perpustakaan.uns.ac.id
digilib.uns.ac.id
PENGEMBANGAN MEDIA WEBSITE PEMBELAJARAN MATERI PROGRAM LINEAR UNTUK SISWA SEKOLAH MENENGAH ATAS Muhammad Win Afgani1, Darmawijoyo2, Purwoko, M.Si2
ABSTRAK
Penelitian ini bertujuan menghasilkan sebuah website dengan konten program linear. Responden penelitian ini adalah para siswa kelas XII SMA Negeri 1 Palembang. Media ini dikembangkan melalui empat tahapan, yaitu tahap analisis pendahuluan, tahap perancangan, tahap evaluasi, dan tahap revisi. Untuk melihat keefektifannya, peneliti melakukan uji pakar dan uji coba ke lapangan dengan indikator bagaimana motivasi, sikap, dan hasil belajar siswa. Hasil penelitian menunjukkan prototype media website yang ketiga merupakan disain yang efektif ketika digunakan pada saat pembelajaran dengan 71,79% siswa Termotivasi; 61,54% siswa mempunyai sikap Tertarik, dan hasil belajar siswa yang mencapai 51,28% masuk dalam kategori Baik Sekali, sehingga dapat disimpulkan bahwa website yang peneliti kembangkan efektif digunakan pada saat pembelajaran matematika.
Kata kunci : Pengembangan, Media, Website, Program Linear
PENDAHULUAN Berkembangnya ilmu dan teknologi telah membawa perubahan pada learning material atau materi pembelajaran. Pemilihan materi yang sesuai dengan media yang ditentukan merupakan langkah awal yang penting, disamping pemaparan yang mudah dicerna, serta memungkinkan peserta didik dapat mencapai tingkat penguasaan secara mandiri (Universitas Terbuka, 2006).
commit to user 1 2
Mahasiswa Program Studi Pendidikan Matematika PPS UNSRI Dosen Program Studi Pendidikan Matematika PPS UNSRI
47
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
Pembelajaran matematika dapat menjadi pengalaman yang menyenangkan bagi setiap siswa. Hal ini tergantung pada gurunya dalam menyampaikan matematika sebagai suatu aplikasi yang menarik (Edge, 2008). Furner, et al (2008) menyatakan bahwa salah satu strategi untuk mengajar matematika yang dapat mencapai seluruh siswa adalah dengan mengakses internet dan menggunakan software matematika. Internet dan software computer dapat digunakan sebagai alat pengajaran untuk mengeksplorasi, menyelidiki, menyelesaikan masalah, berinteraksi, merefleksi, bernalar, berkomunikasi, dan belajar banyak konsep yang sesuai kurikulum sekolah. Sejalan dengan diterapkan Kurikulum Tingkat Satuan Pendidikan (KTSP) dimana materi pelajaran yang disampaikan disesuaikan dengan kondisi peserta didik, maka peran guru sangat menentukan dalam proses pembelajaran (Riana, 2007) Saat ini, Depdiknas telah mengem- bangkan pembelajaran melalui internet. Untuk mendukung proses pembelajaran ini, Depdiknas membangun backbone Jejaring Pendidikan Nasional, atau populer dengan istilah Jardiknas. Sayangnya, konten yang tersedia belum memadai (Saragih, 2007). Dikarenakan hal tersebut, perlu dilakukannya suatu usaha untuk merancang materi pembelajaran khususnya pelajaran matematika. Agar materi tersebut menarik sehingga memotivasi peserta didik belajar mandiri, maka materi dikembangkan menggunakan teknologi informasi komunikasi dengan menempatkannya pada media website yang terkoneksi dengan internet yang mana manfaat media dapat diasosiasikan sebagai penarik perhatian dan membuat siswa tetap terjaga dan memperhatikan (Kemp & Dayton dalam Arsyad, 2003). Pada penelitian sebelumnya telah dilakukan suatu usaha mengembangkan media pembelajaran geometri yang menggunakan software Macromedia Flash MX 2004 dan Microsoft Powerpoint 2003 yang dilakukan oleh Utami (2007). Dari hasil penelitian tersebut dapat diketahui bahwa penggunaan media komputer dalam pembelajaran geometri dapat memotivasi dan meningkatkan hasil belajar siswa SMP. Selain itu, pada penelitian Developing A Learning Environment on Realistic Mathematics Education for Indonesian Student Teachers yang dilakukan oleh Zulkardi (2002) menunjukkan bahwa media website dapat membantu dan mempermudah mahasiswa pendidikan matematika dalam mempelajari pendekatan Pendidikan Matematika Realistis karena dapat diakses dimanapun dan kapanpun mereka inginkan. Pada peneltian selanjutnya, peneliti tertarik untuk mengembangkan materi pembelajaran matematika SMA kelas XII pokok bahasan program linear yang ditempatkan pada media website dengan memberikan animasi dan latihan interaktif menggunakan Software Macromedia Flash 8.0. Program linear dipilih sebagai materi yang akan disajikan pada media website dikarenakan pada website www.edukasi.net yang dikembangkan oleh Pustekkom dan http://media.diknas.go.id belum menyajikan materi tersebut dan karena materi ini banyak berhubungan dengan penjelasan secara grafik yang perlu digambarkan secara berulang-ulang. Agar pembelajaran pada materi ini terkait dengan kehidupan siswa, maka materi pembelajaran juga akan diberikan pendekatan kontekstual. Setelah peneliti mengadakan observasi informal ke SMA Negeri 1 Palembang, peneliti memilih siswa sekolah tersebut sebagai responden penelitian dikarenakan siswa pada sekolah tersebut mempunyai literasi komputer yang baik dan didukung fasilitas laboratorium komputer yang memadai. commit to user
48
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
Berdasarkan uraian diatas, maka peneliti mengambil judul ”Pengembangan Media Website Pembelajaran Materi Program Linear untuk Siswa Sekolah Menengah Atas”.
