REANALISIS GEMPABUMI MENTAWAI DENGAN DECONVOLUSI-INVERSI W-PHASE SEBAGAI ACUAN PREDIKSI TSUNAMI
Skripsi Diajukan untuk memenuhi persyaratan memperoleh gelar Sarjana Sains pada Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta
Oleh ARIF NUROKHIM NIM : 108097000031
PROGRAM STUDI FISIKA FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA 2011 M / 1432 H
i
PENGESAHAN UJIAN
Skripsi yang berjudul “Reanalisis Gempa bumi Mentawai dengan Deconvolusi-Inversi W-Phase sebagai Acuan Prediksi Tsunami” telah diuji dan dinyatakan lulus dalam sidang Munaqosyah Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidayatullah Jakarta pada hari Jum’at tanggal 18 februari 2011. Skripsi ini telah diterima sebagai salah satu syarat untuk memperoleh gelar Sarjana Strata Satu ( S1 ) Jurusan Fisika. Jakarta, .............................. 2011
Tim Penguji,
Penguji I
Penguji II
Arif Tjahjono, M.Si NIP :19751107 200701 1 015
Asrul Aziz, M.Si NIP : 19570617198503 1 001
Mengetahui,
Dekan Fak. Sains dan Teknologi
DR. Syopiansyah Jaya Putra, M.Sis NIP : 19680117 200112 1 001
Ketua Jurusan Fisika
Drs. Sutrisno, M.Si NIP : 19590202 198203 1 005
ii
LEMBAR KEASLIAN SKRIPSI
Dengan ini saya menyatakan bahwa Skripsi ini merupakan karya tulis saya sendiri dan bukan merupakan tiruan, salinan atau duplikat dari skripsi yang telah dipergunakan untuk mendapatkan gelar kesarjanaan baik dilingkungan Universitas Islam Negeri Syarif Hidayatullah Jakarta maupun di perguruan tinggi lain, serta belum pernah dipublikasikan. Pernyataan ini dibuat dengan penuh kesadaran dan rasa tanggung jawab serta bersedia menerima segala resikonya jika ternyata pernyataan diatas tidak benar.
Jakarta,
Januari 2011
ARIF NUROKHIM NIM. 108097000031
iii
Sesungguhnya dalam penciptaan langit dan bumi dan silih bergantinya malam dan siang terdapat tanda-tanda bagi orang – orang yang berakal (Al Imron :190) „Dan telah Kami jadikan di bumi ini gunung-gunung yang kokoh supaya bumi itu (tidak) guncang bersama mereka dan telah Kami jadikan pula di bumi ini jalan-jalan yang luas, agar mereka mendapat petunjuk. Dan kami jadikan langit itu sebagai atap yang terpelihara,sedang mereka berpaling dari segala tanda-tanda kekuasaan Allah yang terdapat padanya“ (Al Anbiyaa : 31-32) „Tidakkah kamu melihat bahwa Allah mengarak awan, kemudian mengumpulkan antara (bagian-bagian) nya kemudian menjadikannya bertindih-tindih. Maka kelihtanlah olehmu hujan keluar dari celah-celahnya. Dan Allah (juga) menurunkan (butiran-butiran) es dari langit, yaitu dari gumpalan-gumpalan awan seperti gunung-gunung, maka di timpakan-Nya (butiran-butiran) es itu kepada siapa yang di kehendaki-Nya. Kilauan kilat awan itu hampir-hampir menghilangkan penglihatan“. (An Nur : 43)
Terima kasih atas setitik motivasi ini ya Allah
iv
KATA PENGANTAR
Bismillahirahmanirrahim, Puji syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan Skripsi yang berjudul “ REANALISIS GEMPABUMI MENTAWAI DENGAN DECONVOLUSI-INVERSI W-PHASE SEBAGAI ACUAN PREDIKSI TSUNAMI” dengan baik. Skripsi ini merupakan salah satu syarat kelulusan menempuh perkuliahan jenjang Sarjana (S1) di Program Studi Fisika, Jurusan Geofisika - Universitas Islam Negeri Syarif Hidayatullah Jakarta. Penyusunan skripsi ini tidak terlepas dari bantuan dan dukungan dari berbagai pihak. Oleh karena itu pada kesempatan ini penulis menyampaikan terima kasih kepada: 1. Bapak DR. Syopiansyah Jaya Putra, M.Sis Selaku Dekan Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah - yang telah memberikan izin penulisan skripsi. 2. Bapak Drs. Sutrisno, M.Si. selaku Ketua Jurusan Program Studi Fisika Universitas Islam Negeri Syarif Hidayatullah yang telah memberikan izin, bimbingan dan arahan kepada penulis. 3. Ibu Siti Ahmiatri Saptari, M.Si. Selaku Dosen Pembimbing II yang dengan sabar membimbing, mengarahkan, memberikan saran kepada penulis sampai selesai penulisan skripsi ini. 4. Rembulan di langit hatiku, Rahayu Ummi hikmah
yang telah
menginspirasi, memotivasi dan memberikan semangat dalam kuliah dan proses penulisan skripsi ini hingga selesai. Semoga kebarakahan atas keluarga kecil kita sayang. 5. Orang tua dan mertua beserta keluarga atas do’a dan dukunganya yang tak terhingga sehingga terselesaikanya skripsi dan kuliah di UIN Syarif Hidayatullah Jakarta.
v
6. Teman- teman kuliah dari BMKG Sirojudin, Novi dan mas fauzi yang bersama - sama dalam suka duka menjalani kuliah di UIN Syarif Hidayatullah Jakarta. 7. Teman - teman Fisika UIN angkatan 2006, 2007 dan 2008 yang tidak bisa disebutkan disini yang dengan kebersamaan dan kekompakanya selama dalam menjalani perkuliahan di UIN Syarif Hidayatullah Jakarta. 8. Teman - teman kantor kelompok 1 & 5 khususnya dan teman - teman staf operasional Gempabumi dan Tsunami BMKG yang tidak bisa disebutkan disini yang terus menyemangati dan memberikan toleransi selama menjalani perkuliahan di UIN Syarif Hidayatullah Jakarta. 9. Terkhusus untuk teh Okke (atas oleh-oleh W-phase dari Jepang-nya dan juga lappie-nya yang dengan senang hati di pinjamkan) serta sabar atas waktunya yang terganggu dengan kehadiranku. 10. Teman - teman kajian di Mushola “Al-Badriyah” yang memotivasi dan memberikan semangat dalam menjalani perkuliahan di UIN Syarif Hidayatullah Jakarta. Penulis berharap semoga pihak yang telah membantu dalam penyusunan skripsi ini mendapatkan balasan kebaikan dari Allah Subhanahu Wa Ta’ala. Penulis menyadari bahwa tulisan ini masih jauh dari sempurna karena keterbatasan kemampuan dan pengetahuan penulis sendiri. Penulis hanya berharap semoga karya kecil ini dapat memberikan kemanfaatan bagi kehidupan, dan menambah kebaikan ketika menghadapi hari pembalasan. Untuk perbaikan skripsi ini, penulis mengharapkan kritik, saran dan pendapat yang membangun.
