ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly: 15, 23, 11, 20, 18, 32, 30, 24, 26, 17 Ověřte, zda doba dojezdu sanitky byla delší než vyhláškou požadovaných 17 minut na hladině významnosti 0,05. ……………………………………………………………………………………………………………………………………………………………..
Řešení 1 Zamyslíme-li se nad analyzovanou veličinou, dospějeme jednoznačně k závěru, že doba dojezdu musí být pravostranně vychýlená. Není tedy správné použít Z-test nebo t-test, protože náhodná veličina doby dojezdu sanitky nemá normální rozdělení. Obdobou jednovýběrového testu hypotézy o střední hodnotě je test znaménkový. Ten je vlastně binomickým testem, který předpokládá, že pravděpodobnost obou možných výsledků pozorování 𝐴 a 𝐵 (pod očekávanou hodnotou a nad očekávanou hodnotou) je stejná, tedy 𝑝(𝐴) = 𝑝(𝐵) = 0,5 Úlohu budeme řešit podle teorie. Máme náhodný výběr 15, 23, 11, 20, 18, 32, 30, 24, 26, 17 ze spojitého rozdělení s mediánem 𝑥̃ (není nutné medián počítat). Tento náhodný výběr má počet prvků 𝑛 = 10. Platí tedy 1 𝑃(𝑋𝑖 < 𝑥̃) = 𝑃(𝑋𝑖 > 𝑥̃) = , 𝑖 = 1, … , 𝑛 2 Chceme testovat hypotézu 𝐻0 : 𝑥̃ = 𝑥0 proti jednostranné alternativní hypotéze 𝐻1 : 𝑥̃ > 𝑥0 , kde 𝑥0 = 17 je vyhláškou daná hodnota. Utvoříme rozdíly 15 − 17, 23 − 17, 11 − 17, 20 − 17, 18 − 17, 32 − 17, 30 − 17, 24 − 17, 26 − 17, 17 − 17 Rozdíly vypočteme −2, +6, −6, +3, +1, +15, +13, +7, +9, 0 V tomto souboru rozdílů vynecháme nulové hodnoty a příslušně snížíme 𝑛. Dostaneme tak zkoumaný soubor 𝑌 a nyní je 𝑛 = 9. −2, +6, −6, +3, +1, +15, +13, +7, +9 Počet prvků zkoumaného souboru (v této situaci 9) nelze považovat za velké číslo, proto nemůžeme použít Moivrovu-Laplaceovu větu. Použijeme tedy znaménkový test exaktní (přesný). Předpokládáme-li platnost hypotézy 𝐻0 , pak pro počet rozdílů s kladným znaménkem je 1 𝑌~𝐵𝑖 (9, 𝑝 = ) 2 To znamená, že očekáváme, že zjištěná hodnota 𝑌 bude blízko své střední hodnoty 9⁄2. Pro zadanou hladinu významnosti testu 𝛼 = 0,05 nalezneme kritické hodnoty 𝑘1 a 𝑘2 v tabulce kritických hodnot pro znaménkový test přesný. V našem konkrétním případu dostáváme 𝛼 = 0,05, 𝑛 = 9, 𝑘1 = 1, 𝑘2 = 8 Protože náhodný jev 𝑌 nastal ve 2 případech (dvě kladná znaménka) a je tedy v intervalu (1, 8), nemůžeme podle teorie zamítnout nulovou hypotézu. Nepodařilo se tedy prokázat, že doba dojezdu z analyzovaných dat se statisticky významně liší od doby požadované vyhláškou. ∀𝑑∃𝑏
1
ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
Poznámka Tento příklad velmi dobře ukazuje na obecnou vlastnost neparametrických testů, kterou je skutečnost, že jsou k zjištění rozdílu méně citlivé. Síla neparametrických testů je obecně při stejném počtu pozorování menší, než je síla ekvivalentních testů parametrických (Z-test, t-test a podobně). Zvýšení síly testu dosáhneme zvýšením počtu pozorování. ……………………………………………………………………………………………………………………………………………………………..
