BAB 4
PENGUKURAN VARIASI Kompetensi Mampu menjelaskan dan menganalisis hal-hal yang berkaitan dengan pengukuran variasi
Indikator 1. Menjelaskan range 2. Menjelaskan range antar kuartil 3. Menjelaskan deviasi dan menganalisis rata-rata 4. Menjelaskan dan menganalisis standar deviasi
A. Pendahuluan Pengukuran variasi adalah suatu harga yang menunjukkan besar kecilnya
sekelompok
data
itu
bervariasi.
Variasi
adalah
besarnya
penyimpangan suatu nilai dari nilai sentralnya. Mengapa pengukuran variasi penting?
Untuk memperjelas gambaran tentang sekelompok data.
Pengukuran variasi digunakan untuk melengkapi perhitungan nilai sentralnya. Dua kelompok data mungkin memiliki rata-rata yang sama, tetapi berbeda dalam hal variabilitas nilai-nilai observasinya. Contoh: Sekelompok data memiliki rata-rata yang sama tetapi variasinya berbeda:
49
30 35 27 25 33
harga rata-rata: 30
40 15 12 70 13
harga rata-rata: 30
Pengukuran variasi yang akan dipelajari adalah: range, range antar kuartil, range semi antar kuartil, deviasi rata-rata, standar deviasi, varians, koefisien variasi dan standar score.
B. Range Range adalah jarak atau beda antar harga tertinggi dengan harga terendah dari sekelompok data. Semakin besar harga range semakin besar pula variasinya. Kelemahan range: range belum mampu menjelaskan bentuk distribusi angka dalam kelompok data tersebut sebab mungkin terjadi beberapa kelompok data memiliki range yang sama, namun variasinya berbeda, contoh: 20, 25, 26, 30, 35 range: 35 – 20 = 15 60, 62, 62, 63, 75 range: 75 – 60 = 15 20, 21, 21, 21, 35 range: 35 – 20 = 15
C. Range Antar Kuartil (RAK) RAK memberikan gambaran bahwa 50% (antara 25% – 75%) dari data terletak dalam interval antara kuartil pertama (K1) dengan kuartil ketiga (K3). Rumus RAK: RAK = K3 – K1
50
Contoh: K1 = 23, 75 dan K3 = 52, 25 maka Range Antar Kuartil adalah RAK = 52,25 – 23,75 = 28,5 Artinya bahwa 50% dari jumlah data tersebut akan terletak antara 23,75 dan 52,25 dengan range antar kuartil 28,5.
D. Range Semi Antar Kuartil Range Semi Antar Kuartil (RSAK) disebut juga dengan Deviasi Kuartil (DK). Besarnya Deviasi Kuartil sama dengan setengah dari RAK, sehingga RSAK atau DK dirumuskan:
DK =
K 3 − K1 2
E. Deviasi Rata-Rata Deviasi Rata-Rata (DR) adalah rata-rata dari harga mutlak semua penyimpangan suatu nilai terhadap mean groupnya. Harga simpangan atau deviasi dirumuskan:
x= X −X Keterangan: x = deviasi (simpangan) suatu data dari mean groupnya X = angka/data yang diketahui
X = mean kelompok data tersebut
51
Ada dua deviasi rata-rata: 1. Deviasi rata-rata untuk data yang tidak dikelompokkan Jika dalam penelitian diperoleh data X1, X2,… Xn dengan harga ratarata sama dengan X, maka deviasi rata-rata:
DR =
Σ x n
Keterangan:
x= X −X x = deviasi (simpangan) suatu data dari mean groupnya X = angka/data yang diketahui
X = mean kelompok data tersebut n = jumlah data DR = MD = Mean Deviation = deviasi rata-rata
Contoh: Tentukan deviasi rata-rata dari data nilai ujian Statistik I dari 10 mahasiswa FE berikut ini:
52
Tabel 4.1 Nilai Ujian Statistik I No
1
2
3
4
5
6
7
8
9
10
Nilai
90
75
82
60
63
70
60
65
75
70
Penyelesaian: Tabel 4.2 Perhitungan Deviasi Rata-rata Nilai Ujian Statistik No
∑X n
DR =
=
X
lxl
x=X −X
1.