Jakarta,
Januari 2011
Penulis
vi
DAFTAR ISI
JUDUL.....................................................................................................................i LEMBAR PENGESAHAN.....................................................................................ii LEMBAR KEASLIAN SKRIPSI...........................................................................iii KATA PENGANTAR.............................................................................................v DAFTAR ISI..........................................................................................................vii DAFTAR GAMBAR..............................................................................................ix DAFTAR TABEL....................................................................................................x DAFTAR LAMPIRAN...........................................................................................xi ABSTRAK.............................................................................................................xii BAB I PENDAHULUAN.....................................................................................1 1.1 Latar belakang………………………………………………………. .1 1.2 Tujuan penulisan……………………………………………………...6 1.3 Manfaat penulisan…………………………………………………….6 1.4 Batasan masalah………………………………………………………7 1.5 Sistematika penulisan…………………………………………………7 BAB II TINJAUAN PUSTAKA 2.1 Teori Gempa bumi……………………………………………………9 2.2 Jenis-jenis Gempa bumi…………………………………………...…11 2.3 Gelombang gempa bumi……………………………………………..13 2.4 Skala kekuatan Gempa bumi………………………………………...17 2.5 W-phase...............................................................................................22
vii
2.6 Inversi W-phase……………………………………………………...24 2.7 Simulasi tsunami..................................................................................26 2.8 Parameter patahan dan deformasi dasar laut………………………...27 BAB III METODE PENELITIAN 3.1 Data.................................................................................................... 30 3.2 Metode Penelitian................................................................................31 BAB IV HASIL DAN PEMBAHASAN............................................................. 37 BAB V PENUTUP 5.1 Kesimpulan..........................................................................................45 5.2 Saran....................................................................................................46 DAFTAR PUSTAKA............................................................................................47
viii
DAFTAR GAMBAR
Gambar 1.1. Lempeng tektonik di Indonesia........................................................2 Gambar 1.2. Daerah rawan tsunami di Indonesia.................................................3 Gambar 2.1. Skematik proses gempa bumi……………………………………...9 Gambar 2.2. Penjalaran gelombang P dan S……………………………………15 Gambar 2.3. Penjalaran gelombang permukaan……………………………….. 16 Gambar 2.4. Seismogram gempa bumi………………………………………… 17 Gambar 2.5. Geometri patahan………...………………………………………..28 Gambar 3.1. Peta sebaran stasiun Global………………………………………. 30 Gambar 3.2. Contoh seismogram velocity record……………………………… 31 Gambar 3.3. W-phase gempa bumi Mentawai…………………………………..35 Gambar 3.4. posisi tide gauge…………………………………………………...36 Gambar 4.1. Matching W-phase observasi dan sintetis…………………………38 Gambar 4.2. focal mechanism hasil inversi……………………………………..39 Gambar 4.3. pemodelan patahan………………………………………………...41 Gambar 4.4. Grafik waktu tiba gelombang tsunami…………………………….42 Gambar 4.5. Grafik tinggi gelombang tsunami maksimal………………………42 Gambar 4.6. Grafik tinggi gelombang terhadap waktu………………………....43 Gambar 4.7. hasil observasi tide gauge di pantai Padang………………………44
ix
DAFTAR TABEL
Tabel 4.1. parameter centroid sebagai input inversi W-phase..............................38 Table 4.2. parameter focal dan Mw hasil inversi……….……………………….39 Tabel 4.3. hasil perhitungan patahan dan deformasi dasar laut ……...……........40
x
DAFTAR LAMPIRAN
LAMPIRAN I
: Perbandingan Waveform Observasi dan Sintetis
LAMPIRAN II
: Hasil simulasi tsunami
LAMPIRAN III
: Output hasil Inversi
LAMPIRAN IV
: Perbandingan lokasi hasil analisa dari berbagai instansi
LAMPIRAN V
: Hasil analisa gempa mentawai oleh BMKG dengan system Seiscomp3
LAMPIRAN VI
: Seismisitas Indonesia
LAMPIRAN VII
: Source Code Sintetic Waveform
xi
ABSTRAK
Penelitian menunjukkan inversi W-phase untuk menganalisa ulang gempa bumi Mentawai 25 oktober 2010 dengan menggunakan data long-periode seismograf jaringan global. Perbandingan magnitude moment (Mw) dengan deconvolusi-inversi W-phase menghasilkan parameter gempa yang hampir sama dengan parameter gempabumi yang di release oleh Global CMT, yaitu magnitude moment sebesar Mw = 7,8 SR untuk GCMT dan Mw = 7,89 SR untuk inversi Wphase. Patahan dan deformasi dasar laut akibat gempa Mentawai sebesar : Panjang 106,217 kilometer, lebar 53,11 kilometer dan slip 5.14 meter dengan Strike 317,5 0 , Dip 4,6 0 , dan Rake 91.80 .
Hasil simulasi tsunami dengan TUNAMI-N2, perkiraan datangnya gelombang tsunami menghantam pantai yaitu Sibaru-baru sekitar 10 menit setelah gempa, Sibigau 11 menit, Pagai Utara 16 menit, Sipora 26 menit, Enggano 35 menit, Teluk Dalam 48 menit, Seblat 66 menit, dan Padang 70 menit. Untuk daerah yang dekat dengan sumber, dimana tsunami datang kurang dari 30 menit, analisa W-phase tidak dapat digunakan untuk peringatan dini tsunami, karena analisis W-phase memberikan informasi long-periode dari sumber gempa bumi yang lebih cepat dari inversi GCMT. Sangat di rekomendasikan kepada Badan Meteorologi Klimatologi dan Geofisika (BMKG), agar metode inversi W-phase digunakan dalam updating peringatan dini tsunami di Indonesia.
xii
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Indonesia terletak di daerah seismik yang sangat aktif di karenakan tepat berada di dekat pertemuan tiga lempeng tektonik utama yaitu lempeng Eurasia (Eurasian plate) di sebelah utara, lempeng Pasifik (Pacific plate) di sebelah timur dan Indo-Australia (Indo-Australian plate)
di sebelah selatan, selain juga
lempeng kecil seperti lempeng Filipina (Philippine plate) di sekitar Sulawesi dan Maluku. Interaksi antara lempeng tektonik ini menyebabkan tingkat seismisitas yang sangat tinggi di daerah Indonesia. Lempeng Indo-Australia bergerak kearah timur laut dengan kecepatan 71 mm/tahun. Lempeng ini berinteraksi dengan lempeng Eurasia yang relatif diam, menyebabkan zona subduksi membujur sepanjang pulau Sumatera dan Jawa hingga Nusa Tenggara. Daerah inilah yang merupakan daerah gempa bumi aktif. Lempeng tektonik Indonesia, dapat dilihat pada gambar .1.1. Lempeng pasifik yang bergerak kearah barat dengan kecepatan 110 mm/tahun, berinteraksi dengan lempeng Indo-Australia menyebabkan zona subduksi di sebelah utara Papua hingga Maluku. Disekitar Pulau Sulawesi, tumbukan kedua lempeng tersebut bertemu dengan lempeng kecil yaitu Lempeng Filipina menyebabkan adanya triple junction (pertemuan tige lempeng). Pertemuan tiga lempeng tersebut menyebabkan daerah Sulawesi, Maluku, Papua
1
Barat merupakan daerah seismik paling aktif. (Darwin Harahap, 1999, Pendahuluan Geofisika
Gambar.1.1 Lempeng tektonik Indonesia
Indonesia juga merupakan daerah yang rawan dengan gelombang tsunami, dikarenakan hampir 60 % dari seluruh luas wilayah Indonesia adalah lautan. Gempa bumi tektonik, yang di akibatkan gesekan antar lempeng, merupakan pembangkit tsunami terbesar yang terjadi di Indonesia. Zona potensi tsunami terbesar di Indonesia yaitu sepanjang pantai selatan pulau Sumatera, selatan pulau Jawa, pulau Flores, daerah pantai pulau Sulawesi dan daerah pantai pulau Papua. Dari tahun 1992 hingga desember 2010, terjadi 24 gempa bumi yang berpotensi tsunami. Dari 24 gempa tersebut, 7 diantaranya mengakibatkan tsunami merusak. (Tri Handayani, 2009, W Phase Analysis for Tsunami Warning). Gambar.1.2 menunjukkan daerah rawan tsunami di Indonesia
2
Gambar 1.2. Daerah Rawan Tsunami di Indonesia Gempa bumi Mentawai yang terjadi pada tanggal 25 Oktober 2010 tepatnya pada posisi episenter