∀𝑑∃𝑏
2
ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
Příklad 2 V tabulce jsou uvedena data doby řešení matematického příkladu skupinou 11 studentů před speciálním cvičením zaměřeným na daný typ úloh. V druhém řádku tabulky jsou doby potřebné k řešení obdobného příkladu po praktickém cvičení. Před cvičením 87, 61, 98, 90, 93, 74, 83, 72, 81, 75, 83 Po cvičení 50, 45, 79, 90, 88, 65, 52, 79, 84, 61, 52 Máme prokázat na hladině významnosti 0,05, že výsledky po cvičení jsou lepší než výsledky před cvičením. ……………………………………………………………………………………………………………………………………………………………..
Řešení 2 Z psychologie víme, že doby řešení úloh po cvičení orientovaném na určitý typ úloh mají levostranně sešikmené rozdělení a použití párového t-testu není tedy teoreticky správné. Proto k nalezení odpovědi na otázku použijeme znaménkový test. Máme tedy 𝑛 = 11 a sadu dvojic měření. Znaménkem plus označíme ty hodnoty, kdy se po cvičení doba k řešení příkladu zkrátila, znaménkem mínus ty případy, kdy naopak doba potřebná k řešení příkladu byla delší. Dostaneme situaci +37, +16, +19, 0, +5, +9, +31, −7, −3, +14, +31 Pokud je diference v dobách řešení nulová, jde o tzv. svázané hodnoty (ties) a o ně počet analyzovaných údajů snížíme (to nastalo v jednom případu). Dostaneme 𝑛 = 10 a hodnoty náhodného jevu 𝑋 +37, +16, +19, +5, +9, +31, −7, −3, +14, +31 Máme soubor hodnot, pro který musí platit 1 𝑃(𝑋𝑖 < 𝑥̃) = 𝑃(𝑋𝑖 > 𝑥̃) = , 𝑖 = 1, … ,10 2 Chceme testovat hypotézu 𝐻0 : 𝑥̃ = 0 (schopnost vypočítat úlohu tohoto type se nezlepšila) proti jednostranné alternativní hypotéze 𝐻1 : 𝑥̃ > 0 (schopnost vypočítat úlohu tohoto typu se zlepšila). Počet prvků zkoumaného souboru (v této situaci 10) nelze považovat za velké číslo, proto nemůžeme použít Moivrovu-Laplaceovu větu. Použijeme tedy znaménkový test exaktní (přesný). Předpokládáme-li platnost hypotézy 𝐻0 , pak pro počet rozdílů s kladným znaménkem je 1 𝑌~𝐵𝑖 (10, 𝑝 = ) 2 To znamená, že očekáváme, že zjištěná hodnota 𝑌 bude blízko své střední hodnoty 10⁄2. Pro zadanou hladinu významnosti testu 𝛼 = 0,05 nalezneme kritické hodnoty 𝑘1 a 𝑘2 v tabulce kritických hodnot pro znaménkový test přesný. V našem konkrétním případu dostáváme 𝛼 = 0,05, 𝑛 = 10, 𝑘1 = 1, 𝑘2 = 9 Protože náhodný jev 𝑌 nastal v 8 případech (osm kladných znaménka) a je tedy v intervalu (1, 9), nemůžeme podle teorie zamítnout nulovou hypotézu. Nepodařilo se tedy prokázat, že dané cvičení vede ke zkrácení doby řešení tohoto druhu příkladů. ……………………………………………………………………………………………………………………………………………………………..
∀𝑑∃𝑏
3
ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
Příklad 3 Je třeba otestovat, jestli léčebný preparát nemění složení krve (počet leukocytů). Preparát byl zkoušen na 10 osobách. Výsledky (dané poměrem leukocytů k jejich počtu dle normy) jsou uvedeny v tabulce. Testujte na hladině významnosti 0,05. Testování bylo provedeno na zdravých jedincích, kteří měli před testováním množství leukocytů odpovídající normě. Výsledky testování byly: 1,06, 1,03, 1,10, 1,00, 1,02, 1,08, 1,06, 1,03, 1,05, 1,09 ……………………………………………………………………………………………………………………………………………………………..
