika fungsi f x , dengan x 2 dan fungsi g x 2 x , maka fungsi invers x2
fog 1 x .... A.
4x 3 , x2 x2
7 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
4x 3 , x 2 x2 2x 3 C. , x4 x4 2x 3 D. , x4 x2 4x 3 E. , x2 2x Solusi:
B.
f o g x f g x f 2 x 22 x 1 4 2 x 1 2 x 3
2x2 4x x4 dx b ax b Rumus: f x f 1 x cx a cx d f o g x f g x 2 x 3 fog 1 x 4 x 3 4 x 3 , x 2 [B] x4 x2 x2 15. Seorang pasien di rumah sakit membutuhkan sekurang-kurangnya 84 buah obat jenis A dan 120 obat jenis B setiap hari (diasumsikan over dosis untuk setiap obat tidak berbahaya). Setiap gram zat M berisi 10 unit obat A dan 8 unit obat B. Setiap zat N berisi 2 unit obat A dan 4 unit obat B. Jika harga zat M dan zat N masing-masing harganya Rp 90.000,00 dan Rp 40.0000,00, maka dengan mengombinasikan banyak gram zat M dan N untuk memenuhi kebutuhan obat minimum si pasien akan mengeluarkan biaya minimum pula setiap harinya sebesar …. A. Rp 1.680.000,00 B. Rp 1.350.000,00 C. Rp 1.240.000,00 D. Rp 1.200.000,00 E. Rp 1.040.000,00 Solusi:
Obat A Obat B
Jumlah obat per gram zat M 10 8
Jumlah obat per gram zat N 2 4
Anggap x = jumlah gram zat M yang digunakan y = jumlah gram zat N yang digunakan Selanjutnya 10 x 2 y 84 8 x 4 y 120 x0 y0
Persyaratan harian minimum 84 120
Y 42 30
(4,22) 8 x 4 y 120
Fungsi objektif f x, y 90.000x 40.000 y
10x + 2y = 84 .... (1) 8x + 4y = 120 4x + 2y = 60 .... (2) Selisih persamaan (1) dan (2) menghasilkan: 6 x 24
10 x 2 y 84
O
15
8 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
X
x4 x 4 10x + 2y = 84 10(4) + 2y = 84 2y = 44 y = 22 Koordinat titik potongnya adalah (4,22)
Titik
f x, y 90.000x 40.000 y
(0,0) (15,0) (4,22) (0,42)
60.000 0 100.000 0 0 90.000 15 40.000 0 1.350.000 90.000 4 40.000 22 1.240.000 (minimum) 90.000 0 40.000 42 1.680.000
pasien itu akan mengeluarkan biaya minimum setiap harinya sebesar Rp 1.240.000,00. [C] 2y 4 3 x 11 4 , B , dan C . Jika A1B C , 16. Diberikan matriks A 5 4 y2 4 14 6
dengan A 1 adalah invers matriks A, maka maka nilai x y .... A. 1 Solusi:
B. 2
C. 3
D. 4
E. 6
A1B C 1
2 y 11 4 4 3 x 5 4 y 2 4 14 6
2 y 11 4 1 4 3 x 16 15 5 4 y 2 4 14 6
8 y 12 11 4 4x 3y 6 5 x 4 y 8 10 y 16 14 6 8 y 12 4 y 1 y 1 4 x 3 y 6 11 4 x 3 1 6 11 4x 8 x2 Jadi, nilai x y 2 1 3 [C]
17. Diberikan vektor a 2i 3 j , b 4i 5 j 2k , dan c 3i x j k . Jika vektor
c saling tegak lurus, nilai dari a b c .... A. 12 B. 2 C. 2 D. 10 E. 12 Solusi: 9 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
a b dan
a b c 0 2 4 3 3 5 x 0 0 2 1 2 3 2 x 0 2 1 6 2x 2 0 2x 8 x4
c 3i 4 j k 2 4 3 6 3 nilai a b c 3 5 4 8 4 18 32 2 12 [A] 0 2 1 2 1
18. Diberikan koordinat titik sudut ABC dalam ruang dengan A(1,1,2) , B ( 2,1,1) , dan C (0,0,0) . Besar ACB adalah …. A. 120 B. 90 C. 60 D. 45 E. 30 Solusi: 1 0 1 20 2 CA 1 0 1 dan CB 1 0 1 20 2 1 0 1
cos ABC
CA CB CA CB
1
2
A
1 2 1 1 2 1 1 2 2
2
2 1 1 2
B
C 2
2
2 1 2 11 4 4 11
3 1 6 2
ACB 120 [A]
19. Diberikan vektor-vektor u 6i 2 j 3k dengan p adalah bilangan bulat dan v i 2 j xk . Jika proyeksi ortogonal dari vektor u pada vektor v panjangnya adalah