3.610 LS – 99.930 BT dengan waktu kejadian gempa
(Origin Time) 14:42:22 UTC atau (21:42:22 WIB) adalah salah satu contoh gempabumi yang menimbulkan gelombang tsunami yang cukup tinggi. Gempa berkekuatan 7,2 SR (BMKG) ini, mengakibatkan sedikitnya 77 desa tersapu gelombang tsunami. Menurut laporan akhir dari Pemerintah Kabupaten Kepulauan
Mentawai,
Sumatera
Barat,
gempa dan tsunami
Mentawai
menyebabkan kerusakan material yang sangat besar dan korban jiwa sekitar 456 jiwa. (Detik.com 25 november 2010). Berdasarkan prosedur standar operasional Pusat Gempa Nasional, Badan Meteorologi, Klimatologi, dan Geofisika (BMKG), gempabumi
dengan
magnitudo ≥7.0 SR, kedalaman <70 km, episenter di laut, maka dikeluarkan
3
warning tsunami sebagai peringatan awal kepada masyarakat sekitar episenter untuk melakukan evakuasi ke tempat yang lebih aman. Sejak di bangunnya Ina-TEWS (Indonesia Tsunami Early Warning System), diharapkan dalam 5 menit pertama setelah terjadi gempabumi, informasi gempabumi yang berpotensi tsunami telah tersampaikan. Informasi tersebut disampaikan kepada media elektronik dan cetak, pemerintah daerah dan pejabat terkait maupun masyarakat secara langsung. Oleh karena hal tersebut, di harapkan sebuah metode penentuan parameter gempabumi yang tepat sebagai langkah awal untuk meningkatkan ketepatan warning tsunami. Penentuan skala kekuatan relatif gempa bumi yang ada saat ini, menggunakan hasil pengukuran amplitude awal gelombang P, rekaman sinyal gempabumi (seismogram) yang tercatat di stasiun pencatat gempa. Metode ini menghasilkan nilai magnitude dalam waktu yang sangat cepat, dikarenakan waktu tiba gelombang P merupakan gelombang yang pertama kali tercatat oleh seismometer. Akan tetapi, hasil dari penghitungan metode ini belum sepenuhnya menggambarkan energi yang dilepaskan di sumber gempabumi, dikarenakan dalam proses penjalarannya energi yang berupa gelombang seismik mengalami pelemahan karena absorbsi dari batuan yang dilaluinya, sehingga energi yang sampai ke stasiun pencatat kurang dapat menggambarkan energi gempabumi di pusat gempabumi. (Gunawan Ibrahim dan Subardjo, 2003, Pengetahuan Seismologi) Metode penentuan skala kekuatan relatif gempabumi yang lain adalah menggunakan hasil pengukuran amplitude gelombang Surface (gelombang
4
Rayleigh dan gelombang Love), dimana gelombang ini tiba beberapa saat setelah gelombang S (sekunder). Metode ini menghasilkan nilai magnitude yang relatif baik dalam merepresentasikan energi yang dipancarkan oleh gempa bumi hingga permukaan. Kekurangan dari metode ini membutuhkan waktu yang relatif lama , sekitar 30 menit, untuk mendapatkan hasil penghitungan magnitude ini dikarenakan gelombang Surface merupakan gelombang yang paling akhir dalam urutan waktu tiba gelombang gempa bumi. Dalam penelitian ini diperkenalkan metode inversi W-phase untuk menentukan magnitudo moment (Mw) dan mekanisme sumber (source mechanism) gempa bumi. Magnitude moment merupakan jenis magnitude yang paling lengkap dimana magnitude ini mempergunakan moment seismik sebagai faktor penentu besarnya magnitude. Momen seismik dapat diestimasi dari dimensi pergeseran bidang sesar atau dari analisis karakteristik gelombang gempabumi yang direkam di stasiun pencatat khususnya dengan seismograf periode bebas (broadband seismograph). Dengan memasukkan dimensi pergeseran bidang sesar pada sumber gempa, sehingga magnitude ini dapat dengan tepat menggambarkan seberapa besar energi yang dipancarkan oleh gempa bumi. Dengan demikian, metode ini diharapkan menjadi sebuah solusi awal
untuk meningkatkan ketepatan informasi dan warning tsunami berdasarkan hasil penghitungan
parameter
gempabumi
(hiposenter
dan
magnitudo)
yang
dikeluarkan oleh BMKG.
5
1.2.Tujuan Penulisan Tulisan ini bertujuan untuk : 1. Menganalisa ulang gempabumi mentawai dengan metode inversi WPhase untuk menentukan Magnitude moment (Mw) 2. Menentukan parameter sumber seismik (seismic source) gempa bumi Mentawai 25 Oktober 2010 3. Membuat simulasi tsunami untuk memprediksi waktu tiba dan ketinggian gelombang tsunami 1.3.Manfaat Penulisan Dari penelitian ini, diharapkan dapat memberikan manfaat antara lain : 1. Dapat menentukan besarnya momen seismik dan Magnitudo moment (Mw) yang merupakan gambaran energi gempa bumi. 2.
Dapat menentukan parameter sumber seismik guna penentuan panjang, lebar, besar regangan dari patahan akibat gempa bumi Mentawai.
3. Sebagai evaluasi, dengan memberikan informasi pembanding berupa besar kekuatan gempabumi. 4. Dapat melakukan simulasi Tsunami untuk memperkirakan waktu tiba dan ketinggian gelombang tsunami.
6
5. Dapat menambah pengetahuan baru tentang metode penentuan parameter gempabumi dan tsunami 1.4. Batasan Masalah Dalam penelitian ini, lingkup penelitian dibatasi berupa : 1. Penentuan besarnya Magnitudo moment gempabumi Mentawai 25 Oktober 2010 dengan Metode inversi W-phase. 2. Penentuan parameter sumber seismik dan parameter patahan serta Deformasi dasar laut sebagai input awal simulasi tsunami Mentawai. 3. Penentuan waktu tiba gelombang tsunami di pantai dan ketinggiannya berdasarkan simulasi yang dilakukan. 1.5. Sistematika Penulisan Dalam penyusunan skripsi ini, sistematika yang penulis gunakan adalah : Bab I Pendahuluan berisi tentang latar belakang, tujuan, manfaat, batasan masalah dan sistematika penulisan. Bab II Tinjauan Pustaka menjelaskan tentang teori mekanisme gempabumi, jenis-jenis gempa bumi, gelombang gempabumi, skala kekuatan gempa bumi, W-phase, Inversi W-phase, parameter patahan dan deformasi dasar laut, serta simulasi tsunami. Bab III Data dan Pengolahan Data berisi tentang data yang digunakan dan pengolahan data penelitian.
7
Bab IV Analisa dan Pembahasan menjelaskan tentang Retrieving Wphase, Inversi W-phase, Parameter patahan dan deformasi dasar laut, simulasi waktu tiba dan tinggi gelombang tsunami. Bab V Penutup memberikan kesimpulan dan saran berdasarkan hasil penelitian.
8
BAB II TINJAUAN PUSTAKA 2.1 Gempa bumi
Dalam teori patahan (fracture theory) disebutkan bahwa akibat patahan yang terjadi dengan tiba-tiba pada saat terjadi gempabumi akan dilepaskan sejumlah energi tertentu. Energi yang dipancarkan tersebut berupa gelombang seismik yang dapat dirasakan oleh seismograf (Reid,1911) yang disebut gempabumi. (Darwin harahap,1999, Pendahuluan Geofisika). Dari keterangan di atas dapat dikatakan bahwa gempa bumi merupakan hasil pelepasan energi dari suatu patahan pada kerak bumi yang terjadi secara tiba-tiba. Patahan tersebut bukan merupakan suatu titik, tetapi dapat berupa zona dengan bentangan (jarak) hingga beberapa kilometer.
Proses terjadinya gempa bumi dapat dilihat pada gambar 2.1.
A
B
A
A B
(a)
(b)
B
(c)
Gambar 2.1. Skematik proses gempa bumi
Garis tebal vertikal menunjukkan patahan atau fault pada bagian bumi yang padat. Gambar-gambar di atas diterangkan sebagai berikut :
9
Gambar (a)
: pada keadaan ini menunjukkan bahwa suatu lapisan yang belum terjadi
perubahan-perubahan bentuk struktur bumi.
Gambar (b)
: pada keadaan ini menunjukkan bahwa suatu lapisan batuan telah
mendapat dan mengandung tegangan (stress), dimana telah terjadi perubahan bentuk struktur batuan. Untuk daerah A mendapat tegangan ke atas, sedang daerah B mendapat tegangan ke bawah. Proses ini berjalan terus hingga tegangan yang terjadi di daerah ini cukup besar untuk merubahnya menjadi gesekan antara daerah A dan daerah B. Dalam kurun waktu yang cukup lama, lapisan batuan tidak akan mampu lagi untuk menahan tegangan, sehingga terjadi suatu pergerakan atau perpindahan yang tiba-tiba dari kedua blok tersebut. Pada saat itulah terjadi patahan/sesar sambil dipancarkan sejumlah energi yang berupa gelombang seismik yang biasa disebut gempa bumi.
Gambar (c)
: pada keadaan inilah menunjukkan bahwa suatu lapisan batuan yang
sudah patah, karena adanya pergerakan yang tiba-tiba dari batuan.
Gerakan perlahan-lahan di daerah sesar (fault) ini berjalan terus, dimana seluruh proses di atas berulang kembali dan sebuah gempa baru timbul lagi di daerah tersebut setelah
beberapa
waktu.