Řešení 3 O léčebném preparátu není známo, zda jeho užití má z hlediska počtu leukocytů nějaké známé rozdělení, či sešikmení. Proto použití t-testu není teoreticky správné. K nalezení odpovědi na otázku použijeme znaménkový test. Máme tedy 𝑛 = 10 a sadu měření. Znaménkem plus označíme ty hodnoty, kdy se po aplikaci preparátu množství leukocytů zvýšilo (v tabulce uvedená hodnota je vyšší než 1), znaménkem mínus označíme ty případy, kdy naopak množství leukocytů kleslo. Konkrétně si vypočteme hodnoty 𝑥𝑖 − 1. Dostaneme situaci +0,06, +0,03, +0,10, 0,00, +0,02, +0,08, +0,06, +0,03, +0,05, +0,09 Pokud je nějaká hodnota nulová, počet analyzovaných údajů o ni snížíme (to nastalo v jednom případu). Dostaneme 𝑛 = 9 a hodnoty náhodného jevu 𝑋 +0,06, +0,03, +0,10, +0,02, +0,08, +0,06, +0,03, +0,05, +0,09 Máme soubor hodnot, pro který musí platit 1 𝑃(𝑋𝑖 < 𝑥̃) = 𝑃(𝑋𝑖 > 𝑥̃) = , 𝑖 = 1, … ,10 2 Chceme testovat hypotézu 𝐻0 : 𝑥̃ = 0 (množství leukocytů zůstalo zachováno) proti jednostranné alternativní hypotéze 𝐻1 : 𝑥̃ ≠ 0 (množství leukocytů se po aplikaci preparátu změnilo). Počet prvků zkoumaného souboru (v této situaci 9) nelze považovat za velké číslo, proto nemůžeme použít Moivrovu-Laplaceovu větu. Použijeme tedy znaménkový test exaktní (přesný). Předpokládáme-li platnost hypotézy 𝐻0 , pak pro počet rozdílů s kladným znaménkem je 1 𝑌~𝐵𝑖 (9, 𝑝 = ) 2 To znamená, že očekáváme, že zjištěná hodnota 𝑌 bude blízko své střední hodnoty 9⁄2. Pro zadanou hladinu významnosti testu 𝛼 = 0,05 nalezneme kritické hodnoty 𝑘1 a 𝑘2 v tabulce kritických hodnot pro znaménkový test přesný oboustranný. V našem konkrétním případu dostáváme 𝛼 = 0,05, 𝑛 = 9, 𝑘1 = 1, 𝑘2 = 8 Protože náhodný jev 𝑌 nastal v 9 případech (devět kladných znaménka) a je tedy mimo interval (1, 8), můžeme podle teorie zamítnout nulovou hypotézu. Podařilo se tedy prokázat, že aplikace daného preparátu způsobí statisticky významnou změnu počtu leukocytů. ……………………………………………………………………………………………………………………………………………………………..
∀𝑑∃𝑏
4
ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
Příklad 4 Příklad 5.2 Jednou za semestr studenti pomocí bodů hodnotí přednášející. K dispozici jsou průměrné výsledky na jednoho studenta za dva roky pro deset náhodně vybraných přednášejících. Posuďte na hladině významnosti 0.05, zda přednášející získali v letošním roce od studentů stejný počet bodů jako v minulém roce. Body jsou uvedeny v tabulce. Body za minulý rok 2.5, 1.5, 3, 3, 1.5, 1.5, 2, 2, 1.5, 3 Body za letošní rok 2, 2, 2.5, 2.5, 2.5, 1, 1, 1.5, 1.5, 2 ……………………………………………………………………………………………………………………………………………………………..