RUMUSAN MASALAH
Berdasarkan latar belakang diatas, maka rumusan masalah penelitian ini adalah : 1. Bagaimanakah mengembangkan dan menghasilkan media website pada materi program linear yang valid untuk pembelajaran mandiri ? 2. Bagaimanakah sikap siswa terhadap pembelajaran program linear dengan media website ? 3. Bagaimanakah motivasi siswa dalam mempelajari materi program linear secara mandiri dengan media website ? 4. Bagaimanakah hasil belajar siswa dalam pembelajaran program linear yang menggunakan media website ?
TUJUAN PENELITIAN
Dari permasalahan yang telah dirumuskan,maka penelitian ini bertujuan untuk : 1. Mengembangkan media website pada materi program linear sedemikian hingga siswa dapat belajar mandiri. 2. Menghasilkan media website pada materi program linear yang valid. 3. Mengetahui efektifitas media website pada materi program linear yang dilihat dari kualitas hasil belajar dan sikap siswa selama proses pembelajaran. 4. Mengetahui tingkat motivasi siswa belajar mandiri terhadap materi pembelajaran program linear dengan media website.
MANFAAT PENELITIAN
Hasil penelitian ini diharapkan dapat bermanfaat untuk : 1. Ilmu Pengetahuan dan Teknologi (IPTEK), sehingga dengan dikembangkannya materi pembelajaran matematika pada media website dapat memberikan kontribusi pada dunia pendidikan. 2. Proses pembelajaran, sehingga kegiatan belajar mengajar dapat menjadi menarik dan menyenangkan dengan mempelajari materi matematika pada media website. 3. Lembaga Pendidikan Tenaga Kependidikan (LPTK) yang diharapkan menggunakan informasi dari hasil ujicoba penelitian ini untuk mengembangkan commit to user media website pada materi matematika yang lainnya.
49
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
4. Sekolah, sehingga dapat memaksimalkan fungsi laboratorium komputer, khususnya komputer yang telah terhubung dengan internet dalam memfasilitasi siswa dalam belajar mandiri.
TINJAUAN PUSTAKA
Strategi pembelajaran berhubungan dengan cara menyampaikan materi pelajaran agar seseorang bisa belajar. Cara-cara yang dipilih harus direncanakan secara sistematis untuk mencapai hasil belajar yang optimal. Konsep strategi pembelajaran merupakan pijakan untuk diterapkan dalam mengembangkan media website dalam penelitian ini. Salah satu usaha nyata untuk meningkatkan hasil belajar adalah penggunaan strategi pembelajaran yang efektif. Dick & Carey (1978 : 158) menyatakan bahwa untuk mengetahui keefektifan dari materi pembelajaran diperlukan pengumpulan data dari para siswa yang menjadi sasaran populasi dan menggunakan informasi yang didapat untuk memperbaiki materi pembelajaran supaya lebih efektif lagi dari sebelumnya. Pembelajaran yang menggunakan media komputer sangat efektif jika dapat dirancang dan digunakan dalam proses pembelajaran yang terpadu. Penyampaian materi pelajaran berbentuk visual melalui teknologi komputer sangat penting, dengan syarat bahwa perancangan pembelajaran harus dapat merancang program secara terstruktur dan mudah dimengerti oleh para siswa, karena menurut Kemp & Dayton (dalam Arsyad, 2003 : 22), media mempunyai manfaat sebagai media yang dapat menarik perhatian, memberikan pengalaman kepada siswa untuk berinteraksi langsung sehingga memberikan sikap positif kepada siswa untuk belajar secara mandiri dengan guru sebagai fasilitator. Ada lima faktor yang perlu dipertimbangkan dalam pemilihan media yang akan anda gunakan untuk mengembangkan materi pembelajaran (Dick & Carey, 1978 : 128 – 129), yaitu : 1) Jenis pembelajaran, 2) Ketersediaan media, 3) Kemampuan designer, 4) Keluwesan (flexibility), Daya tahan (Durability), dan Kemudahan (convenience) materi dalam suatu media, dan 5) Efektifitas biaya. Dengan memperhatikan kelima faktor tersebut, maka materi program linear merupakan materi pembelajaran yang memerlukan pemahaman daerah himpunan penyelesaian dari suatu pertidaksamaan yang digambarkan dalam koordinat kartesius. Hal ini dapat dilakukan dengan menganimasikannya melalui media komputer. Pada penelitian ini, pembelajaran dilakukan secara mandiri oleh siswa dengan memberi kesempatan peserta didik untuk mencerna materi ajar dengan sedikit bantuan guru dimana materi ajarnya harus memenuhi kejelasan rumusan tujuan belajar, dikemas mengikuti alur desain pesan, merupakan sistem pembelajaran lengkap, dapat disampaikan melalui media, dikirim dengan cara yang terjangkau oleh peserta didik, dan disertai program tutorial. Karena pembelajaran menggunakan sistem elektronik, maka aktivitas pembelajaran menggunakan komputer yang terkoneksi internet dimana e-learning difungsikan sebagai substitusi dengan model kegiatan pembelajaran sebagian secara tatap muka dan sebagian lagi melalui internet atau disebut juga Web Centric Course (Haughey dalam Suyanto, 2005). Adapun commit to user manfaat E-learning, yakni mempermudah interaksi antara peserta didik dengan materi belajar. Software yang digunakan dalam penelitiana ini adalah Macromedia
