Reológia, a koherens rendszerek tulajdonságai
Bányai István
http://kolloid.unideb.hu/
2009.05.19.
12. előadás
Koherens rendszerek • Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák, vagy makromolekulák egymással összekapcsolódva összefüggő vázszerkezetet alkotnak. • Jellegzetes típusai: – Habok, szilárd habok – tömény emulziók, krémek – száraz, nedves örlemények – Gélek: kolloid koherens rendszerek
2009.05.19.
12. előadás
A reológiai viselkedés viszonylagossága • Relaxáló rendszerek esetében definiálható egy relaxációs idő (Trel). Ezen időtartam alatt a kiindulási feszültség az e-ad részére csökken, az új állapot elérése közben. • 1. Nagy relaxációs idejű rendszerek rövid ideig tanulmányozva szilárd testként viselkednek, a megfigyelés ideje alatt nem relaxál • 2. Kis relaxációsidejű rendszerek hosszú megfigyelési idő (fordított helyzet) azonban folyadéknak mutatkoznak. A megfigyelési idő alatt relaxál, sőt jóval előbb. A reológiai viselkedés viszonylagosságát fejezi ki a Deborah-szám:
Trel Dn = t ahol t a megfigyelési idő. Ha Dn → 0 akkor a test folyadéknak, Ha DN → ∞ akkor pedig szilárd anyagnak mutatkozik. 2009.05.19.
12. előadás
Reológia • A reológia az anyagok deformációját tanulmányozza külső feszültségek (erők) hatására. A deformáció lehet folyás és alakváltoztatás. • Herakletosz: „panta rei” • Megalapítója: Eugene Bingham 1920. Reológiai típusok • Ideális folyadék: (De<<1) – Newton-i (viszkózus folyadék) • Rugalmas (elasztikus) anyag (De >>1) – ideálisan rugalmas (Hooke- megnyúlási törvény: ! = const*!e ; relatív nyírási deformáció (shear strain) arányos a feszültséggel (stress) • Viszkoelasztikus anyagok: (De ~ 1) – ez a reológia valódi tárgya – empírikus összefüggések az anyag állapota és viszkozitása között – nem Newtoni folyadékok (valódi méz, ragasztók) – nem rugalmas anyagok (paszták, gélek, krémek) – plasztikus anyagok (ideálisan képlékeny, bizonyos külső hatásra folyékonnyá válnak) 2009.05.19.
12. előadás
Reológiai vizsgálatok célja Reológiai méréseket általában a kozmetikai és élelmiszer iparban, gyógyszeriparban és a műanyagiparban koherens rendszereken és nagymolekulák oldatain végeznek, abból a célból, 1) hogy megértsék a rendszerek alapvető fizikai sajátságait; 2) hogy megadják a nyersanyagok és termékek minősítését keverés, vezetékes szállítás, csomagolás, feldolgozás céljából; 3) hogy megadják az anyagok viselkedést külső fizikai körülmények változásának hatására. 2009.05.19.
12. előadás
Áramlási viszkozitás: Newtoni folyadék (fizika) z0
v0
F =η A
dv dy
F dv =τ =η =ηD A dy
y x
[η ] = N m-2s vagy Pas
A felület mozog x irányba v0 sebességgel F erő hatására és ez sebességgradienset hoz létre a y irányba, D.
A Newtoni folyadék vízszerű folyadék— a nyírási feszültség, τ („shear stress”) arányos a sebesség gradienssel (D) („shear rate”) amely merőleges a nyírási síkra Az arányossági tényező a viszkozitás 2009.05.19.
12. előadás
Nyírás (rugalmas testre) x
F
F nyíró feszültség A dx γ= nyírási deformáció dy
τ=
A
dx τ = G =Gγ dy Hooke-törvény (G rug.modulus)
y
A Hooke- és Newtontörvény azonos formára hozása 2009.05.19.
dv dx / dt dx / dy dγ τ =η =η =η =η =ηD dy dy dt dt 12. előadás
Általános definíció
nyírófeszültség τ τ ηs = = = sebességgradiens(deformáció) γ! D
Áramlási ellenállás a külső áramlást előidéző hatással szemben, a feszültség és a deformáció sebesség Hányadosa. mértékegysége: Nm-2s v. Pas 2009.05.19.
12. előadás
Viszkozitás-anyagszerkezet
η=
τ D
= η ( c, T , p , t )
szerkezet, koncentráció, méret , alak Hőmérséklet (áramlási és szerkezeti viszkozitás) Nyomás Idő (kinetikai jelenség) deformáció- v. sebességgradiens !!!!!
2009.05.19.
12. előadás
Ideális és összetett reológiai rendszerek 1. ideálisan rugalmas (elasztikus) testek: Hooke (reverzíbilis deformáció) 2. ideálisan viszkózus testek: Newton (folyadékok) 3. Ideálisan plasztikus testek: (Saint- Venant, rugalmas majd viszkózus) (adott nyírófeszültségig nincs deformáció, utána folyás (Modell: mágnes darabkák egymáson) Összetett rendszerek (1 és 2) viszkoeleasztikus anyagok: rugalmasságot mutató folyadékok (makromolekulák oldatai) és viszkozitást mutató szilárd anyagok (polimerek) (2 and 3) reális plasztikus anyagok (keveredik a plasztikus és folyékony viselkedés, határfeszültség van) 2009.05.19.