Řešení 4 Nevíme nic o rozdělení sledované veličiny, kterou je rozdíl v hodnocení v letošním a minulém roce. Víme jen, že hodnocení bylo prováděno jako v české základní škole (1 nejlepší a 5 nejhorší). Z toho důvodu použití t-testu není tedy teoreticky správné. Proto k nalezení odpovědi na otázku použijeme znaménkový test. Máme tedy 𝑛 = 10 a sadu dvojic hodnocení. Znaménkem plus budou označeny ty hodnoty, kdy se po roce hodnocení zlepšilo, znaménkem mínus ty případy, kdy naopak po roce hodnocení zhoršilo. Nové hodnoty vypočteme tak, že od loňského hodnocení odečteme letošní. Dostaneme situaci +0.5, −0.5, +0.5, +0.5, −1, +0.5, +1, +0.5, 0, +1 Pokud je diference v hodnocení nulová, jde o tzv. svázané hodnoty (ties) a o ně počet analyzovaných údajů snížíme (to nastalo v jednom případu). Dostaneme 𝑛 = 9 a hodnoty náhodného jevu 𝑋 +0.5, −0.5, +0.5, +0.5, −1, +0.5, +1, +0.5, +1 Máme soubor hodnot, pro který musí platit 1 𝑃(𝑋𝑖 < 𝑥̃) = 𝑃(𝑋𝑖 > 𝑥̃) = , 𝑖 = 1, … ,9 2 Chceme testovat hypotézu 𝐻0 : 𝑥̃ = 0 (hodnocení se nezměnilo) proti oboustranné alternativní hypotéze 𝐻1 : 𝑥̃ ≠ 0 (hodnocení se změnilo). Počet prvků zkoumaného souboru (v této situaci 9) nelze považovat za velké číslo, proto nemůžeme použít Moivrovu-Laplaceovu větu. Použijeme tedy znaménkový test exaktní (přesný). Předpokládáme-li platnost hypotézy 𝐻0 , pak pro počet rozdílů s kladným znaménkem je 1 𝑌~𝐵𝑖 (9, 𝑝 = ) 2 To znamená, že očekáváme, že zjištěná hodnota 𝑌 bude blízko své střední hodnoty 9⁄2. Pro zadanou hladinu významnosti testu 𝛼 = 0,05 nalezneme kritické hodnoty 𝑘1 a 𝑘2 v tabulce kritických hodnot pro znaménkový test přesný. V našem konkrétním případu dostáváme 𝛼 = 0,05, 𝑛 = 9, 𝑘1 = 1, 𝑘2 = 8 Protože náhodný jev 𝑌 nastal v 7 případech (sedm kladných znaménka) a je tedy v intervalu (1, 8), nemůžeme podle teorie zamítnout nulovou hypotézu. Podařilo se tedy prokázat, že hodnocení pedagogů se po jednom roce statisticky významně nezměnilo. ……………………………………………………………………………………………………………………………………………………………..
∀𝑑∃𝑏
5
ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
Příklad 5 Prověřte účinnost nové tréninkové metody, neboli zda nová metoda je lepší než stará. Rozdíl maximálních výsledků skokanského družstva před zavedením nové metody a po třech měsících používání je dán tabulkou. číslo skokana 1 2 3 4 5 6 7 8
rozdíl výkonů [cm] +5 -10 +15 -1 +8 +21 +7 -6
číslo skokana 9 10 11 12 13 14 15 16
rozdíl výkonů [cm] +4 +12 -3 +7 +9 -2 +3 +7
……………………………………………………………………………………………………………………………………………………………..
Řešení 5a Máme 𝑛 = 16 případů. V rámci nich došlo 5 krát ke zhoršení výkonu a 11 krát ke zlepšení. V případě, že nová metoda není lepší, měl by být počet zlepšení a zhoršení stejný. Pokud je lepší, počet zlepšení (kladných znamének) by měl být vyšší. Formulujeme tedy nulovou hypotézu pro nezlepšení a jednostrannou alternativní hypotézu pro zlepšení takto 𝐻0 : 𝑥̃ = 0 (nedošlo ke zlepšení) a 𝐻1 : 𝑥̃ > 0 (došlo ke zlepšení). Počet zlepšení (kladných znamének) je zřetelně vyšší. Otázkou je, zda rozdíl mezi počtem zlepšení a zhoršení je významný na hladině významnosti 5%? Počet prvků zkoumaného souboru (v této situaci 16) nelze považovat za velké číslo, proto nemůžeme použít Moivrovu-Laplaceovu větu. Použijeme tedy znaménkový test exaktní (přesný). Předpokládáme-li platnost hypotézy 𝐻0 , pak pro počet rozdílů s kladným znaménkem je 1 𝑌~𝐵𝑖 (16, 𝑝 = ) 2 To znamená, že očekáváme, že zjištěná hodnota 𝑌 bude blízko své střední hodnoty 16⁄2. Pro zadanou hladinu významnosti testu 𝛼 = 0,05 nalezneme kritické hodnoty 𝑘1 a 𝑘2 v tabulce kritických hodnot pro znaménkový test přesný. V našem konkrétním případu dostáváme 𝛼 = 0,05, 𝑛 = 16, 𝑘1 = 4, 𝑘2 = 12 Protože náhodný jev 𝑌 nastal v 11 případech (jedenáct kladných znaménka) a je tedy v intervalu (4, 12), nemůžeme podle teorie zamítnout nulovou hypotézu. Nepodařilo se tedy prokázat, že nová tréninková metoda je statisticky účinnější, než metoda stará. ……………………………………………………………………………………………………………………………………………………………..