90
19
19
2.
75
4
4
3.
82
11
11
4.
60
-11
11
5.
63
-8
8
6.
70
-1
1
7.
60
-11
11
8.
65
-6
6
9.
75
-4
4
10.
70
-1
1
∑
X =
Nilai (X)
71
710
76
710 = 71 10
Σx 76 = = 7 ,6 n 10
Jadi rata-rata nilai Statistik I 10 mahasiswa berdeviasi 7,6 dari rata-ratanya 71.
53
2. Deviasi rata-rata untuk data yang dikelompokkan Perhitungan deviasi rata-rata untuk data yang dikelompokkan menggunakan perumusan sebagai berikut:
DR =
Σf x n
Keterangan:
x= X −X x
= deviasi (simpangan) suatu data dari mean groupnya
X
= titik tengah
X = mean kelompok data tersebut f
= frekuensi masing-masing kelas
n
= Σf
Contoh: Tentukan deviasi rata-rata dari kelompok data berikut:
54
Tabel 4.3 Umur Karyawan PT Lady Valentine Umur
Jumlah Karyawan
17 – 19
20
20 – 22
39
23 – 25
102
26 – 28
28
29 – 31
11
Penyelesaian: Tabel 4.4 Perhitungan Deviasi Rata-rata Umur Karyawan PT Lady Valentine
Umur
f
X
fX
17 – 19
20
18
360
-5,57
5,57
20 – 22
39
21
819
-2,57
2,57 100,23
23 – 25
102 24
26 – 28
28
27
29 – 31
11
30
∑
200
X =
∑ fX n
=
X
2448 23,57
x=X −X
lxl
flxl 111,4
0,43
0,43
43,86
756
3,43
3,43
96,04
330
6,43
6,43
70,73
4713
422,26
4713 = 23,57 200
55
DR =
Σf x n
=
422 , 26 = 2 ,11 200
Jadi rata-rata umur 100 karyawan PT Lady Valentine bervariasi 2,11 tahun dari rata-ratanya 23,57 tahun. Kelemahan dari deviasi rata-rata adalah ia menggunakan nilai absolute atau mengabaikan tanda positif dan negative dari deviasi sehingga menyulitkan manipulasi matematis (Atmaja, 1997).
F. Standar Deviasi Standar deviasi adalah penyimpangan standar suatu nilai dari mean groupnya. Standar deviasi positif artinya penyimpangan di atas mean-nya, sedangkan standar deviasi negatif artinya penyimpangan di bawah meannya. Guna memperbaiki kekurangan standar deviasi, Karl Pearson membuat nilai deviasi ( x = X − X ) menjadi positif dengan cara dikuadratkan kemudian diakar. Perhitungan standar deviasi dibagi menjadi: 1. Standar deviasi untuk data yang tidak dikelompokkan Standar deviasi untuk data yang tidak dikelompokkan dapat dihitung dengan perumusan sebagai berikut:
Populasi:
σ =
Σx 2 N
56
Sampel : SD =
Σx 2 n−1
Keterangan:
x= X −X x = deviasi (simpangan) suatu data dari mean groupnya X = angka/data yang diketahui
X = mean kelompok data tersebut N
= banyak data
Jika jumlah data (n) relatif besar, katakanlah lebih besar dari 100, maka untuk mencari nilai standar deviasi dapat menggunakan perumusan yang untuk populasi. Tetapi apabila jumlah data (n) kecil, maka untuk mencari nilai standar deviasi dapat menggunakan perumusan yang untuk sample. Contoh: Data berikut merupakan pendapatan pedagang batik di Pasar Beringharjo: Tabel 4.5 Pendapatan Pedagang Batik Di Pasar Beringharjo Nama Pedagang
Pendapatan (Rp)
Parti
750.000
Siti
775.000
Tinah
800.000
Kanti
725.000
Purwanti
700.000
Berdasarkan data di atas tentukan nilai standar deviasi dari pendapatan pedagang batik di Pasar Beringharjo:
57
Penyelesaian: Tabel 4.6 Pendapatan Pedagang Batik Di Pasar Beringharjo
X =
∑X
SD =
n
No
Nilai (X)
X
1
750.000
750.000
2
x2
x=X −X
0
0
775.000
25,000
625,000,000
3
800.000
50,000
2,500,000,000
4
725.000
(25,000)
625,000,000
5
700.000
(50,000)
2,500,000,000
∑
3.750.000
=
6,250,000,000
3.750.000 = 750.000 5
Σx 2 = n −1
6 . 250 . 000 . 000 = 39 . 529 4
Jadi rata-rata pendapatan 5 pedagang batik di Pasar Beringharjo berdeviasi Rp39.529 dari rata-ratanya Rp750.000. Jika dikerjakan menggunakan SPSS, maka output yang dihasilkan yaitu: Statistics PENDPTAN N Mean Std. Deviation
Valid Missing
5 0 750000.00 39528.47
58
Analisis Nilai mean (rata-rata) pendapatan
pedagang batik di Pasar Beringharjo
sebesar Rp750.000 dan nilai standar deviasi Rp39.528,47.