12. előadás
Folyási görbe, viszkozitás görbe η
η
D
τ
τ =ηD
1
D
D= τ
τ
η
A jobboldali lenne logikusabb, de manapság a másikat használják 2009.05.19.
12. előadás
Plasztikus (képlékeny anyagok) • Ilyen gyakorlatilag nincs: – egy minimális feszültséget el kell érni, ahhoz, hogy az anyag folyjon, deformálódjon.
Nyíró feszültség !
Sebesség gradiens, D 2009.05.19.
12. előadás
Tipikus folyás görbék (1/!) Vagy viszkózus, vagy plasztikus anyagként viselkednek a kolloid rendszerek
1. Nyírásra vékonyodó (B) szerkezeti viszkózus anyagok (polimer oldatok, emulziók) pszeudoplasztikus: aggregátumok szétesése, anizometrikus részecskék rendeződése, makromolekulák rugalmas deformációja 2. Newtoni-folyadékok (A) (víz, vékony olajok) 3. Nyírásra vastagodó (C) nagy diszperzitású szuszpenziók, nedves homok (kiszorul a közeg), lassan keverhető fel, dilatáns 2009.05.19.
12. előadás
Tipikus folyás görbék (képlékeny) Vagy viszkózus, vagy plasztikus anyagként viselkednek a kolloid rendszerek
4. Bingham-test, a határfeszültségtől viszkózus folyadék: aggregáció és az adhézió összetartja őket, de a folyás után már ilyen nincs 5. Tixotróp: koherens, de mechanikai hatásra elfolyósodik (Fe(OH)3 szol, reverzíbilis szolgél átalakulás (quicksand) 6. Reopektikus. 2009.05.19.
12. előadás
Ketchup „lavina”
2009.05.19.
12. előadás
Okok, lehetőségek
2009.05.19.
12. előadás
Élelmiszer és gyógyszeripar
2009.05.19.
12. előadás
Nápolyi „csoda”
2009.05.19.
12. előadás
Lineáris polimereknél (hallgatói gyakorlat) A hiszterézis, időbeni késése van a szerkezeti rendződésnek folyásgörbe
0.9 0.8
1400
0.7
1200
viszkozitás görbe 0.6 , Pas
D, s-1
1000 800
0.5 0.4
600
0.3
400
0.2 0.1
200
0.0 0
0 0
20
40
60
80
100
120
140
20
40
60
80 τ, Pa
τ, Pa
CMC J Szerkezeti viszkozitást mutat 2009.05.19.
12. előadás
100
120
140
Krémek (alapkrém, emulzió) 0.3
τ −τ 0 ) ( η=
0ml 5ml 10ml 15ml
n
D
h , Pas
0.2
0.1
140 120 0.0 0.0
1.0
2.0
3.0
4.0
5.0
6.0
+water,ml
100 8.0
7.0
0ml 5ml 10ml 15ml
Belső szerkezet és koncentráció 10 g poli-szorbát (tween60), 10 g ásványolaj, 30g cetyl (16)-stearyl(18) alkohol , 70 g vazelin, o/w emulzió 2009.05.19.
D, s-‐1
t , Pa
80 60 40 20 0 0.0
1.0
2.0
3.0
4.0 τ, Pa
12. előadás
5.0
6.0
7.0
8.0
Viszkozitás oldatokban η0 η
oldószer oldat
η ηrel = relativ η0 η -η0 ηspec = = η rel − 1 specifikus η0 ηspec c
redukált
ηspec
1 = lim ln ηrel [η ] = lim c →0 c c →0 c 2009.05.19.
határ [η ] = KM a 12. előadás
Oldatok viszkozitása: elmélet • Einstein: – η= η0(1+kφ) k=2,5 φ=Vr/V liofób, merev gömbök, melyekhez képest az oldat kontinuum
pl. spórák, gombák, PS-polimer gömbök (latex) • eltérése: – nem merev, alakja változik – nem gömb orientálódik – tömény oldat, saját gátlás – szolvatáció, töltés, zéta potenciál
η = η0 + η0 kφ + η0bφ 2 + ... 2009.05.19.
12. előadás
A viszkozitás mérése Bányai István
2009.05.19.
12. előadás
Mérése nyomásesés áramlásra
p1 p2
folyás csőben v=0
z
p1
r
p2 vmax
V π 1 p1 − p2 2 I= = r t 8η l x
2009.05.19.
12. előadás
Höppler-típusú viszkoziméter
2g 2 v= ρtest − gömb − ρl ) r ( 9η
2009.05.19.
12. előadás
Rotációs viszkoziméter nyírási sebesség gradiens, az elfordulás szögét mérjük
dv R =ω dr d kθ d η= 2π Rhω r a tengelytől való távolság R a belső és külső henger sugarának átlaga d a rés nagysága, h a folyadék magassága 2009.05.19.
12. előadás
Reométer
hőmérséklet szabályozás légcsapágyas 10 nagyságrend kétirányú forgatás Számítógépes elemzés
Folyás görbe (komplex)
2009.05.19.
12. előadás