50
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
Flash, karena merupakan salah satu software animasi yang berorientasi objek (OOP), mampu mendesain gambar berbasis vector, dan dapat dipergunakan secagai software pembuat situs WEB. Pengembangan media website pada penelitian ini diberikan pendekatan kontekstual sehingga akan meningkatkan pemahaman dan menumbuhkan sikap positif siswa terhadap pembelajaran matematika dengan standar kompetensi menyelesaikan masalah program linear dengan kompetensi dasar menyelesaikan sistem pertidaksamaan linear dua variabel, merancang model matematika dari masalah program linear, dan menyelesaikan model matematika dari masalah program linear dan penafsirannya. Untuk melihat apakah standar kompetensi tersebut tercapai, maka digunakanlah hasil belajar, sikap, dan motivasi siswa sebagai indikator dalam proses pembelajaran. Penelitian yang berkaitan dengan penggunaan komputer dalam pembelajaran matematika dan kontribusinya terhadap hasil belajar siswa dalam bidang studi matematika belum banyak dilakukan. Beberapa penelitian tersebut antara lain dilaporkan oleh Budiana (2003), Utami (2007), Zulkardi (2002), dan Said (2007). Hasil penelitiannya secara umum menyimpulkan bahwa pembelajaran matematika yang menggunakan media komputer sangat diperlukan karena dapat meningkatkan pemahaman terhadap materi pelajaran, meningkatkan prestasi belajar siswa, mengembangkan kemampuan literasi komputer siswa, dan memperbaiki sikap siswa dalam belajar matematika.
METODOLOGI PENELTIAN
Jenis penelitian ini adalah penelitian pengembangan dengan menggunakan teknik analisis data deskriptif kualitatif dengan variabelnya adalah media pembelajaran matematika yang dikembangkan pada website dengan pokok bahasan program linear yang meliputi isi (content) dan sistematika penyajiannya. Operasional penelitian ini, yakni pengembangan media pembelajaran matematika pada website adalah suatu kegiatan yang mengembangkan media pembelajaran matematika pokok bahasan program linear yang meliputi isi (content) dan sistematika penyajiannya menggunakan Macromedia Flash sebagai software pendukung pada website dimana untuk mengetahui keefektifan media tersebut dilakukan uji validasi, yang kemudian dilanjutkan uji lapangan (field test). Sebagai subjek dalam penelitian ini adalah media website pada materi program linear dengan responden para siswa kelas XII-IA 1 dan XII-IA 2 di SMA Negeri 1 Palembang. Prosedur penelitian meliputi aktivitas analisa pendahuluan, merancang, mengevaluasi dan merevisi sampai tujuan yang diinginkan (Akker, 1999). Pada tahap analisa pendahuluan, peneliti melakukan analisis materi pokok bahasan program linear untuk disesuaikan dengan kompetensi dasarnya, mengobservasi kondisi laboratorium sekolah yang dijadikan sebagai tempat penelitian, dan mempersiapkan prosedur kerjasama untuk mendukung terlaksananya penelitian ini. Pada tahap merancang, peneliti melakukan perancangan dan pengembangan materi pembelajaran pada media komputer berbasis website. Pada tahap evaluasi, peneliti commit to user melakukan pengujian terhadap media website dengan cara melakukan kegiatan pembelajaran di Laboratorium komputer. Kemudian, peneliti mengobservasi
51
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
kegiatan mereka dan siswa diberikan angket untuk mengetahui sikap mereka terhadap pembelajaran matematika yang menggunakan media tersebut.
Gambar 1. Diagram Penelitian Pengembangan Teknik pengumpulan dan analisis data pada penelitian ini berupa angket tertutup yang digunakan untuk mengukur sikap siswa dan dianalisis menggunakan skala linkert dengan penilaian sangat setuju, setuju, tidak punya pendapat (netral), tidak setuju, dan sangat tidak setuju. Angket pilihan ganda dan observasi untuk mengukur tingkat motivasi siswa dimana angket ini dianalisis perbutir pertanyaan, sedangkan observasi dianalisis dengan cara memberikan skor pada setiap deskriptor yang terlihat pada siswa serta data hasil belajar yang meliputi latihan soal, tugas pekerjaan rumah, dan tes yang masing-masing diberi bobot 20, 30, dan 50, lalu dibagi 100,kemudian dikategorikan menjadi baik sekali, baik, cukup, kurang, dan gagal dengan kriteria ketuntasan belajar adalah ≥ 75.