Řešení 5b Stejný problém budeme řešit ještě jednou. Tentokrát tak, že budeme ignorovat fakt, že 𝑛 = 16 není příliš velké číslo a k řešení použijeme znaménkový test asymptotický pro velké 𝑛. Stanovme si stejné hypotézy 𝐻0 : 𝑥̃ = 0 (nedošlo ke zlepšení) a 𝐻1 : 𝑥̃ > 0 (došlo ke zlepšení). Teorie praví, že podle Moivrovy-Laplaceovy věty pro velké 𝑛 platí 𝑌~𝑁(𝑛⁄2 , 𝑛⁄4). Lze tedy konstatovat, že při platnosti 𝐻0 je ∀𝑑∃𝑏
6
ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
𝑈=
𝑛 𝑌−2
2𝑌 − 𝑛
~𝑁(0,1) 𝑛 √𝑛 √ 4 Na hladině 𝛼 zamítáme hypotézu 𝐻0 : 𝑥̃ = 𝑥0 a přikloníme se k alternativní hypotéze 𝐻1 : 𝑥̃ ≠ 𝑥0 , pokud 𝛼 |𝑈| ≥ 𝛷−1 (1 − ) 2 Dosadíme do posledního výrazu a dostaneme 2 ∙ 11 − 16 0,05 ) | | ≥ 𝛷−1 (1 − 2 √16 Úpravou výrazu na levé straně a vyhledáním hodnoty pravé strany v tabulce kvantilů normovaného normálního rozdělení dostaneme 22 − 16 6 | | = | | = 1,5 ≥ 1,960 4 4 Nerovnost vpravo není pravdivá. Nemůžeme tedy zamítnout nulovou hypotézu. Ve výsledku můžeme konstatovat, že na dané hladině významnosti není statisticky významný rozdíl výsledků skokanů mezi starou a novou metodou. ……………………………………………………………………………………………………………………………………………………………..
∀𝑑∃𝑏
=
7
ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
Příklad 6 Házeli jsme dvěma hracími kostkami a) První 120-krát a získali následující výsledky 𝒙𝒊 𝑛𝑖
1 20
2 22
3 17
4 18
5 19
6 24
3 42
4 30
5 27
6 17
b) Druhou jsme házeli 180-krát a dostali jsme 𝒙𝒊 𝑛𝑖
1 28
2 36
Ověřte na hladině významnosti 0,05, zda jsou kostky falešné. ……………………………………………………………………………………………………………………………………………………………..
Řešení 6 Výsledky házení poctivou hrací kostkou mají rovnoměrné diskrétní rozdělení. Zda jsou kostky ze zadání falešné, budeme zjišťovat pomocí Pearsonova testu dobré shody. Princip testu spočívá v obou případech v tom, že pozorované (empirické, skutečné) četnosti v jednotlivých třídách se porovnávají s četnostmi očekávanými, stanovenými pro příslušné rozdělení pravděpodobnosti náhodné veličiny. Budeme testovat hypotézu 𝐻0 ∶ 𝑋~𝑅𝑜(6), že výsledky házení touto kostkou odpovídají rovnoměrnému diskrétnímu rozdělení.