Demikianlah
proses
itu
berlangsung
secara
terus-
menerus.(Reid,1906). Teori ini dikenal sebagai Elastic Rebound Theory. (Gunawan Ibrahim & Subardjo,2003, Pengetahuan Geofisika). Dari penjelasan tersebut, maka syarat-syarat terjadinya gempa bumi antara lain gerakan relatif kerak bumi, pembangunan stress (tegangan), dan pelepasan tegangan.
10
2.2 Jenis-Jenis Gempa Bumi
Berdasarkan penyebabnya, gempa bumi dapat dibedakan menjadi :
a. Gempa bumi tektonik
Gempabumi ini disebabkan oleh adanya aktivitas tektonik, yaitu pergeseran lempeng lempeng tektonik secara mendadak yang mempunyai kekuatan dari yang sangat kecil hingga yang sangat besar. Gempabumi ini banyak menimbulkan kerusakan atau bencana alam di bumi, getaran gempa bumi yang kuat mampu menjalar keseluruh bagian bumi
b. Gempa bumi vulkanik
Gempa bumi ini terjadi akibat adanya aktivitas magma, yang biasa terjadi sebelum gunung api meletus. Apabila keaktifannya semakin tinggi maka akan menyebabkan timbulnya ledakan yang juga akan menimbulkan terjadinya gempabumi. Gempabumi tersebut hanya terasa di sekitar gunung api tersebut.
c. Gempa bumi runtuhan
Gempabumi ini biasanya disebabkan oleh pergerakan permukaan tanah (longsor), gua runtuh, dan lain sebagainya yang menimbulkan getaran-getaran. Biasanya terjadi pada daerah kapur ataupun pada daerah pertambangan, gempabumi ini jarang terjadi dan bersifat lokal.
d. Gempa bumi buatan
11
Gempa bumi buatan adalah gempa bumi yang disebabkan oleh aktivitas dari manusia, seperti peledakan dinamit, nuklir atau palu yang dipukulkan ke permukaan bumi.
Berdasarkan kekuatannya atau magnitude (M) (Hagiwara,1964), gempabumi dapat dibedakan atas :
a. Gempabumi sangat besar (great earthquake) b. Gempabumi besar (major earthquake)
M > 8,0 SR 7,0 < M ≤ 8,0 SR
c. Gempabumi sedang (moderate earthquake)
5,0 < M ≤ 7,0 SR
d. Gempabumi kecil (small earthquake)
3,0 < M ≤ 5,0 SR
e. Gempabumi mikro (micro earthquake) f.
1,0 < M ≤ 3,0 SR
Gempabumi ultra mikro (ultramicro earthquake)
M ≤ 1,0 SR
Berdasarkan kedalaman sumber (h), gempabumi digolongkan atas :
a. Gempabumi dalam (deep earthquake) b. Gempabumi menengah (intermediate earthquake)
h > 300 Km 80 < h < 300 Km
c. Gempabumi dangkal (Shallow earthquake)
h < 80 Km
Berdasarkan tipenya, Mogi membedakan gempabumi atas:
a.
TypeI :
Pada tipe ini gempa bumi utama diikuti gempa susulan tanpa didahului oleh gempa pendahuluan (fore shock).
b.
Type II :
Sebelum terjadi gempa bumi utama, diawali dengan adanya gempa pendahuluan dan selanjutnya diikuti oleh gempa susulan yang cukup
12
banyak. c.
Type III:
Tidak terdapat gempa bumi utama. Magnitude dan jumlah gempabumi yang terjadi besar pada periode awal dan berkurang pada periode akhir dan biasanya dapat berlangsung cukup lama dan bisa mencapai 3 bulan. Tipe gempa ini disebut tipe swarm dan biasanya terjadi pada daerah vulkanik seperti gempa gunung Lawu pada tahun 1979.
Perbedaan klasifikasi atau pengelompokan gempa bumi diatas disebabkan oleh kerak bumi (crust), distribusi kedalaman sumber gempa dan kepentingan dalam kerekayasaan.
2.3. Gelombang Gempa Bumi
Gelombang seismik adalah gelombang elastik yang menjalar ke seluruh bagian dalam bumi dan melalui permukaan bumi, akibat adanya lapisan batuan yang patah secara tiba – tiba atau adanya suatu ledakan. Gelombang utama gempa bumi terdiri dari dua tipe yaitu gelombang bodi (Body Wave) dan gelombang permukaan (Surface Waves).
2.3.1. Gelombang Bodi (Body Waves)
Gelombang body merupakan gelombang yang menjalar melalui bagian dalam bumi dan biasa disebut free wave karena dapat menjalar ke segala arah di dalam bumi. Gelombang bodi terdiri atas :
1.
Gelombang primer 13
Gelombang primer merupakan gelombang longitudinal atau gelombang kompresional, gerakan partikelnya sejajar dengan arah perambatannya. Gelombang kompresional disebut gelombang primer (P) karena kecepatannya paling tinggi diantara gelombang yang lain dan tiba pertama kali.
2.
Gelombang sekunder.
Gelombang sekunder merupakan gelombang transversal atau gelombang shear, gerakan partikelnya terletak pada suatu bidang yang tegak lurus dengan arah penjalarannya. Gelombang shear disebut gelombang sekunder (S) karena tiba yang kedua setelah gelombang P. Gelombang sekunder terdiri dari dua komponen, yaitu gelombang
SH dengan gerakan partikel horizontal
dan
gelombang SV dengan gerakan partikel vertikal.
14
Gambar 2.2. arah penjalaran gelombang P dan S
2.3.2. Gelombang Permukaan (Surface Waves)
Gelombang permukaan merupakan gelombang elastik yang menjalar sepanjang permukaan bumi dan biasa disebut sebagai tide waves. Karena gelombang ini terikat harus menjalar melalui suatu lapisan atau permukaan. Gelombang permukaan terdiri dari:
1.
Gelombang Love (L) dan gelombang Rayleigh (R), yang menjalar melalui permukaan bebas dari bumi. Gelombang L gerakan partikelnya sama dengan gelombang SH dan memerlukan media yang berlapis. Gelombang R lintasan gerak partikelnya merupakan suatu ellips. Bidang ellips ini vertikal dan berimpit dengan arah penjalarannya. Gerakan partikelnya ke belakang (bawah maju atas mundur). Gelombang R menjalar melalui permukaan media yang homogen. 15
2.
Gelombang Stonely, arah penjalarannya seperti gelombang R tetapi menjalar melalui batas antara dua lapisan di dalam bumi.
3.
Gelombang Channel, yaitu gelombang yang menjalar melalui lapisan yang berkecepatan rendah (low velocity layer) di dalam bumi.
Gelombang Love dan Rayleigh ada juga yang memberi simbul LQ dan LR dimana L singkatan dari Long karena gelombang permukaan mempunyai sifat periode panjang dan Q adalah singkatan dari Querwellen yaitu nama lain dari Love, seorang Jerman yang menemukan gelombang ini.
Gambar 2.3. penjalaran gelombang permukaan
16
Gambar 2.4. seismogram gempa bumi
2.4. Skala Kekuatan Gempa Bumi
Ukuran kekuatan gempabumi yang merupakan gambaran besarnya energi pada sumber gempabumi yang terlepas saat gempabumi terjadi dan merupakan hasil pengamatan Seismograf disebut dengan nama Magnitude. Magnitude menggunakan skala Richter (SR). Ada beberapa magnitude yang digunakan pada saat ini diantaranya :
2.4.1. Magnitude Lokal (ML)
Magnitude lokal (ML) pertama kali diperkenalkan oleh Richter di awal tahun 1930-an dengan menggunakan data kejadian gempabumi di daerah California yang direkam oleh Seismograf Woods-Anderson. Menurutnya dengan mengetahui jarak episenter ke seismograf dan mengukur amplitude maksimum dari sinyal yang tercatat di seismograf maka dapat dilakukan pendekatan untuk mengetahui besarnya gempabumi yang terjadi. (USGS, 2002)
Magnitude lokal mempunyai rumus empiris sebagai berikut :
17
ML = log a + 3 log
Dengan a = amplitude getaran tanah ( m), gempabumi (km) dengan
- 2.92
= jarak Stasiun pencatat ke sumber
600 km.