HASIL DAN PEMBAHASAN
Penelitian diawali dengan melakukan observasi ke SMA Negeri 1 Palembang secara informal untuk mengobservasi laboratorium komputer dan kecakapan siswa terhadap komputer, khususnya dalam mengakses internet. Pelaksanaan penelitian dimulai dari bulan Juli sampai November 2008. Siswa yang menjadi kelompok ujicoba pertama dalam penelitian ini adalah para siswa kelas XII-IA 1 yang berjumlah 37 orang dan yang menjadi kelompok ujicoba kedua adalah para siswa kelas XII-IA 2 sebanyak 39 orang. Dalam pengembangan media website, tahap analisis pendahuluan melakukan analisis materi pokok bahasan program linear untuk menyesuaikan dengan kompetensi dasarnya. Pada tahap perancangan terbagi dalam dua bagian, yaitu : tahap perancangan materi menggunakan kertas (paper-based) dan yang kedua menggunakan komputer (computer-based). Tahap paper-based dimulai dengan mensketsa materi program linearcommit pada to kertas user yang bertujuan untuk memperoleh gambaran tentang objek dan apa saja yang akan ditampilkan pada website, dan kemudian dilanjutkan dengan merancangnya menggunakan Macromedia Flash 8.0 52
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
yang diawali dengan perancangan tutorial materi dan di-upload ke hosting http://pages.google.com. Berikut hasil rancangan prototype 1 : 1 2 3 5 4 6
Gambar 2. Prototype 1 Halaman Web
Keterangan : 1) Alamat website yaitu : http://muhammad.win.afgani.googlepages.com 2) Judul halaman pada web : Program Linear 3) Hyperlink ke halaman web Latihan 4) Hyperlink untuk kembali ke halaman awal 5) Tombol menu materi yang berisi Persamaan Linear Dua Variabel (PLDV), Pertidaksamaan Linear Dua Variabel (PtLDV), Sistem Pertidaksamaan Linear Dua Variabel (SPtLDV), dan Program Linear. 6) Materi Program Linear yang bertipe SWF yang di-upload ke internet. Setelah media website program linear didisain dalam bentuk prototype 1, maka dilakukan uji validasi terhadap pakar (expert review). Setelah diketahui kekurangannya, dilakukanlah revisi sehingga menghasilkan prototype 2. Karena perubahan terjadi pada disain materi pada flashnya, maka peneliti hanya menampilkan tampilan materi pada flash. Berikut hasil rancangan protoype 2 : Terlihat, latar belakang lebih kabur (blur), sehingga teks dapat terlihat jelas. Pada prototype 2 juga diberikan latihan berbentuk LKS yang dirancang menggunakan input box. Setelah selesai mengerjakan latihan, komputer akan memberikan skor dan respon. Dengan memanfaatkan fasilitas pada web www.co.nr ,maka alamat web dibuat menjadi www.learningmath.co.nr, dan disediakannya buku tamu yang dibuat dengan memanfaatkan fasilitas pada www.a-free-guestbook.com. Gambar 3. Prototype 2commit to user Pada prototype 2 juga dilakukan Program Linear type SWF uji validasi terhadap pakar (expert
53
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
review) yang bertujuan untuk mengetahui apakah masih ada kekurangan pada media website sebelumnya serta dilakukan uji coba pada kelas XII-IA. Berdasarkan hasil observasi selama kegiatan pembelajaran diperoleh tingkat motivasi siswa kelas XIIIA 1 dalam belajar program linear secara mandiri dengan menggunakan media website, yaitu terjadi peningkatan 27,03% pada kategori Sangat Termotivasi dan 43,24% pada kategori Termotivasi. Untuk mendukung hasil observasi, maka pada akhir pertemuan diberikan angket motivasi yang bersifat terbuka. Adapun hasil angket motivasi, yaitu hanya 8,11% siswa yang pernah membuka website yang peneliti disain untuk belajar program linear di luar jam sekolah. Selain itu berdasarkan hasil angket mengenai sikap siswa kelas XII-IA 1 terhadap pembelajaran program linear menggunakan media website yang diberikan pada akhir pertemuan terdapat 5,41% siswa termasuk dalam kriteria Sangat Tertarik dan jika dilihat dari hasil belajar masih terdapat siswa yang hasil belajarnya tergolong dalam kategori gagal yaitu sebesar 2,70%. Berdasarkan saran-saran dari validator pada prototype 2 dan hasil uji coba di lapangan dilakukanlah revisi untuk menhasilkan prototype 3. Perubahan prototype 2 terjadi tidak hanya pada disain materi pada flashnya, tetapi