8 , maka nilai x 21
adalah…. A. 7 B. 5 C. 4 D. 3 E. 2 Solusi:
10 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
w
u v uv 6 1 2 2 3 x
8 2 21 6 2 2 2 32 12 2 x 2 8 6 4 3x 21 36 4 9 1 4 x 2 8 2 3x 21 7 5 x 2
8 5 x 2 6 9x 320 64x 2 36 108x 81x 2 17 x 2 108x 284 0 x 217x 142 0 142 17 nilai x 2 . [E] 20. Bayangan kurva 3 x 6 y 8 0 oleh dilatasi pusat O dengan faktor skala 2, dilanjutkan x 2 atau x
pencerminan terhadap sumbu X adalah …. A. x y 8 0 B. x 2 y 8 0 C. x 2 y 8 0 D. 3 x 2 y 8 0 E. x 2 y 8 0 Solusi: 3 0 . Matriks yang bersesuaian dengan dilatasi pusat O dan faktor skala 3 adalah 0 3 1 0 . Matriks yang bersesuaian dengan pencerminan terhadap sumbu-x adalah 0 1 x' 1 0 3 0 x 3 0 x 3x y ' 0 1 0 3 y 0 3 y 3 y 1 1 x x ' dan y y ' 3 3
1 1 3 x' 6 y ' 8 0 3 3 x 2y 8 0
Jadi, bayangannya adalah x 2 y 8 0 . [E] 21. Himpunan penyelesaian pertidaksamaan 4 x 5 2 x 4 0 , dengan x R adalah …. A. x 4 atau x 2 B. x 0 atau x 2 11 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
C. 1 x 2 D. 0 x 4 E. 0 x 2 Solusi: 4x 5 2x 4 0 22 x 5 2 x 4 0
Ambillah 2 x a , maka a 2 5a 4 0 a 1a 4 0 1 a 4
1 2x 4 20 2 x 2 2 0 x 2 . [E]
22. Persamaan fungsi logaritma f x 3 loga x b yang ditunjukkan pada gambar berikut ini dapat dinyatakan sebagai …. A. f x 3 log27 x B. f x 3 log9 27 x C. f x 3 log3 9 x
Y y f x (6,5) (0,4)
D. f x 3 log27 3x E. f x log27 9 x 3
O
Solusi:
(0,3) f x 3 loga x b
43 loga 0 b 43 log a b .... (1) (6,5) f x 3 loga x b
53 loga 6 b .... (2)
Selisih persamaan (2) dan (1) menghasilkan: 1 3 loga 6 3 log a a6 1 a a6 3 a 3a a 6 2a 6 a3 3
log
a 3 3 3 log a b
3 3 log 3 b 3 1 b b2
12 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
3
X
Jadi, persamaan fungsi logaritma adalah f x 3 log3 x 2 atau dapat dinyatakan sebagai f x 3 log27 9 x . [E]
23. Seseorang mempunyai sejumlah uang yang akan diambil setiap bulan yang besarnya mengikuti aturan deret aritmetika. Pada bulan pertama diambil Rp 1.000.000,00. Setelah satu tahun pertama jumlah uang yang diambil adalah Rp7.050.000,00. Pengambilan uang pada bulan ke10 besarnya adalah …. A. Rp725.000,00 B. Rp625.000,00 C. Rp450.000,00 D. Rp325.000,00 E. Rp300.000,00 Solusi: Deret aritmetika: a = 1.000.000 n 1 tahun = 12 bulan S12 7.050.000 n 2a n 1b 2 12 S12 2 1.000.000 12 1b 7.050.000 2 12.000.000 66b 7.050.000 66b 4.950.000 495.000 b 75.000 66 u10 a 9b 1.000.000 9 75.000 325.000
Sn
Jadi, pengambilan uang pada bulan ke-10 besarnya adalah Rp325.000,00 [D] 24. Jumlah empat suku pertama suatu deret geometri adalah 45 dan suku pertama deret itu 3. Suku ke-8 deret tersebut adalah…. A. 378 B. 380 C. 384 D. 483 E. 484 Solusi: r 2 u1 u2 u3 u4 45 a ar ar 2 ar 3 45
3 1 r r 2 r 3 45
1 r r 2 r 3 15 r 3 r 2 r 14 0
r 2r 2 3r 7 0
2
1
1 2
1 6
14 14
1
3
7
0
r 2 u8 ar 7 3 27 384 [C] 25. Diberikan kubus ABCD.EFGH, dengan panjang rusuk 6 cm. Titik P adalah perpotongan diagonal sisi alasnya. Jarak titik P ke bidang DGE adalah …. A.