Saat ini penggunaan ML sangat jarang karena pemakaian seismograf Woods-Anderson yang tidak umum. Selain itu penggunaan kejadian gempabumi yang terbatas pada wilayah California dalam menurunkan persamaan empiris membuat jenis magnitude ini paling tepat digunakan hanya untuk daerah tersebut. Oleh karena itu dikembangkan jenis magnitude yang lebih tepat untuk penggunaan yang lebih luas dan umum.
2.4.2. Magnitude Bodi (mb)
Terbatasnya penggunaan magnitude lokal untuk jarak tertentu membuat dikembangkannya tipe magnitude yang bisa digunakan secara luas. Salah satunya adalah mb atau magnitude bodi (Body-Wave Magnitude). Magnitude ini didefinisikan berdasarkan catatan amplitude dari gelombang P yang menjalar melalui bagian dalam bumi (Lay. T and Wallace.T.C. 1995). Secara umum dirumuskan dengan persamaan :
mb = log ( a / T ) + Q ( h,
Dengan a = amplitudo getaran ( m), T = periode getaran (detik) dan (h, ) = koreksi jarak
Q
dan kedalaman h yang didapatkan dari pendekatan
empiris.
18
2.4.3. Magnitude Permukaan (Ms)
Selain Magnitude bodi dikembangkan pula Ms atau
Magnitude
permukaan (Surface-wave Magnitude). Magnitude tipe ini didapatkan sebagai hasil pengukuran terhadap gelombang permukaan (surface waves). Untuk jarak 600 km seismogram periode panjang (long-period seismogram) dari gempabumi dangkal didominasi oleh gelombang permukaan. Gelombang ini biasanya mempunyai periode sekitar 20 detik. Amplitude gelombang permukaan sangat tergantung pada jarak
dan kedalaman sumber gempa h. Gempabumi
dalam tidak menghasilkan gelombang permukaan, karena itu persamaan Ms tidak memerlukan koreksi kedalaman. Magnitude permukaan mempunyai bentuk rumus sbb:
Ms = log a +
log
+
Dengan a = amplitude maksimum dari pergeseran tanah horisontal pada periode 20 detik,
= Jarak (km),
dan
adalah koefisien dan konstanta
yang didapatkan dengan pendekatan empiris. Persamaan ini digunakan hanya untuk gempa dengan kedalaman sekitar 60 km.
Hubungan antara Ms dan mb dapat dinyatakan dalam persamaan :
mb = 2.5 + 0.63 Ms
atau
Ms = 1.59 mb – 3.97
19
2.4.4. Magnitude Momen (Mw)
Kekuatan gempabumi sangat berkaitan dengan energi yang dilepaskan oleh sumbernya. Pelepasan energi ini berbentuk gelombang yang menjalar ke permukaan dan bagian dalam bumi. Dalam penjalarannya energi ini mengalami pelemahan karena absorbsi dari batuan yang dilaluinya, sehingga energi yang sampai ke stasiun pencatat kurang dapat menggambarkan energi gempabumi di hiposenter.
Berdasarkan Teori Elastik Rebound diperkenalkan istilah momen seismik (seismic moment). Momen seismik dapat diestimasi dari dimensi pergeseran bidang sesar atau dari analisis karakteristik gelombang gempabumi yang direkam di stasiun pencatat, khususnya dengan seismograf periode bebas (broadband seismograph).
Mo = µ D A
Dengan Mo = momen seismik, µ = rigiditas, D = pergeseran rata-rata bidang sesar, A = area sesar.
Secara empiris hubungan antara momen seismik dan magnitude permukaan dapat dirumuskan sebagai berikut:
log Mo = 1.5 Ms + 16.1
Ms = magnitude permukaan (Skala Richter).
20
Kanamori (1997) dan Lay. T and Wallace. T. C, (1995) memperkenalkan Magnitude momen (moment magnitude) yaitu suatu tipe magnitude yang berkaitan dengan momen seismik namun tidak bergantung dari besarnya magnitude permukaan : Mw = ( log Mo / 1.5 ) – 10.73
Dengan Mw = magnitude momen, Mo = momen seismik.
Meskipun dapat menyatakan jumlah energi yang dilepaskan di sumber gempabumi dengan lebih akurat, namun pengukuran magnitude momen lebih komplek dibandingkan pengukuran magnitude ML, Ms dan mb. (Gunawan Ibrahim dan Subardjo, 2003, Pengetahuan Seismologi)
2.4.5. Magnitude Durasi (Md)
Magnitude Durasi (Duration Magnitude) merupakan fungsi dari total durasi (lama waktu / panjang) sinyal gempa bumi yang terekam oleh seismograf. Magnitude Durasi (Md) untuk suatu stasiun pengamat persamaannya adalah :
Md = a1 + a2 log + a3 + a4 h
Dengan Md = magnitude durasi,
= durasi sinyal (detik),
= jarak
episenter (km), h = kedalaman hiposenter (km) dan a1,a2,a3, dan a4 adalah konstante empiris.
21
Magnitude durasi sangat berguna dalam kasus sinyal yang sangat besar amplitudenya (off-scale) yang mengaburkan jangkauan dinamis sistem pencatat sehingga memungkinkan terjadinya kesalahan pembacaan apabila dilakukan estimasi menggunakan Ml. (Massinon. B, 1986).
2.5. W-Phase
W-phase adalah sebuah fase gelombang long periode dengan waktu tiba antara fase gelombang P dan fase gelombang S (tiba setelah gelombang P, sebelum gelombang S). W-phase memberikan informasi-informasi Long periode dari sumber, yang lebih cepat daripada gelombang surface (surface wave). Fase ini pertamakali teridentifikasi pada record seismogram gempa bumi dan tsunami Nicaragua tahun 1992 dan oleh karena perbedaan gelombang tersebut, maka diberikan nama W-phase).( Hiroo Kanamori and Luis Rivera, 2008, Source Inversion of W phase: Speeding up Seismic Tsunami Warning)
W-phase dapat diinterpretasikan sebagai superposisi dari energi long periode terkait juga dengan beberapa fase gelombang, seperti gelombang P, PP, SP, dan S dengan kecepatan group antara 4,5 km/s sampai 9,0 km/s, dengan periode berkisar antara 100 s hingga 1000 s. Pada periode ini, dari 100-1000 s, pelepasan energi yang sangat signifikan tetap berada pada lapisan mantel, dimana variasi struktur secara lateral relatif kecil. Keadaan ini mengakibatkan propagasi dari W-phase tidak terlalu terpengaruh oleh tingkat heterogenitas yang tinggi pada struktur lapisan dangkal yang diakibatkan oleh perbedaan lempeng benua dan
22
samudera (Kanamori,1993, Aplication of the W-phase Source Inversion Method to Regional Tsunami Warnaing).
Untuk sebuah sumber moment tensor, dapat dihitung displacement pada suatu lokasi r sebagai sebuah fungsi waktu t, ditunjukkan dengan persamaan :
u r, t
m l
M :n l ,m,n
r
m
0
n
1 exp
n
yl r
m l
n
Dimana
n
y lm r :
M
n
n
n
:
m l
n
n
m l
t (1)
m2 l
source moment tensor
r0 :
strain tensor
quality factor
C lm :
energi
n
clm
n
Qlm cos
normal mode
Qlm :
dengan
t/2
m
Clm
n
yl r .
m
n
y l r dV
(2)
V
Dimana
: densitas batuan, integrasi terhadap volume bumi V. (Kanamori dan
Rivera,2008,Source Inversion of W phase: Speeding up Seismic Tsunami Warning). Kisaran kecepatan group W-phase dari 4,5 km/s – 9,0 km/s , mengakibatkan energi W-phase tiba dalam interval waktu yang sangat singkat setelah waktu tiba
23
gelombang P. Untuk mengekstrak W-phase, digunakan proses deconvolusi time window dari W-phase dengan durasi dari 15 ∆s (∆ dalam derajat) setelah gelombang P yang berisi sebagian besar energi W-phase.