juga pada webnya, yaitu memanfaatkan fasilitas dari website lain untuk mendukung performa web dari peneliti. Pada prototype 3 ditambahkan Chat Box dibuat dengan memanfaatkan fasilitas pada www.shoutmix.com, Survey Online dibuat dengan memanfaatkan fasilitas pada www.polldaddy.com, dan Evaluasi online dibuat dengan memanfaatkan fasilitas pada www.equizzer.com. Kemudian, prototype 3 dilakukan uji coba pada kelas XII-IA 2. Berdasarkan hasil observasi, terjadi peningkatan 20,51% pada kategori Sangat Termotivasi. Berikut diagram batangnya : Tingkat Motivasi Siswa Kelas XII-IA 2 SMA Negeri 1 Palembang 80,00% 70,00% 60,00% 50,00% 40,00% 30,00% 20,00% 10,00% 0,00%
Pertemuan Ke-1 Pertemuan Ke-2
Sangat Termotivasi Cukup Kurang Tidak Termotivasi Termotivasi Termotivasi Termotivasi Kategori
Gambar 4. Diagram Batang Tingkat Motivasi Siswa Kelas XII-IA 2
Dari hasil observasi per deskriptornya, deskriptor kedua sampai ketujuh terjadi peningkatan presentase. Sedangkan deskriptor kedelapan sampai kesepuluh terjadi penurunan presentase. Berikut diagram garis hasil observasi motivasi siswa kelas XII-IA 2 (n = 39) untuk tiap deskriptor : commit to user
54
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
Hasil Observasi Motivasi Siswa Kelas XII-IA 2 SMA Negeri 1 Palembang 120,00% 100,00% 80,00% Pertemuan Ke-1
60,00%
Pertemuan Ke-2
40,00% 20,00% 0,00% 1
2
3
4
5
6
7
8
9
10
Deskriptor
Gambar 5. Diagram Garis Hasil Observasi Motivasi Siswa Kelas XII-IA 2 Keterangan : • D1 : Hadir • D3 : Mempelajari materi dengan tenang • D5 : Mencatat atau meng-copy materi • D7 : Bekerja sama mengerjakan tugas kelompok • D9 : Aktif dalam diskusi kelompok
• • • • •
D2 : Mengekspresikan perasaan gembira D4 : Mempelajari materi secara sistematis D6 : Berkosentrasi D8 : Bertanya bila memerlukan D10 : Membantu teman yang membutuhkan penjelasan
Pada akhir pertemuan diberikan angket motivasi yang bersifat terbuka. Pada pertanyaan ketika siswa tidak memahami materi yang ada pada website, maka 48,72% berusaha memahaminya sendiri dengan mengulangi lagi; 25,64% membaca buku teks; 25,64% bertanya kepada teman, dan 0% melewatinya. Ini menunjukkan siswa mempunyai motivasi untuk belajar, walaupun website ini hanya 7,69% siswa yang pernah membuka website untuk belajar program linear di luar jam sekolah. Berdasarkan hasil angket mengenai sikap siswa kelas XII-IA 2 7,69% siswa termasuk dalam kriteria Sangat Tertarik. Berikut diagram batang sikap siswa tersebut : Sikap Siswa Kelas XII-IA 2Terhadap Pembelajaran Program Linear Pada Media Website
70,00% 60,00% 50,00% 40,00% 30,00% 20,00% 10,00% 0,00%
Kriteria
Sangat Tertarik Cukup Kurang Tidak Tertarik Tertarik Tertarik Tertarik
commit to user Gambar 6. Diagram Batang Sikap Siswa Kelas XII-IA 2
55
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
Pada uji coba prototype ketiga, evaluasi yang diberikan sama seperti pada uji coba prototype kedua, tetapi pada pertemuan ketiga dilakukan ujian mengenai program linear sebanyak 5 soal pilihan ganda secara online dimana siswa tetap harus menuliskan langkah-langkah pengerjaannya pada kertas ujian yang peneliti sediakan. Soal ujian dibuat menjadi dua kelompok, yaitu A dan B. Setelah dianalisis, maka hasil belajar siswa kelas XII-IA 2 yang mempunyai kategori Sangat Baik 51,28%, dan kategori Baik 38,46%. Berikut diagram batang hasil belajar siswa kelas XII-IA 2 : Hasil Belajar Siswa Kelas XII-IA 2
60,00%
51,28%
50,00% 38,46%
40,00% 30,00%
Kategori
20,00% 7,69%
10,00%
2,56%
0,00% Baik Sekali
Baik
Cukup
Kurang
0,00% Gagal