Řešení a Sestavíme tabulku Třída 𝛺1 𝛺2 𝛺3 𝛺4 𝛺5 𝛺6 Součet
1 2 3 4 5 6 x
𝒏𝒋
𝒑𝒋
𝒏𝒑𝒋
20 22 17 18 19 24 120
0,166667 0,166667 0,166667 0,166667 0,166667 0,166667 1
20 20 20 20 20 20 120
𝟐
(𝒏𝒋 − 𝒏𝒑𝒋 ) 𝒏𝒑𝒋 0 0,2 0,45 0,2 0,05 0,8 1,7
První sloupec je pro identifikaci jednotlivých tříd. Druhý sloupec uvádí hozené hodnoty v příslušné třídě. Třetí sloupec je pro zadání četnosti výskytu výsledku v realizaci náhodného pokusu. Čtvrtý sloupec je teoretická četnost dle testovaného rozdělení (v tomto případě rovnoměrné diskrétní pro 6 hodnot). Pátý sloupec je součinem teoretické četnosti s celkovým počtem realizovaných pokusů. Poslední šestý sloupec je hodnotou Pearsonovy statistiky pro příslušnou třídu. Poslední řádek je určen pro součty (kontrolní a výsledné). Hodnota vpravo dole je realizací 𝑡 testové statistiky 6
(𝑛𝑗 − 𝑛𝑝𝑗 ) 𝑇=∑ 𝑛𝑝𝑗
2
𝑗=1
Konkrétně v našem případě máme ∀𝑑∃𝑏
8
ŘEŠENÉ PŘÍKLADY Z MV2
ČÁST 11
𝑡 = 1,7 Kritický obor 𝑊 pro Pearsonův test dobré shody na hladině významnosti 𝛼 = 0,05 je 𝑊 = {𝑡; 𝑡 > 𝜒 2 (𝑘 − 𝑚 − 1; 1 − 𝛼)} Zde 𝑘 = 6 je počet tříd, 𝑚 = 0 je počet neznámých parametrů. Potřebnou hodnotu vyhledáme v tabulkách. 𝑊 = {𝑡; 𝑡 > 𝜒 2 (6 − 0 − 1; 1 − 0,05)} = {𝑡; 𝑡 > 𝜒 2 (5; 0,95)} = {𝑡; 𝑡 > 11,07} Protože 𝑡 ∉ 𝑊, nelze na hladině významnosti 0,05 zamítnout hypotézu 𝐻0 ∶ 𝑋~𝑅𝑜(6). Můžeme tedy na hladině významnosti 0,05 konstatovat, že data nedávají dostatek argumentů pro závěr, že hrací kostka je falešná.
Řešení b Sestavíme tabulku Třída 𝛺1 𝛺2 𝛺3 𝛺4 𝛺5 𝛺6 Součet
1 2 3 4 5 6 x
𝒏𝒋
𝒑𝒋
𝒏𝒑𝒋
28 36 42 30 27 17 180
0,166667 0,166667 0,166667 0,166667 0,166667 0,166667 1
30 30 30 30 30 30 180
𝟐
(𝒏𝒋 − 𝒏𝒑𝒋 ) 𝒏𝒑𝒋 0,133333 1,2 4,8 0 0,3 5,633333 12,06667
První sloupec je pro identifikaci jednotlivých tříd. Druhý sloupec uvádí hozené hodnoty v příslušné třídě. Třetí sloupec je pro zadání četnosti výskytu výsledku v realizaci náhodného pokusu. Čtvrtý sloupec je teoretická četnost dle testovaného rozdělení (v tomto případě rovnoměrné diskrétní pro 6 hodnot). Pátý sloupec je součinem teoretické četnosti s celkovým počtem realizovaných pokusů. Poslední šestý sloupec je hodnotou Pearsonovy statistiky pro příslušnou třídu. Poslední řádek je určen pro součty (kontrolní a výsledné). Hodnota vpravo dole je realizací 𝑡 testové statistiky 6
(𝑛𝑗 − 𝑛𝑝𝑗 ) 𝑇=∑ 𝑛𝑝𝑗
2
𝑗=1
Konkrétně v našem případě máme 𝑡 = 12,06667 Kritický obor 𝑊 pro Pearsonův test dobré shody na hladině významnosti 𝛼 = 0,05 je 𝑊 = {𝑡; 𝑡 > 𝜒 2 (𝑘 − 𝑚 − 1; 1 − 𝛼)} Zde 𝑘 = 6 je počet tříd, 𝑚 = 0 je počet neznámých parametrů. Potřebnou hodnotu vyhledáme v tabulkách. 𝑊 = {𝑡; 𝑡 > 𝜒 2 (6 − 0 − 1; 1 − 0,05)} = {𝑡; 𝑡 > 𝜒 2 (5; 0,95)} = {𝑡; 𝑡 > 11,07} Protože 𝑡 ∈ 𝑊, zamítáme na hladině významnosti 0,05 hypotézu 𝐻0 ∶ 𝑋~𝑅𝑜(6). Můžeme tedy na hladině významnosti 0,05 konstatovat, že data dávají dostatek argumentů pro závěr, že hrací kostka je falešná. ……………………………………………………………………………………………………………………………………………………………..
∀𝑑∃𝑏
9