PEMERINTAH KOTA BEKASI DINAS PENDIDIKAN
SMA NEGERI 5 BEKASI Jl. Gamprit Jatiwaringin Asri Pondok Gede 021-8460810
UJIAN SEKOLAH
11
TAHUN PELAJARAN 2014/2015
LEMBAR SOAL Mata Pelajaran : Matematika Kelas/Program : 12 IPA Hari/Tanggal : Waktu : 120 menit
Petunjuk Umum: 1. Tulis nama, nomor peserta dan kelas anda pada lembar jawaban yang telah disediakan. 2. Gunakan pensil 2B untuk mengisi data dan jawaban pada lembar jawaban komputer (LJK) 3. Hitamkan bulatan pada huruf jawaban yang dianggap paling benar seperti contoh berikut : A
B
C
D
E
Benar
A
B
C
D
A
B
C
D
E
Salah
A
B
C
D
E E
Salah Salah
4. 5. 6. 7.
Jika salah menjawab soal, hapuslah dengan karet penghapus yang bersih Perhatikan petunjuk pengisian pada Lembar Jawaban Komputer (LJK) Periksa dan bacalah soal-soal sebelum anda menjawabnya. Laporkan kepada pengawas ujian kalau terdapat tulisan yang kurang jelas, rusak atau jumlah soal kurang. 8. Dahulukan soal-soal yang anda anggap mudah. 9. Periksalah pekerjaan anda sebelum diserahkan kepada pengawas ujian. 10. Mulailah mengerjakan soal dengan membaca “Bismillahirromanirrohim “ 11. Selamat Bekerja Sendiri.
Pilihlah jawaban yang paling tepat! 1. Diketahui premis-premis: Premis P1: Jika semua siswa belajar dengan sungguh-sungguh, maka prestasi belajar siswa tinggi. Premis P2: Jika martabat bangsa direndahkan, maka prestasi belajar siswa rendah, Premis P3: Martabat bangsa direndahkan. Kesimpulan yang sah dari premis-premis tersebut adalah …. A. Beberapa siswa tidak belajar dengan sungguh-sungguh. B. Semua siswa tidak belajar dengan sungguh-sungguh. C. Prestasi belajar siswa tinggi. D. Jika ada siswa belajar dengan sungguh-sungguh, maka martabat bangsa ditinggikan. E. Bebrapa siswa belajar dengan sungguh-sungguh dan martabat bangsa ditinggikan. 1 | Ujian Sekolah Tahun SMA Negeri 5, 2015
2. Pernyataan yang setara dengan pernyataan “Jika dia tidak miskin dan bahagia maka dia kaya.” adalah ….
A. B. C. D. E.
Jika dia miskin atau tidak bahagia maka dia kaya. Jika dia tidak miskin atau tidak bahagia maka dia kaya. Dia tidak miskin atau tidak bahagia atau dia kaya. Dia miskin atau tidak bahagia dan dia kaya. Dia miskin atau tidak bahagia atau dia kaya.
3. Jika bentuk sederhana dari
18 12 3 2 2 3
adalah….
A. 2 5 6 B. 5 6 C. 5 2 6 D. 5 6 E. 2 6 2
a 3b 5 ab 3 : : a 6b 4 c3 adalah …. 4. Bentuk sederhana dari 2 5 48 c 12 c 16 A. 2 3 ac
B. 16a 2c6 C. 16a 2 c3 D.
a 2 c3 16
E. 4a 2 c3 5. Diberikan 3 log5 p dan 2 log 3 q . Nilai dari A.
2 pq p4
B.
3 pq p2
C.
pq 3p 2
D.
pq p2
E.
3 pq q2
12
log125 ....
6. Diberikan persamaan kuadrat x2 k 2 x 3k 4 0 dengan akar-akarnya adalah dan . Jika 2 , maka nilai k adalah …. A. k 2atau k 4 11 B. k atau k 4 2 C. k 2atau k 11
2 | Ujian Sekolah Tahun SMA Negeri 5, 2015
11 atau k 2 4 11 E. k atau k 4 2
D. k
7. Jika fungsi kuadrat f x kx 2 k 4 x
1 selalu terletak di atas sumbu X, maka batas2
batas nilai k adalah …. A. 8 k 2 B. 8 k 2 C. 8 k 0 D. 8 k 2 E. 2 k 0 8. Di toko Murah, Dinda memberli 2 buku tulis dan 3 pensil seharga Rp16.000,00; Annisa mebeli 2 pensil dan sebuah penghapus seharga Rp8.500,00; sedangkan Fitri membeli sebuah pensil dan 2 penghapus seharga Rp11.000,00. Jika Laras membeli buku tulis, pensil, dan penghapus masing-masing sebuah dan dia membayar dengan selembar uang Rp50.000,00, maka besar uang kembaliannya adalah …. A. Rp35.000,00 B. Rp36.500,00 C. Rp37.500,00 D. Rp39.500,00 E. Rp40.000,00 9. Persamaan garis singgung pada lingkaran x 2 y 2 4 x 10 y 52 0 yang tegak lurus pada garis 3x 4 y 12 0 adalah …. A. 4 x 3 y 22 0 dan 4 x 3 y 68 0 B. 4 x 3 y 22 0 dan 4 x 3 y 68 0 C. 4 x 3 y 22 0 dan 4 x 3 y 68 0 D. 3x 4 y 22 0 dan 3x 4 y 68 0 E. 3x 4 y 22 0 dan 3x 4 y 68 0
10. Suku banyak P x x3 4 x 2 ax b dibagi x 2 3 x 2 memberikan sisa 6 3x . Nilai dari 5a b .... A. 16 B. 12 C. 10 D. 8 E. 6 11. Jika fungsi f x 1
2x 1 , dengan x 3 dan fungsi g x x 6 , maka fungsi invers x3
fog 1 x .... 8 x 11 ,x 2 2 x 8 x 11 ,x 2 B. x2
A.