3 cm
B. 2 3 cm 13 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
C. 3 3 cm D. 3 2 cm E. 2 6 cm Solusi: PR 6 cm 1 PD BD 3 2 2
H
3 2
2
BS PD 2 PR 2
Luas HDS PQ
G R
6 2 18 36 3 6 cm
E
F Q
1 1 PD PR PQ DR 2 2
D
PD PR 3 2 6 6 2 3 cm DR 3 6 3
C P
A
B
Jadi, jarak titik P ke bidang DGE adalah adalah 2 3 cm. [B] 26. Diberikan bidang empat D.ABC beraturan, dengan panjang rusuk-rusuknya 9 cm. Nilai kosinus sudut antara garis AD dan bidang DBC adalah …. 1 A. 3 3 1 6 B. 2 1 3 C. 9 1 6 D. 3 1 2 E. 3
Solusi: Menurut Pythagoras: 2
9 9 3 cm AQ AB BQ 9 2 2 2
DQ AQ
D
2
2
9 3 cm 2
9
9
Menurut Aturan Kosinus:
9 A
AD AQ DQ cosAD , DBC 2 AD AQ 2
2
2
2
C P B
9/2
Q 9/2
2
9 9 92 3 3 92 1 2 2 3 [A] 9 9 3 29 3 29 3 2 2
27. Diberikan segitiga ABC dengan AC 30 3 1 cm, AB 60 cm, dan sudut BAC = 60o, maka panjang BC = …. A. 30 2 cm 14 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
B. 30 3 cm C. 30 6 cm D. 40 6 cm E. 60 6 cm Solusi: B 180 A C B 180 60 45 75 Menurut Kaidah Sinus: AC BC sin B sin A BC
C
AC 30 3 1 sin 60 sin A sin 75 sin B
60o
30 3 1 sin 60 sin 45 cos 30 cos 45 sin 30
45o
30 3 1
A
60 3 3 6 2 30 3 1 1 15 3 3 3 1 1 1 1 2 1 6 2 6 2 2 3 2 6 2 2 2 2 2 4
60 3 6 3 2 18 6 60 2 6 3 2 3 2 15 2 6 30 6 cm [C] 62 4 28. Nilai cos pada gambar adalah.... 1 A. 5 2 B. 5 3 1 12 C. 5 6 3 D. 5 9 3 E. 4 Solusi: Menurut Aturan Kosinus:
h 2 62 92 2 6 9 cos
3
h2 117 108cos …. (1) h 3 12 2 3 12 cos180 2
2
h
2
12
6
h 153 72 cos …. (2) Dari persamaan (1) dan (2) kita memperoleh: 9 117 108 cos 153 72 cos 180 cos 36 36 1 cos [C] 180 5 29. Jumlah akar-akar persamaan cos 2 x 3 cos x 1 0 , untuk 0 x 2π adalah…. 2
15 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
B
8π 3 7π B. 3 6π C. 3 5π D. 2 6π E. 2 Solusi: cos 2 x 3 cos x 1 0
A.