Gambar 7. Diagram Batang Hasil Belajar Siswa Kelas XII-IA 2 Jika dilihat dari hasil belajar, tidak terdapat lagi siswa yang masuk dalam kategori gagal, dan ketuntasan belajar secara klasikal mencapai 74,36%. Ini menunjukkan prototype 3 potensial efektif dalam memotivasi, memperbaiki sikap siswa, dan meningkatkan hasil belajar. Oleh karena itu, Prototype 3 dianggap sebagai hasil akhir dari disain media website pada materi program linear. Disamping masih terdapatnya kelemahan dalam pengembangan media website yang materinya dirancang menggunakan Macromedia Flash, diantaranya perlunya waktu yang cukup lama dalam loading website, jika dihadapi pada bandwith yang tidak terlalu besar. Karena website dirancang dengan mengupload materi yang bertipe SWF sehingga sifatnya stand alone, artinya ketika user mengklik link lain yang tidak memunculkan new window, maka pada saat kembali lagi, user tidak dapat melihat lagi tampilan terakhir dari halaman yang sebelumnya, tetapi tampilan awal dari materi SWF tersebut. Dari hasil evaluasi pada soal yang diberikan, kesalahan siswa mulai terjadi ketika menentukan daerah penyelesaian sehingga dalam menentukan nilai minimum juga salah. Hal ini dikarenakan siswa belum memahami pernyataan ”biaya semurahmurahnya” dan siswa hanya dapat menentukan nilai minimum, jika pernyataannya jelas seperti ”Minimumkanlah”. Menurut pengamatan peneliti, selama kegiatan pembelajaran berlangsung tidak terjadi hambatan dalam pengelolaan kelas, hanya saja masih ada terjadi gangguan teknis dalam koneksi internet yang menyebabkan suasana pembelajaran sedikit terganggu. Ketertarikan mereka terlihat dari semangat mereka dalam mempelajari materi program linear pada website. Dengan demikian media website yang telah dikembangkan menurut Akker (1999) potensial efektif ketika digunakan dalam kegiatan pembelajaran. Hal ini dapat dilihat dari tingkat motivasi siswa, sikap siswa, commitdalam to userkategori baik, artinya media website dan hasil belajar siswa yang tergolong dapat dijadikan alternatif dalam pembelajaran matematika di SMA.
56
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
KESIMPULAN
Berdasarkan hasil penelitian, maka dapat disimpulkan sebagai berikut : 1. Proses pengembangan media website program linear dimulai dari analisis pendahuluan, merancang, mengevaluasi dan merevisi. Pada tahap analisis pendahuluan dilakukan analisis kurikulum mengenai materi apa saja yang menjadi prasyarat sebelum masuk ke materi inti. Pada tahap perancangan terlebih dahulu dilakukan perancangan diatas kertas (paper-based) dan kemudian didisain pada komputer (computer-based). Pada tahap evaluasi, hasil rancangan yang berupa prototype 1 divalidasi mengenai isi maupun tampilannya melalui pakar (expert review). Saran validator pada prototype 1 dijadikan dasar untuk mendisain prototype 2. Kemudian, prototype 2 dilakukan uji validasi dan uji coba ke subjek penelitian. Setelah diketahui masih ada kekurangan, maka dilakukan revisi kembali untuk menghasilkan prototype 3. Pada prototype 3 dilakukan uji coba ke subjek penelitian berikutnya. Berdasarkan proses pengembangan diperoleh bahwa prototype 3 merupakan media website yang efektif digunakan dalam kegiatan belajar mandiri. 2. Sikap siswa terhadap pembelajaran program linear dengan media website termasuk dalam kriteria Tertarik. Hal ini dapat dilihat dengan terjadi peningkatan persentase sikap siswa dari hasil uji coba prototype 2 (40,54%) dan prototype 3 (61,54%). 3. Tingkat motivasi siswa dalam mempelajari materi program linear secara mandiri dengan media website termasuk dalam kategori Termotivasi. Pada uji coba prototype 2 tingkat motivasi siswa hanya 54,06%. Sedangkan, pada uji coba prototype 3 tingkat motivasi siswa menjadi 71,79%. 4. Hasil belajar siswa dalam pembelajaran program linear yang menggunakan media website termasuk dalam kategori Sangat Baik dimana pada prototype 2 yang termasuk kategori Sangat Baik ada 52,63% dan masih ada 2,63% termasuk kategori gagal, sedangkan pada prototype 3 yang termasuk kategori Sangat baik 51,28% tanpa ada siswa yang termasuk kategori Gagal (0%).
SARAN Berdasarkan hasil penelitian dan kesimpulan di atas, maka dapat disarankan sebagai berikut: 1. Guru bidang studi matematika, diharapkan dapat memanfaatkan media website dalam pembelajaran. 2. Peneliti lain, untuk mengembangkan website tidak hanya pada materi program linear tetapi juga pada materi matematika yang lain. 3. Siswa, diharapkan dapat menggunakan website ini dalam pembelajaran baik di sekolah maupun di luar sekolah. 4. IPTEK, agar dapat mengembangkan suatu software yang dapat mempermudah commit to user guru maupun peneliti lain dapat mendisain materi ajarnya sendiri.