3 | Ujian Sekolah Tahun SMA Negeri 5, 2015
8 x 11 , x 2 x2 8 x 11 D. ,x 2 x2 8 x 11 E. ,x 2 2 x
C.
12. Suatu perusahaan bangunan merencanakan membangun tidak kurang dari 120 rumah
untuk disewakan kepada sedikitnya 540 orang. Ada dua jenis rumah, yaitu : Rumah jenis A dengan kapasitas 4 orang disewakan Rp 2.000.000,00 per tahun atau Rumah jenis B dengan kapasitas 6 orang disewakan Rp 2.500.000,00 per tahun Dengan asumsi bahwa semua rumah yang dibangun ada penyewanya, tentukan pendapatan minimum dari hasil penyewaan rumah per tahun. A. Rp 205.000.000,00 B. Rp 250.000.000,00 C. Rp 255.000.000,00 D. Rp 300.000.000,00 E. Rp 305.000.000,00 8 2 x 1 4 15 , dan C . Bila x merupakan 13. Diketahui matriks A , B 6 y 2 3 10 3 13 penyelesaian dari persamaan A 2B C 1 , maka nilai x y adalah ... A. 23 B. 25 C. 27 D. 29 E. 31 14. Diberikan vektor a 2i 3 j , b 4i 5 j 2k , dan c 3i x j 2k . Jika vektor
2a 3b
dan c saling tegak lurus, nilai dari a b 2c .... A. 24 B. 4 C. 4 D. 2 E. 24 15. Diberikan koordinat titik sudut ABC dalam ruang dengan A(1,1,2) , B ( 2,1,1) , dan C (0,0,0) . Besar sudut terbesar dari ABC adalah …. A. 150 B. 120 C. 90 D. 60 E. 30
4 | Ujian Sekolah Tahun SMA Negeri 5, 2015
16. Diberikan vektor-vektor u 6i 2 j 3k dan v i 2 j xk , dengan x adalah bilangan bulat. Jika proyeksi ortogonal dari vektor u pada vektor v panjangnya adalah
8 , maka proyeksi 21
vektor u pada vektor v adalah…. 8 A. i 2 j 2k 9 8 B. i 2 j 2k 3
C. i 2 j 2k
8 i 2 j 2k 9 8 E. i 2 j 2k 3
D.
17. Bayangan kurva x 2 2 x y 8 0 oleh rotasi sejauh 90 dengan pusat O dilanjutkan pencerminan terhadap sumbu X adalah …. A. y 2 2 y x 8 0 B. y 2 y 2 x 8 0 C. y 2 2 y x 8 0 D. y 2 2 y x 8 0 E. y 2 2 y x 8 0 18. Penyelesaian pertidaksamaan 32 x 1 28 3x 9 0 , dengan x R adalah …. A. x 2 atau x 1 B. x 1 atau x 2 C. 1 x 3 D. 1 x 2 E. 1 x 2
19. Himpunan penyelesaian pertidaksamaan x log 2 x 2 x 6 1 x log x 6 adalah…. A. x 2 atau x 3 B. x 2 atau x 3 3 C. x 2 2 D. 2 x 3 E. 0 x 1 20. Invers dari persamaan fungsi eksponen y 2 x 2 h yang ditunjukkan pada gambar berikut ini adalah …. A. y 2 log x 4
Y
2
(2,20)
B. y 2 log x 4 2
y f x
C. y 2 2 log x 4
(0,8)
D. y 2 2 log x 4 E. y 2 2 log x 4 5 | Ujian Sekolah Tahun SMA Negeri 5, 2015
O
X
21. Sepuluh bilangan positif membentuk barisan aritmetika. Jumlah tiga buah bilangan pertama 11 adalah 12 dan jumlah kebalikan bilangan-bilangan tersebut adalah . Jumlah sepuluh 12 bilangan tersebut adalah …. A. 160 B. 150 C. 140 D. 130 E. 120 22. Diperkirakan jumlah penduduk dalam suatu kota tertentu dalam empat tahun naik 10% setiap tahun. Berapakah prosentase kenaikan penduduk setelah 4 tahun? A. 30% B. 33% C. 36% D. 40% E. 46% 23. Diberikan kubus ABCD.EFGH, dengan panjang rusuk 12 cm. Titik P dan Q berturut-turut terletak pada pertengahan rusuk CG dan GH. Jarak titik D ke bidang BPQE adalah …. 144 17 cm A. 17 144 17 cm B. 17 72 34 cm C. 17 36 34 cm D. 17 12 34 cm E. 17 24. Diberikan balok ABCD.EFGH, dengan AB BC 6 cm dan CG 8 cm. Jika sudut antara a bidang BDG dan bidang CDG adalah dan cos , maka nilai a b .... b A. 45 B. 44 C. 41 D. 40 E. 23 25. Diberikan segi empat ABCD, dengan AC 35cm dan BD 31 cm. Titik E pada AB, sehingga AE 11cm dan bangun EBCD adalah jajargenjang. Luas jajar genjang EBCD adalah …. A. 455 3 cm2 455 3 cm2 2 255 3 cm2 C. 6 455 3 cm2 D. 4
B.