2 cos2 x 1 3 cos x 1 0 2 cos2 x 3 cos x 2 0 2 cos x 1cos x 2 0 1 (diterima) atau cos x 2 (ditolak) 2 1 2π cos x sin 2 3 2π 4π x atau x 3 3 cos x
Jadi, jumlah akar-akar dari persamaan tersebut adalah 30. Diketahui sin sin ....
6π . [C] 3
8 3 dan cos , dengan sudut-sudut dan keduanya lancip. Nilai 17 5
84 85 60 B. 85 24 C. 85 36 D. 85 60 E. 85 Solusi:
A.
2
225 15 8 cos 1 sin 2 1 289 17 17 2
16 4 3 sin 1 cos2 1 25 5 5
sin sin cos cos sin
8 3 15 4 84 [A] 17 5 17 5 85
16 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
3 1 31. Nilai lim 2 .... x2 x 4 x2 1 A. 2 1 B. 4 1 C. 4 3 D. 4 1 E. 2 Solusi: 3 3 3 3x 3 3x 2 1 3x 3 1 1 lim lim 2 2 lim 2 lim 2 lim 2 x 2 x2 x 4 x 2 x2 x 4 2x 4 x2 x 4 x 4 x2 x 4 [A] 1 cos6 x .... x 0 x sin x
32. Nilai lim
A. 8 B. 6 C. 5 D. 4 E. 3 Solusi: Alternatif 1:
1 cos x 1 cos x cos 2 x 1 cos3 x 1 cos 6 x 1 cos3 x 1 cos3 x lim lim x 0 x 0 x 0 x sin x x sin x x sin x 1 2 sin 2 x 1 cos x cos 2 x 1 cos3 x 2 lim x 0 x sin x 1 1 sin x sin x 2 3 2 2 x 1 cos x cos x 1 cos x lim 2 x 0 1 1 sin x 4 x x 2 2
lim
2111
Alternatif 2:
1 1 11 1 4
3 [E]
1 cos x 1 cos x cos 2 x 1 cos3 x 1 cos 6 x 1 cos3 x 1 cos3 x lim lim x 0 x 0 x 0 x sin x x sin x x sin x 1 2 x 1 cos x cos 2 x 1 cos3 x 1 2 lim 1 1 11 1 3 [E] x 0 xx 2
lim
4500 33. Suatu proyek dapat dikerjakan selama x hari, dengan biaya setiap harinya 6 x 180 x juta rupiah. Jika biaya minimum proyek tersebut C juta rupiah, maka C = ….
17 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
A. 4.500 B. 3.150 C. 3.100 D. 2.150 E. 2.250 Solusi: 4500 Biaya C x 6 x 180 6 x 2 180x 4500 x C ' 12x 180 C " 12 Nilai stasioner (titik kritis) dicapai jika C ' 0 , sehingga 12 x 180 0 x 15 Karena C" 12 0 , maka fungsi biaya C minimum untuk x 15 . C min 615 18015 4500 3150 2
Jadi, biaya minimum C adalah 3.150. [B] 34. Hasil dari
x 2
x 1dx adalah ….
2 x 12 x 1 2 x 1 x 1 C 5 3 2 2 B. x 1 x 1 x 1 C 5 2 2 2 C. x 1 x 1 x 1 x 1 C 3 3 2 2 2 D. x 1 x 1 x 1 x 1 C 5 3 2 2 2 E. x 1 x 1 x 1 x 1 C 3 5 Solusi: Metode Substitusi: Ambilah x 1 u dx du
A.
x 2
1 5 3 3 2 2 u dx u 2 u 2 du u 2 u 2 C 5 3 2 2 2 x 1 x 1 x 1 x 1 C [D] 5 3
x 1dx
π 4
35. Hasil dari
cos
2
u 1
x sin 2 x dx adalah …
0
A.