57
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
DAFTAR PUSTAKA
Abdullah, D. 2008. Potensi Teknologi informasi Dan Komunikasi Dalam Peningkatan Mutu Pembelajaran Di Kelas. (http://elearning.unimal.ac.id/courses/ MKK712NR/document/peningkatantik-guru.pdf?cidReq=MKK712NR diakses tanggal 08 Januari 2008). Akker, J. V d. 1999. Principle and Methods of Development Research. In J Van den Akker, R Branch, K Gustafson, N Nieveen and Tj Plomp (Eds), Design Methodology and Development Research. Dordrecht, Kluwer. Alami, F. 2005. Pembuatan Media Pembelajaran dengan Macromedia Flash MX 2004. Jurusan Teknik Sipil Universitas Lampung. (www.unila.ac.id/~ftsipil/Tutorial/Manual%20Flash%202004.pdf diakses tanggal 24 oktober 2007). Arikunto, S. 1991. Dasar-Dasar Evaluasi Pendidikan. Bumi Aksara, Jakarta. Arsyad, A. 2003. Media Pembelajaran. Raja Grafindo Persada, Jakarta. Budiana. 2003. Penggunaan Komputer Dalam Pembelajaran Remedial Matematika Untuk Meningkatkan Hasil Belajar Siswa. Tesis Program Studi Pendidikan Matematika Pascasarjana Universitas Pendidikan Indonesia, Bandung, Jawa Barat, Indonesia. (Tidak Dipublikasikan). Depdiknas. 2006a. Pengembangan Model Pembelajaran Yang Efektif. Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, (www.dikdasmen.org/files/KTSP/SMP/PENGEMMODEL%20PEMBEL% 20 YG%20EFEKTIF-SMP.doc diakses tanggal 28 Desember 2007). ________. 2006b. Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 22 Tahun 2006 tentang Standar isi untuk satuan pendidikan dasar dan menengah. Asa Mandiri, Jakarta.. ________. 2006c. Undang-Undang RI. No. 14 Tahun 2005 tentang Guru dan Dosen. Asa Mandiri, Jakarta. ________. 2006d. Pedoman Memilih dan Menyusun Bahan Ajar. Direktorat Jenderal Manajemen Pendidikan Dasar Dan Menengah, (www.dikdasmen.org/files /KTSP/Pedoman%20Memilih%20dan%20Meyusun%20 Bahan%20Ajar.doc. diakses tanggal 13 Februari 2008). ________. 2006e. Model Penilaian Kelas : Kurikulum Berbasis Kompetensi Sekolah Menengah Atas / Madrasah Aliyah. Pusat Kurikulum, Balitbang Depdiknas, Jakarta. (www.puskur.net/inc/mdl/083_Model_Penil_SMA.pdf diakses tanggal 07 April 2008) Dick, W and Carey, L. 1978. The Systematic Design of Instruction. Scott, Foresman commit to user and Company, United States of America.
58
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
Djaali dan Muljono, P. 2004. Pengukuran Dalam Bidang Pendidikan. Program Pascasarjana Univeristas Negeri Jakarta, Jakarta. Edge, T S. 2008. Radius, Diameter, Circumference, π, Geometer’s Sketchpad, and You !. (www.montanamath.org/TMME/TMMEv1n1a2.pdf diakses 06 Februari 2008). Ekowati T. 2006. Kontribusi Inteligensi dan Kemandirian Belajar Terhadap Hasil Belajar Pendidikan Kewarganegaraan dan Sejarah. Samarinda, Kalimantan Timur. (http://www.geocities.com/guruvalah diakses tanggal 01 Februari 2008). Furner, Yahya, and Duffy. 2008. 20 Ways To Teach Mathematics : Strategies to Reach All Students. (www.teachingstrategiesbyjen.com/Documents/Math.pdf diakses tanggal 06 Februari 2008). Hartono, A B. 2007. Menyertakan Lingkungan & Memanfaatkan Multimedia Agar Minat & Prestasi Belajar Matematika Meningkat. (http://p4tkmatematika.com/web /index.php?option=com_content&task=view&id=29&Itemid=61 diakses tanggal 13 Dessember 2007). Heinich, Molenda, Russell, and Smaldino. 1996. Instructional Media and Technologies for Learning. Prentice-Hall, Inc. Upper Saddle River, New Jersey. Kersaint, G. 2007. Toward Technology Integration in Mathematics Education : A Technology-Integration Course Planning Assignment. University of South Florida. (www.citejournal.org/articles/v7i4mathematics1.pdf diakses tanggal 08 Februari 2008). Kompas. 2007. Matematika Perlu Kontekstual. (http://www.duniaguru.Com/ index2.php?option=com_content&do_pdf=1&id=286 diakses tanggal 17 Desember 2007). Moore, K D. 2005. Effective Instructional Strategies From Theory to Practice. Sage Publication, Inc. Thousand Oaks, London, New Delhi. Nasoetion, N. 2007. Evaluasi Pembelajaran Matematika. Jakarta : Universitas Terbuka. Prabantoro, G dan Hidayat, A. 2007. Pemanfaatan Fasilitas Gratis Di Dunia Maya Untuk Pengembangan Media E-Learning Murah. Jakarta : Sekolah Tinggi Ilmu Ekonomi Indonesia. (http://www.geocities.com/gatot_prabantoro/pemanfaatan_ fasilitas_gratis.pdf diakses tanggal 18 Desember 2007). commit to user
59
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
Prawiradilaga, D S dan Siregar, E. 2004. Mozaik Teknologi Pendidikan. Kencana, Jakarta. Reisser , R A dan Dempsey, J V. 2002. Trends and Issues in Instructional Design and Technology. Pearson Education, Inc. Upper Saddle River, New Jersey. Riana, F. 2007. PROSES Belajar Mengajar Dengan Metode e-learning. (http://media.diknas.go.id/media/document/4372.pdf diakses tanggal 17 Desember 2007). Said, A. 2004. Efektifitas Computer Assisted Instructional (CAI) Terhadap Hasil Belajar Matematika Siswa Sekolah Menengah Umum Negeri. Jurnal Departemen Pendidikan Nasional. (http://www.depdiknas.go.id/jurnal/58/j58_04.pdf diakses tanggal 06 Desember 2007). Sappaile, B I. 2007. Pengaruh Metode Mengajar Dan Ragam Tes Terhadap Hasil Belajar Matematika dengan Mengontrol Sikap Siswa (Eksperimen Pada Siswa Kelas I SMU Negeri DKI Jakarta). Jurnal Departemen Pendidikan Nasional. (www.depdiknas.go.id/Jurnal/56/metode.htm diakses tanggal 16 Mei 2007). Saragih,
H P. 2007. Belajar Tak Lagi Membosankan. Sumber : www.wartaekonomi.com. (http://detiknas.in/donesia/2007/09/19/belajartak-lagi-membosankan/ diakses tanggal 03 Maret 2008).