2. Standar deviasi untuk data yang dikelompokkan Standar deviasi untuk data yang dikelompokkan dapat dihitung dengan perumusan sebagai berikut:
Populasi:
σ =
Sampel : SD =
Σ fx 2 N
Σ fx 2 n−1
x= X −X x
= deviasi (simpangan) suatu data dari mean groupnya
X
= titik tengah
X
= mean kelompok data tersebut
N
= banyak data
n
= Σf
Contoh: Data di bawah ini menunjukkan distribusi pendapatan per minggu karyawan di PT Dendro, dengan gaji minimum Rp220.000.
59
Tabel 4.7 Pendapatan Karyawan PT Dendro Gaji (000)
Jumlah Karyawan
220 - 234
8
235 - 249
13
250 - 264
10
265 - 279
18
280 - 294
10
295 - 309
10
310 - 324
16
Jumlah
85
Berdasarkan data tersebut: hitunglah standar deviasi. Penyelesaian: Tabel 4.8 Pendapatan Karyawan PT Dendro
x2
f x2
-48,18
2321,31
18.570,5
3.146
-33,18
1100,91 14.311,86
257
2.570
-18,18
330,51
3.305,12
18
272
4.896 275,18
-3,18
10,11
182,02
280 - 294
10
287
2.870
11,82
139,71
1.397,12
295 - 309
10
302
3.020
26,82
719,31
7.193,12
310 - 324
16
317
5.072
41,82
1748,91
27.982,6
∑
85
Gaji (000)
f
X
fX
220 - 234
8
227
1.816
235 - 249
13
242
250 - 264
10
265 - 279
x=X −X
X
23.390
72.942,35
60
X =
∑ fX
=
n
23.390 = 275,18 85
Σ fx 2 = n −1
SD =
72 . 942 , 35 = 29 , 47 85 − 1
Jadi rata-rata pendapatan 85 karyawan PT Dendro berdeviasi Rp29.470 dari rata-ratanya Rp275.180.
G. Variance Variance untuk data yang dikelompokkan maupun tidak merupakan pangkat dua (kuadrat) dari standar deviasinya. Lambangnya adalah SD2 atau S2. H. Koefisien variasi (V) Koefisien variasi merupakan rasio atau perbandingan antara standar deviasi dengan harga rata-ratanya yang biasanya dinyatakan dengan prosentase.
Semakin besar koefisien variasi, semakin besar pula variasi
datanya (datanya semakin tidak homogen).