2.6. Inversi W-Phase
Proses inversi W-phase, mengikuti prosedur sebagaimana yang dilakukan oleh Kanamori dan Rivera (2008). Dalam proses inversi, diasumsikan sebagai inversi sebuah bagian titik sumber (spatial point source), sama seperti yang dilakukan oleh Harvard University dan Global Centroid Moment Tensor (GCMT).(Dziewonski dkk.1981; Ekstrom dkk 2005). Posisi/lokasi titik sumber tersebut dinamakan lokasi centroid (centroid location). Titik sumber ini berubah-ubah terhadap waktu dengan diberikannya sebuah time history. Jika lokasi centroid dan time history sumber diketahui, inversi yang dilakukan merupakan inversi linier dengan element moment tensor M ij , yang diformulasikan sebagai :
u 1w,11 u 1w,12
u w21, 2 u w2,22
u w3,13 u w3,23
u 1w,12 u 1w,22
u 1w,13 u 1w,32
u w21,3 u w2,23
1,1 w3 1,1 w4 1,1 w5
2, 2 w3 2, 2 w4 2, 2 w5
3, 3 w3 3, 3 w4 3, 3 w5
1, 2 w3 1, 2 w4 1, 2 w5
1, 3 w3 1, 3 w4 1, 3 w5
2,3 w3 2,3 w4 2,3 w5
u u u
u u u
u u u
u u u
u u u
u u u
u w1 u w2 u w3 M 11 M 22 M 33 M 12 M 13 M 23
,1 u 1wN
2, 2 u wN
3, 3 u wN
,2 u 1wN
,3 u 1wN
2,3 u wN
u w4 u w5 =
(3)
u wN
24
Dimana
M kl :
element k-l moment tensor sumber.
k ,l u wi t :
displacement pada stasion i
u wi t :
W-phase pada stasion i
Vektor kolom sisi kanan merupakan gabungan W-phase hasil observasi (seismogram), dan vektor kolom sisi kiri merupakan gabungan sintetik displacement sebuah unit sumber yang dihitung dengan salah satu dari enam element dasar moment tensor.
Seperti yang telah dijelaskan di atas, diasumsikan bahwa lokasi centroid dan fungsi source time telah diketahui. Dalam penelitian ini digunakan cara yang telah dilakukan oleh Harvard Centroid Moment Tensor, dengan menggunakan fungsi sumber triangular, dimana digambarkan dengan dua buah parameter, yaitu half duration, t h , dan centroid delay, t d . Half duration adalah setengah lebar segitiga moment rate function dan centroid delay adalah posisi sementara lokasi episenter di pusat segitiga yang diukur dari origin time perkiraan. (Tri Handayani, 2009, W Phase Analysis for Tsunami Warning).
2.7. Simulasi Tsunami
Dalam penelitian ini, sebagai media simulasi digunakan program simulasi tsunami TUNAMI-N2 sebagai sumber model numerik tsunami. TUNAMI-N2 merupakan kependekan dari Tohoku University’s Numerical Analysis Model for Investigation of Near-field tsunami No 2. Program simulasi ini merupakan metode analisa secara numerik untuk meneliti tsunami near field berdasarkan pada simulasi tsunami secara numerik
25
dengan menggunakan leap-frog scheme. Program ini dibuat oleh Dr. Fumihiko Imamura dkk di DCRC (The Disaster Control Research Center), Universitas Tohoku. Interval grid yang digunakan dalam tsimulasi ini digunakan interval 1arc.menit atau sama dengan 111 km/60 = 1850 m, percepatan gravitasi (g) 9,8 m
s2
, kedalaman bathymetry maksimum
( hmaks ) 7.308 meter. Kondisi kestabilan interval grid secara temporal dituliskan dengan mengikuti :
t
x
(4)
2 ghmaks
Pengaturan waktu interval temporal (∆t) sebesar 3 detik, dimana nilai ini lebih rendah dari kondisi kestabilan. Interval temporal ini digunakan untuk membatasi sampling waktu gelombang (waveform) dan waktu snapshot file film tsunami.
Dalam komputasi numerik, distribusi kecepatan gelombang tsunami digambarkan oleh bathymetri (Satake, IISEE Lecture Note 2009). Program TUNAMI-N2 menggunakan bathymetri wilayah sebagai data masukan (input data). Dalam skripsi ini digunakan data bathymetri dari GEBCO (General Bathymetric Chart of Ocean) yang telah didigitasi dari peta lautan (nautical charts) dengan interval grid satu menit.
2.8. Parameter patahan dan deformasi dasar laut
Untuk simulasi tsunami, dibutuhkan hasil penghitungan parameter patahan dan deformasi dasar laut sebagai kondisi awal. Parameter sumber yang diperlukan dan perlu dihitung :
Koordinat lokasi patahan (lintang ,bujur, dan kedalaman)
26
Panjang patahan (L) Lebar patahan (W) sudut strike ( ) sudut dip (δ) sudut rake (λ) slip amount (u)
Dalam penelitian ini, digunakan parameter patahan berdasarkan hasil dari inversi W-phase. Dari inversi W-phase didapatkan lokasi centroid (lintang, bujur, kedalaman), yang diasumsikan terletak di pusat patahan (bintang merah dalam gambar 2.5).
Setelah ditentukan lokasi centroid-nya, geser lokasi centroid dari pusat ke pojok kiri untuk menentukan lokasi koordinat dari patahan (bintang biru dalam gambar 2.5) sebagai parameter input TUNAMI-N2.
Gambar 2.5. geometry patahan (Seth wysession,2002)
27
Dari inversi W-phase, didapatkan parameter sumber sebagai hasil dari proses inversi, yaitu strike ( ), dip (δ), rake (λ) dan seismic moment ( M 0 ). Dengan penghitungan menggunakan pendekatan empiris (Geller, 1979), sehingga didapatkan panjang (L) dan lebar patahan (W).
M0
Dimana
(7,26x1021 ) L3 ; L
2W
M0
=
moment seismic (dyne centimeter)
L
=
panjang patahan (km)
W
=
lebar patahan (km)
(5)
Slip amount (u) dihitung dengan :
M0
Dengan
x u xLxW
(6)
ridigity , 3.0 x1010 N / m 2 (gempa bumi dangkal)
Parameter-parameter patahan di atas, dapat dihitung dengan mudah menggunakan Microsoft exel.
28
BAB III
METODE PENELITIAN
3.1. Data Penelitian
Dalam penelitian ini, digunakan data rekaman broadband seismograf dari jaringan seismik global. Data ini didownload dari database IRIS (Incorporated Research Institution for Seismology) Data Management System (DMS) dari website : http:www.iris.washington.edu/dms/wilber.htm.Gambar 3.1 menunjukkan lokasi stasiun seismik global yang digunakan dalam penelitian skripsi ini.
Gambar 3.1. peta sebaran stasiun Global Seismograph Network IRIS-DMC
29
Data yang digunakan adalah 1 sample-per-second rekaman komponen vertikal (chanel LHZ) untuk jarak stasiun sekitar < 900 di ambil dari database dalam jaringan/network tersebut yaitu II (IRIS/IDA), IU(IRIS/USGS), GE (GEOPHONE), G (GEOSCOPE). Contoh seismogram gempa bumi Mentawai 25 oktober 2010, dapat dilihat pada gambar 3.2. Sumbu y adalah kecepatan (m/s) dan sumbu x menunjukkan waktu (s).
Gambar 3.2. contoh seismogram velocity record (m/sec) gempa Mentawai
3.2. Metode Penelitian
Data seismogram hasil download dari database IRIS-DMC dalam format MiniSeed, yang mana merupakan raw-data asli dari rekaman broadband seismograf long periode komponen vertikal. Dalam format ini, data harus di convert dengan Rdseed kedalam bentuk data SAC (Seismic Analysis Code) dengan menggunakan peranti lunak
30
Linux. Setelah terconvert seluruh data , dilakukan proses deconvolusi data. Data seismogram hasil download merupakan gabungan dari parameter sumber seismik, struktur bagian dalam bumi dan impuls instrument respons seismometer. Proses deconvolusi ini berguna untuk memisahkan seismogram dari faktor instrument respons, sehingga data akhir yang dihasilkan, diharapkan adalah data murni dari sumber seismik. Dari data murni ini, kemudian dilakukan retrieve W-phase dan inversi W-phase.