3 2
B. 1 3 C. 4 1 D. 2 18 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
1 4 Solusi:
E. π 4
0
π 4
π
π 1 1 4 1 cos x sin x dx cos 2 xdx sin 2 x sin 0 2 2 2 0 2 0 2
2
36. Luas daerah yang diarsir dari gambar berikut ini adalah …. 8 A. 3 Y 1 y x2 7 2 B. 3 5 C. (2,2) 3 4 D. X 3 O 3 2 E. 3 Solusi: Persamaan garis yang melalui titik (0,0) dan (2,2) adalah y x . Garis y
2 8 8 x memotong sumbu Y di titik 0, . 3 3 3
2
3
2
3
1 1 1 1 1 1 L x x 2 dx x 2 x dx x 2 x 3 x 3 x 2 6 0 6 2 2 2 2 2 0 2
2
8 27 9 8 11 9 24 11 27 8 4 0 2 4 [D] 6 6 2 6 6 2 6 6 3
37. Volume benda putar yang terjadi jika daerah yang dibatasi oleh kurva y x 2 , garis y 2 x , dan sumbu Y yang diputar mengelilingi sumbu X sejauh 360o adalah …. 32 π A. 15 31 π B. 15 22 π C. 15 21 π D. 15 12 π E. 15 Solusi: Y Alternatif 1: y x2 Batas-batas integral: Kurva y x 2 dan garis y 2 x x2 2 x
y2x
x2 x 2 0
O
1
2
19 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
X
x 1x 2 0 x 1 atau x 2
V π
f x g xdx , f x g x
V π
2 x
b
2
2
a
x dx π 4 4 x x
1
1
2 2
2
0
2
x 4 dx
0 1
x3 x5 1 1 32 π π 4 x 2 x 2 π 4 2 3 5 15 3 5 0 Alternatif 2: Batas-batas integral:
Kurva y x 2 dan garis y 2 x x2 2 x x2 x 2 0 x 1x 2 0 x 1 atau x 2
f x g xdx , f x g x b
V π
2
2
a
2 x dx π x dx π 2 x dx 2
V π
1
0
0
4 4x x dx π x 2
π
2
2 2
2
1 2
1
2
0
4
dx π
0
2
2 2
4 4x x dx 2
1
1
2
x5 x3 x3 π 4 x 2 x 2 π π 4 x 2 x 2 3 0 3 1 5 0 1 1 32 8 8 1 8 1 π π 8 8 π π 8 8 4 2 π π π 5 3 15 3 3 3 3 5 38. Data yang disajikan pada berikut adalah nilai ulangan matematika dari 40 siswa siswa . Nilai Frekuensi 5 76 80 6 81 85 14 86 90 9 91 95 6 96 100
Rata-rata dari data tersebut adalah …. A. 87 B. 88 1 C. 88 8 5 D. 88 8 20 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
3 8 Solusi: Titik Tengah xi
E. 89
78 83 88 93 98
Frekuensi f i
f i xi
5 6 14 9 6
390 498 1232 837 588
f x
fx f
i i i
i
40
fx
i i
3545
3545 25 5 88 88 [D] 40 40 8
39. Bilangan yang terdiri dari tiga angka disusun dari angka-angka 2, 3, 5, 6, dan 7. Banyak bilangan dengan angka-angka yang berlainan dan kurang dari 600 adalah …. A. 120 B. 90 C. 72 D. 60 E. 36 Solusi: Posisi angka pada bilangan tiga angka kurang dari 600. 2
3
5
Bilangan yang terdiri dari tiga angka yang kurang dari 600, angka pertamanya 2, 3, dan 5. Dua angka yang dibelakangnya dipilih dengan menggunakan permutasi. Jadi, bilangan tiga angka yang diminta = 4! 4 3 2! 3 36 [E] 4 P2 4 P2 4 P2 3 4 P2 3 4 2! 2! 40. Dari suatu kotak terdapat 8 bola putih dan 4 bola biru. Jika dua bola diambil satu persatu tanpa pengembalian, maka peluang bola yang terambil berwarna sama adalah …. 11 A. 17 7 B. 11 17 C. 33 14 D. 33 11 E. 33 Solusi: Kemungkinannya bola yang terambil adalah (1Putih, 1Putih atau 1Biru, 1Biru)
21 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013
Peluang bola yang terambil berwarna sama adalah P( A)
8 7 4 3 14 1 17 [C] 12 11 12 11 33 11 33
n( A) 15 5 [D] n( S ) 36 12
22 | Husein Tampomas, Soal dan Solusi Ujian Sekolah Susulan/Utama, 2013