V =
V
SD X
x100 %
= koefisien variasi
SD = standar deviasi
X = rata − rata
61
Contoh: Kualitas dari dua merk barang yang sejenis ditunjukkan oleh nilai-nilai berikut ini: Merk ABC: 20 15 10
17 18
Merk PQR: 12 13 25
25 18
Jika harga kedua merk barang tersebut relatif sama, manakah yang akan saudara beli? Penyelesaian: Jika perhitungan nilai rata-rata dan standar deviasi dilakukan menggunakan SPSS, maka diperoleh output sebagai berikut: Statistics MERKABC N
Valid Missing
Mean Std. Deviation
5 0 16.00 3.81
Statistics MERKPQR N Mean Std. Deviation
Valid Missing
5 0 18.60 6.27
Berdasarkan output di atas diperoleh nilai rata-rata dan standar deviasi: Merk ABC
Merk PQR
X = 16
X = 18,6
SD = 3,81
SD = 6,27
62
Sehingga koefisien variasinya:
V ABC =
SD 3,81 x100 % = x 100 = 23,81 % 16 X
V PQR =
6, 27 SD x100 % = x 100 = 33,71 % 18,6 X
Berdasarkan hasil perhitungan di atas dapat dikatakan bahwa koefisien variasi kualitas barang merk ABC lebih kecil daripada koefisien variasi kualitas barang merk PQR, sehingga dapat disimpulkan bahwa kualitas barang merk ABC lebih seragam daripada kualitas barang merk PQR. Jadi jika harga kedua barang tersebut relative sama sebaiknya membeli barang merk ABC.
I. Standar Score (Z) Standar score atau angka standar merupakan suatu alat untuk menilai besarnya
harga
suatu
variabel
(gejala)
terhadap
dinyatakan dengan satuan standar deviasi.
rata-ratanya
yang
Angka standar ini dapat
digunakan untuk menilai perubahan (kenaikan atau penurunan) suatu variabel (gejala) dari rata-ratanya. Semakin besar angka standar, semakin besar pula perubahan variabel tersebut.
Z =
X − X SD
Z = angka standar X = harga suatu variabel
63
X = rata − rata SD= standar deviasi Nilai Z akan negatif jika data variable tersebut mengalami penurunan dan Nilai Z akan positif jika data variable tersebut mengalami kenaikan.
J. Rangkuman Deviasi Rata-Rata (DR) adalah rata-rata dari harga mutlak semua penyimpangan suatu nilai terhadap mean groupnya. Standar deviasi adalah penyimpangan standar suatu nilai dari mean groupnya. Koefisien variasi merupakan rasio atau perbandingan antara standar deviasi dengan harga rata-ratanya yang biasanya dinyatakan dengan prosentase. Standar score atau angka standar merupakan suatu alat untuk menilai besarnya harga suatu variabel (gejala) terhadap rata-ratanya yang dinyatakan dengan satuan standar deviasi.
K. Latihan Soal 1. Data gaji karyawan PT Aura yaitu:
64
Tabel 4.9 Gaji Karyawan PT Dendro Gaji
Jumlah Karyawan
(Ribuan) 500 – 549
20
550 - 599
10
600 - 649
15
650 - 699
5
700 - 749
10
750 - 779
15
800 - 849
5
Berdasarkan data di atas hitunglah: a. Deviasi rata-rata. b. Standar deviasi. 2. Berikut ini adalah data nilai ujian statistik: Tabel 4.10 Nilai Ujian Statistik Nilai Ujian Statistik
Frekuensi
Kurang dari 30
0
Kurang dari 40
10
Kurang dari 50
15
Kurang dari 60
22
Kurang dari 70
35
Kurang dari 80
47
Kurang dari 90
60
65
Berdasarkan data di atas hitunglah: a. Deviasi rata-rata b. Deviasi standar
3. Data pendapatan pedagang kaki lima di Malioboro ditunjukkan table 4.11: Tabel 4.11 Pendapatan Pedagang Kaki Lima Di Malioboro Pendapatan (000)
Frekuensi
750 atau lebih
150
1.000 atau lebih
125
1.250 atau lebih
105
1.500 atau lebih
75
1.750 atau lebih
20
2.000 atau lebih
0
Berdasarkan data di atas hitunglah: a. Deviasi rata-rata b. Deviasi standar
4. Ada 2 kelompok belajar yang masing-masing terdiri dari 10 orang. Usia anggota kelompok adalah:
66
Tabel 4.12 Data Usia Masing-masing Kelompok
Kelompok I
Kelompok II
(Tahun)
(Tahun)
18
19
17
17
19
17
20
17
20
18
21
18
23
20
25
20
24
21
20
26
Berdasarkan data di atas, kelompok mana yang usia anggotanya lebih seragam berdasarkan: a. Deviasi rata-rata b. Deviasi standar c. Koefisien variasi
67
68