Sebelum proses retrieve dilakukan, sebagai catatan bahwa data sinyal gempa merupakan catatan sinyal velocity dalam bentuk time series. Sedangkan retrieve W-phase dilakukan pada catatan sinyal displacement dalam time domain. Proses mengubah sinyal velocity time series kedalam displacement time domain ini cukup rumit. Sebelumnya, sinyal catatan velocity dilakukan integrasi didapatkan displacement time series. Digunakan time deconvolusi sehingga didapatkan accelerasion/percepatan time series. Kemudian accelerasi time series dilakukan band pass filtering dalam time domain dilanjutkan dengan dua kali integrasi, akhirnya didapatkan displacement dalam time domain. Selanjutnya dilakukan retrieve dan inversi W-phase. Proses inversi dilakukan dengan convolusi Green function dengan data observasi. Proses ini secara sederhana adalah mencari RMS terkecil hasil matching antara sinyal observasi di stasiun pencatat dengan sintetis waveform (Green’s function). Hasil inversi ini menghasilkan moment tensor, besar magnitude serta focal mechanism. Secara singkat diagram alir penelitian dapat dijelaskan sebagai berikut :
31
START DATA (seed) Extract to SAC Deconvolusi
Green’s function
Retrieve W-phase
Filtering RMS (3.0, 1.3, 0.9)
No
Inversi W-Phase Yes Out put: Seismic moment, Magnitude moment (Mw), focal mechanism
Parameter patahan & deformasi dasar latut
Simulasi Tsunami
Waktu tiba dan tinggi gelombang tsunami
END
Dalam penelitian ini, digunakan 1 sample-per-second data rekaman seismograf komponen vertikal (komponen LHZ) yang diambil dari database IRIS, dengan durasi 15∆ (derajat) detik setelah waktu tiba gelombang P. jarak stasiun yang digunakan dengan
32
radius ∆ ≤ 900 dari pusat gempa dengan diberikan bandpass filter dari 0,001 - 0,005 Hz (dari 200s-1000s). Kemudian dihitung sebuah unit sumber sintetis untuk setiap stasiun menggunakan Green’s function. Kanamori dan Rivera (2008) telah membuat database Green’s function ini untuk tiga komponen displacement untuk jarak 00
900 ,
dengan interval dari 0,10 0,2 0 dan kedalaman antara 0-760 km. Interval kedalaman bervariasi seiring meningkatnya kedalaman dari 2 km hingga 10 km. Database Green function yang telah di buat Kanamori dan Rivera untuk spheriodal mode sebanyak 103.000, toroidal mode sebanyak 63.000, dan radial mode sebanyal 152, lengkap untuk periode 12 s. (Kanamori and Rivera, 2008, Source Inversion of W phase: Speeding up Seismic Tsunami Warning,Geophysics J. Intl)
Gambar 3.3 menunjukkan contoh hasil retrieve Wphase setelah inversi untuk tiap stasiun. Tanda bintang merah dalam lingkaran (gambar sebelah kiri) adalah lokasi gempa bumi, dan titik merah dalam lingkaran adalah stasiun. Titik merah pada waveform (gambar sebelah kanan) merupakan W-phase yang diambil dari stasiun tersebut.
33
Gambar 3.3. W-phase gempa bumi Mentawai 25 oktober 2010 Dari hasil inversi W-phase, kemudian dilanjutkan persiapan untuk membuat simulasi tsunami dengan program TUNAMI-N2. Data seismic moment hasil inversi digunakan untuk menghitung parameter patahan dan deformasi dasar laut berupa slip, dip, rake, panjang patahan, lebar patahan, sebagai masukan awal simulasi tsunami.
Persiapan selanjutnya setelah didapatkan hasil parameter patahan dan juga deformasi dasar laut, selanjutnya membuat model patahan akibat gempa bumi dalam program TUNAMI-N2. Selain itu, untuk mendapatkan hasil rekaman tinggi gelombang dan juga waktu tibanya, kita tempatkan tide gauge model pada titik-titik di dekat pantai sebagai titik pencatat tinggi gelombang tsunami. Dalam penelitian ini, ditempatkan 8 titik
34
tide gauge yang tersebar di berbagai pulau. Letak 8 tide gauge tersebut dapat dilihat dalam gambar 3.4.
Gambar 3.4. posisi tide gauge pencatat tinggi gelombang
35
BAB IV
ANALISIS DAN PEMBAHASAN
Gempabumi Mentawai tercatat hampir di seluruh seismograf broadband, jaringan seismik global. Akan tetapi dalam peenelitian ini hanya terbatas hingga 900 . Hal ini dikarenakan sifat dari getaran itu sendiri, waveform (gelombang) yang tercatat pada seismograf dengan jarak > 700 merupakan gelombang very long-periode, berupa gelombang Rayleigh, yaitu salah satu gelombang permukaan (Kanamori,1993). Dari batas radius yang telah di tentukan (≤ 90°) didapatkan sejumah 60 catatan gelombang/waveform dari jaringan stasiun global dalam lingkup < 900 . Sebanyak 60 stasiun tersebut, tersebar di beberapa negara. Setelah dilakukan proses deconvolusi dan inversi, hanya sebanyak 30 stasiun saja yang dapat digunakan dalam penelitian ini. Selebihnya, yaitu 30 stasiun yang lain dihilangkan. Pemilihan stasiun ini, berdasarkan nilai RMS terkecil dari hasil matching data observasi dengan database sintetik Green function yang telah di buat oleh Kanamori dan Rivera (2008). Hasil matching data tersebut ditunjukkan dalam gambar 4.1.
Dari 30 stasion tersebut,selanjutnya dilakukan retrieve W-phase dengan proses inversi. Parameter awal yang digunakan sebagai acuan titik centroid adalah data parameter gempabumi hasil lokalisasi BMKG dengan SeiscomP3, dan time delay( t d ) serta half duration t h
diambil dari data awal GCMT, yang bisa dilihat dalam GCMT
catalog. Parameter awal sebagai input data bisa kita lihat dalam table 4.1.
36
Gambar 4.1. matching W-phase observasi (warna hitam) dan sintetis (warna merah)
Tabel 4.1. parameter centroid sebagai input inversi W-phase
Litang (derajat)
Inversi W-phase
-3,61
Bujur (derajat)
99,93
Depth (km)
10
Time delay t d
Half dur t h
(s)
(s)
38,0
19,9
Hasil inversi berupa magnitudo moment dan juga parameter focal, dapat dilihat dalam table 4.2. dan gambar 4.2. Dari gambar 4.2 bisa dilihat bahwa jenis patahan yang terjadi akibat gempa Mentawai merupakan patahan naik (Thrust/reverse fault) dengan arah barat laut – tenggara. Secara jelas jika dilihat dari jenis patahan, bahwa patahan yang diakibatkan gempabumi mentawai memenuhi syarat sebagai penggerak tsunami yaitu jenis patahan normal/turun ataupun reverse/naik.
37
Tabel 4.2. parameter focal dan Mw yang dihitung dengan inversi untuk gempa Mentawai 25 oktober 2010 Inversi
Nodal plane-1
Nodal plane-2
(strike/dip/rake)
(Strike/dip/rake)
W-phase
317,5 / 4,6 / 91,8
135,6 / 85,4 / 89,9
7,89
GCMT
319,0 / 7,0 / 98,0
131,0 / 83,0 / 89,0
7,80
Inversi W-phase
Mw
GCMT
Gambar 4.2. focal mechanism hasil Inversi dan GCMT
Gambar dalam lampiran 1 menunjukkan perbandingan antara waveform hasil observasi dengan waveform sintetis untuk seluruh stasiun yang digunakan dalam penelitian. Warna merah adalah waveform sintetis dan warna hitam adalah waveform hasil observasi. Tanda titik merah menunjukkan W-phase yang digunakan untuk menentukan inversi.
Nilai moment seismic M 0 dari gempa Mentawai dihasilkan sebesar 8,7 x
1027 dyne cm untuk inversi W-phase dan 6,66 x 1027 dyne cm untuk GCMT. Nilai
38
moment seismic ini menghasilkan magnitude moment (Mw) yang tidak jauh berbeda antara keduanya sebagaimana terlihat dalam tabel 4.2 di atas yaitu M w inversi W-phase , dan M w
7,89 SR untuk
7,80 SR dalam katalog hasil analisa GCMT.
Dengan melihat dari proses penentuan Mw, dimana Mw (GCMT) menggunakan surface wave (gelombang permukaan, periode 50-150 sec) sebagai acuan penentuannya, dimana gelombang ini tiba sekitar 25-30 menit setelah waktu kejadian gempa (origin time).
Sedangkan Mw (W-phase) ditentukan dengan menggunakan W phase yang
merupakan gelombang very long periode (200-1000 sec), dengan waktu tiba sekitar 20 menit setelah waktu kejadian gempa. Dengan hasil yang relatif sama, akan tetapi kecepatan penentuan magnitude moment dengan W phase lebih cepat dibanding penentuan yang dilakukan oleh GCMT.