E. 255 3 cm2 6 | Ujian Sekolah Tahun SMA Negeri 5, 2015
26. Himpunan penyelesaian dari persamaan sin x sin 2 x cos x 2cos2 x , untuk 0 x 2π adalah…. 5 5 5 7 A. , , , 4 3 4 3 5 3 7 B. , , , 4 6 4 3 5 2 7 11 C. , , , 4 3 4 3 3 4 D. , , , 4 3 4 3 2 5 4 E. , , , 4 3 4 3 40 9 27. Jika sin dan sin , maka nilai dari .... 41 41 A. 120 B. 90 C. 75 D. 60 E. 30 cos80 2sin 50 sin 40 .... 28. Nilai dari 2cos50 cos 40 sin10 1 A. 2 2 B. 1 C. 1 1 2 D. 2
E.
2
29. Nilai dari lim
x 0
x2 1 3 1 x2
....
1 3 1 2 3 3
A. B. C. D. E.
30. Nilai dari lim x
A. B.
4
cos 2 x .... x tan x 1
4
4
7 | Ujian Sekolah Tahun SMA Negeri 5, 2015
C.
4 D. 4 E. 4 31. Suatu kotak tertutup berbentuk balok dengan alas persegi mempunyai volume 16.000 cm3. Harga bahan untuk membuat bagian tutup dan bagian alas kotak masing-masing Rp600,00 per cm2 sedangkan harga bahan untuk bagian dinding adalah Rp300,00 per cm2. Ukuran tinggi kotak agar biaya bahan yang diperlukan minimum adalah …. A. 80 cm B. 60 cm C. 50 cm D. 40 cm E. 20 cm
B. C. D. E.
2
2
2
x 6dx x 2 x 1 x dx adalah ….
32. Hasil dari A.
2
32 3 31 3 23 3 16 3 8 3 p
33. Jika
3x
2
2 x 1 dx p , dengan p 0 maka nilai 3 p 2 ...
0
A. B. C. D. E.
5 4 3 1 0
34. Hasil dari sin 4 x cos 2 xdx adalah … 1 A. cos3 2 x C 3 1 3 B. sin 2 x C 3 1 1 C. sin 6 x sin 2 x C 12 4 1 1 sin 6 x sin 2 x C D. 12 4 1 1 cos 6 x cos 2 x C E. 12 4
8 | Ujian Sekolah Tahun SMA Negeri 5, 2015
35. Hasil dari
x 3x 2 3
x3 x 2 5
dx adalah ….
A. 33 x3 x2 5 C 3
B.
C.
x
3
x2 5
5
C
33 3 x x2 5 2
23 3 x x2 5 5 33 3 x x2 5 2
D. E.
2
C
2
C
2
C
36. Luas daerah yang dibatasi oleh kurva y x3 1 , y x 2 , sumbu Y, dan garis x 1 adalah …. 13 15 12 B. 13 11 C. 12 13 D. 12 17 E. 12
A.
37. Volume benda putar yang terjadi jika daerah yang dibatasi oleh kurva
y 2 x2 ,
x 2 y 2 4 , dan sumbu X di kuadran I yang diputar mengelilingi sumbu Y sejauh 360o adalah
…. 13 π 3 11 π B. 3 13 π C. 6 13 π D. 12 13 π E. 4 38. Data yang disajikan pada berikut adalah nilai ulangan matematika dari 40 siswa siswa .
A.
Titik Tengah 78 83 88 93 98
Frekuensi 4 6 15 9 6
Median dari dari data tersebut adalah …. 9 | Ujian Sekolah Tahun SMA Negeri 5, 2015
5 6 1 B. 88 3 1 C. 88 2 5 D. 88 6 1 E. 89 6 39. Tentukan banyaknya bilangan bulat positif yang dapat dibentuk dari angka-angka 1, 2, 3, dan 4, jika tak ada angka yang diulang di dalam setiap bilangan bulat tersebut. A. 14 B. 24 C. 36 D. 48 E. 64 40. Enam pasang suami istri berada pada suatu ruangan. Jika 2 orang dipilih secara acak, maka peluang satu orang laki-laki dan satu orang perempuan adalah …. 6 A. 11 1 B. 11 2 C. 11 1 D. 66 1 E. 33
A. 87
10 | Ujian Sekolah Tahun SMA Negeri 5, 2015