Untuk simulasi tsunami, dilakukan penghitungan parameter patahan dan juga deformasi dasar laut berdasarkan persamaan 5 (Geller,1979). Dengan menggunakan microsoft exel sederhana, didapatkan hasil dari perhitungan tersebut yang tercantum dalam table 4.3.
Tabel 4.3. hasil penghitungan parameter patahan dan deformasi dasar laut
Panjang (km)
inversi
106,217
Lebar (km)
53,11
Strike
Dip
Rake
(0)
(0)
4,6
91,8
0
( ) 317,5
Slip (m)
5,14
Lintang
Bujur
(0)
(0)
-3,61
99,93
Depth (km)
10
Hasil penghitungan parameter patahan dan deformasi dasar laut inilah yang digunakan sebagai input untuk pemodelan patahan gempa bumi Mentawai 25 Oktober 2010. Hasil pemodelan patahan dan deformasi dasar laut bisa dilihat pada gambar 4.3.
39
Gambar 4.3. pemodelan patahan gempabumi Mentawai 25 oktober 2010
Untuk hasil pemodelan tsunami dengan aplikasi TUNAMI-N2 yang telah dijalankan, didapatkan perkiraan waktu tiba gelombang dan tinggi gelombang di titik-titik yang dianggap sebagai tide gauge (gambar 3.4). Pemodelan tsunami yang telah dijalankan menghasilkan grafik tinggi gelombang terhadap waktu, terlihat dalam gambar 4.6. Untuk lebih jelasnya, gambaran waktu tiba gelombang dan tinggi gelombang tsunami dapat dilihat dalam gambar 4.4 dan gambar 4.5.
40
Padang
70 66
Seblat Teluk Dalam
48
Enggano
35 26
Sipora Pagai utara
16
Sibigau
11
Sibaru-baru
10 0
20
40
60
80
Wa k t u T iba G e lo m ba ng T s una m i ( m e nit )
Gambar 4.4. Grafik Waktu tiba Gelombang Tsunami di titik observasi
Gambar 4.5. Grafik Tinggi Gelombang Tsunami Maksimum
41
Gambar 4.6. Grafik Tinggi Gelombang terhadap Waktu
Dari grafik terlihat bahwa waktu tiba gelombang tsunami yang paling cepat di daerah Sibaru-baru, yaitu sekitar 10 menit setelah gempa bumi, dan daerah yang terakhir terkena efek gelombang tsunami yaitu daerah Padang sekitar 70 menit setelah gempa bumi. Hal ini karena Sibaru-baru adalah wilayah terdekat dengan sumber gempa bumi, dan Padang berada di balik pulau, sehingga pergerakan air laut terpecah dan tertahan oleh pulau.
Untuk tide gauge sebenarnya yang dapat di akses datanya, hanyalah stasiun Padang, sehingga hasil simulasi yang didapatkan dibandingkan dengan catatan sebenarnya saat terjadi tsunami. Dalam penelitian ini, digunakan catatan tide gauge WMO (World Meteorogical Organisation) yang terpasang di Padang. Hasil record tsunami di Padang terlihat dalam gambar 4.7.
42
Gambar 4.7. hasil observasi tide gauge di pantai Padang Dari hasil observasi lapangan yaitu catatan gelombang tsunami di tide gauge Padang, ternyata tinggi gelombang maksimum di pantai Padang setinggi 0,46 meter. Dan hasil simulasi tsunami yang didapatkan dalam penelitian ini, mendapatkan nilai maksimum untuk Padang sekitar 0,3 meter. Berbeda 0.1 meter, antara hasil observasi di lapangan dengan hasil simulasi.
43
BAB V
KESIMPULAN DAN SARAN
5.1. Kesimpulan
Sesuai dengan hasil analisis yang telah dilakukan, penulis mencoba untuk menyimpulkan hasil penelitian sebagai berikut :
1. Hasil reanalisis gempabumi Mentawai dengan menggunakan deconvolusi dan inversi W-phase menghasilkan parameter gempa yang hampir sama dengan parameter gempabumi yang di release oleh Global CMT yaitu magnitude moment sebesar Mw = 7,8 SR untuk GCMT dan Mw = 7,89 SR untuk inversi Wphase. Metode inversi W-phase dapat digunakan untuk update peringatan tsunami yang telah di keluarkan BMKG, mengingat datangnya gelombang (W-phase) lebih cepat daripada gelombang permukaan (surface wave). 2. Gempa Mentawai mengakibatkan patahan dan deformasi dasar laut sebesar: Panjang 106,217 kilometer, lebar 53,11 kilometer dan slip 5.14 meter dengan Strike 317,5 0 , Dip 4,6 0 , dan Rake 91.80 . 3.
Hasil simulasi tsunami dengan TUNAMI-N2 dapat diprediksi waktu datangnya gelombang tsunami menghantam pantai yaitu Sibaru-baru 10 menit setelah gempa, Sibigau 11 menit, Pagai Utara 16 menit, Sipora 26 menit, Enggano 35 menit, Teluk Dalam 48 menit, Seblat 66 menit, dan Padang 70 menit. Ketinggian gelombang maksimum masing-masing tide gauge terdiri dari Sibaru 1,2 meter, Sibigau 1,3 meter, Pagai Utara 1 meter, Sipora 0,6 meter, Enggano 0,15 meter, Teluk Dalam 0,06 meter, Seblat 1 meter, dan Padang 0,3 meter.
44
5.2. Saran
1. Untuk memperoleh hasil yang maksimal, perlu juga dilakukan penelitian untuk gempa-gempa yang lain, sehingga dapat diketahui ketepatan metode ini. 2. Agar menggunakan data bathymetry yang lebih lengkap untuk memperbaiki hasil simulasi tsunami. 3. Kepada BMKG, metode ini dapat dipertimbangkan untuk meng-update informasi peringatan dini tsunami yang diberikan kepada masyarakat.
45
DAFTAR PUSTAKA
Kanamori.H and Rivera.L, - , Aplication of the W-phase Source Inversion Method to Regional Tsunami Warnaing, Journal
Harahap. Darwin, 1999, Pendahuluan Geofisika, BPLMG, Jakarta
Borman.Peter, 2002, New Manual of Seismological Observatory Practice, GFZ,Germany
Ibrahim. Gunawan dan Subardjo, 2003, Pengetahuan Seismologi, BMG, Jakarta
Stein.Seth and Wysession. Michael, 2005, An Introduction to Seismology, Earthquakes, and Earth Structure, Blackwell Publishing, USA
Imamura.F, Cevdet Yalciner.A, Ozyurt.G, 2006, Tsunami Modelling Manual,
Kanamori.H and Rivera.L, 2008, Source Inversion of W phase: Speeding up Seismic Tsunami Warning, Geophys. J. Int
Handayani.Tri, 2009, W Phase Analysis for Tsunami Warning, Master Paper, TsukubaJapan
46
LAMPIRAN I PERBANDINGAN WAVEFORM OBSERVASI DAN SINTETIS
47
48
perbandingan waveform observasi (warna hitam) dan waveform sintetis (warna merah). Dua titik merah pada trace mengindikasikan akhir titik W-phase yang di inverse.
49
LAMPIRAN III OUTPUT HASIL INVERSI
50
LAMPIRAN IV PERBANDINGAN HASIL ANALISA DARI BERBAGAI INSTITUSI DUNIA
JMA
: JEPANG
EMSC
: EROPA
USGS
: AMERIKA
BMKG
: INDONESIA
JATWC
: AUSTRALIA
GFZ
: JERMAN
51
LAMPIRAN V HASIL ANALISA BMKG DENGAN SISTEM SEISCOMP3
LOKASI GEMPABUMI Hari/ Tanggal : Senin, 25 Oktober 2010 Pukul
: 21:42:20 WIB,
Lokasi
: 3.61 LS – 99.93 BT, 30 km Barat Daya
Pagai Selatan, Mentawai - Sumatera Barat. Kedalaman
: 10 km
Kekuatan
: 7.2 SR.
52
53
LAMPIRAN II
HASIL SIMULASI TSUNAMI
gelombang makmimum
LAMPIRAN VI PETA SEISMISITAS INDONESIA (PERIODE 1973-2009)