Sobur, A. 2003. Psikologi Umum. Bandung, Pustaka Setia. SMART Technologies Inc. 2006. Interactive Whiteboards and Learning : Improving Student Learning Outcomes and Streamlining Lesson Planning. Canada. (http://www2.smarttech.com/NR/rdonlyres/2C729F6E-0A8D-42B8-9B32F90BE0A746D8/0/Int_Whiteboard_Research_Whitepaper_Update.pdf diakses tanggal 12 Maret 2008) Sudijono, A. 2005. Pengantar Evaluasi Pendidikan. RajaGrafindo Persada, Jakarta. Sugiyono. 2006. METODE Penelitian Kuantitatif, Kualitatif, dan R&D. Alfabeta, Bandung. Suyanto, A H. 2005. Mengenal E-Learning. (http://www.asep-hs.web.ugm.ac.id /Artikel/ELEARNING/MENGENAL%20E-LEARNING.pdf diakses tanggal 19 Desember 2007). Triluqman B S, H. 2007. E-learning Berbasis Web sebagai Bahan Belajar Mandiri. (http://heritl.blogspot.com/2007/07/e-learning-berbasis-web-sebagaibahan.html diakses tanggal 07 Maret 2008). commit to user Universitas Terbuka. 2006. Petunjuk Penulisan Bahan Ajar Non Cetak. . (www.staff.ut.ac.id/.../pdf%20ISO%20AKADEMIK/petunjuk%20kerja/aj0 60
JURNAL PENDIDIKAN MATEMATIKA, VOLUME 2. NO.2, JULI-DES 2008 perpustakaan.uns.ac.id digilib.uns.ac.id
4_pk01_bk_petunjuk_penulisan_banc.pdf 2008).
diakses tanggal 01 Februari
Utami, Apriliani. 2007. Penggunaan Media Komputer dalam Pembelajaran Matematika Subpokok Bahasan Geometri Kelas VII-5 di SMP Negeri 1 Indralaya. Makalah dalam Seminar Nasional Pendidikan Matematika 2007. Universitas Sriwijaya 4 September 2007. Woolfolk, Anita E. 1998. Educational Psychology. Ohio State University. A Viacom Company Yunan
Y, I. 2006. Komputer untuk Pembelajaran Matematika. (http://www.Suaramerdeka. com/harian/0604/03/ragam03.htm diakses tanggal 06 Desember 2007).
Zulkardi. 2002. Developing A Learning Environment on Realistic Mathematics Education for Indonesian Student Teachers. Disertasi. (http://projects.edte.utwente.nl/ cascade/imei/dissertation/disertasi.html. diakses tanggal 25 September 2008)
commit to user
61
World Academy of Science, Engineering and Technology
perpustakaan.uns.ac.id digilib.uns.ac.id International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering Vol:4, No:3, 2010
Prospective Mathematics Teachers’ Views about Using Flash Animations in Mathematics Lessons
International Science Index, Educational and Pedagogical Sciences Vol:4, No:3, 2010 waset.org/Publication/15846
Esra Bukova-Güzel, Berna Cantürk-Günhan Abstract—The purpose of the study is to determine secondary prospective mathematics teachers’ views related to using flash animations in mathematics lessons and to reveal how the sample presentations towards different mathematical concepts altered their views. This is a case study involving three secondary prospective mathematics teachers from a state university in Turkey. The data gathered from two semi-structural interviews. Findings revealed that these animations help understand mathematics meaningfully, relate mathematics and real world, visualization, and comprehend the importance of mathematics. The analysis of the data indicated that the sample presentations enhanced participants’ views about using flash animations in mathematics lessons. Keywords—Instructional technology, animations, prospective mathematics teachers.
I
I. INTRODUCTION
N Turkey, primary and secondary mathematics curriculums have been revised. This revision was based on the philosophy of constructivism which proposes that learners need to build their own understandings of new ideas. Constructivism also suggests that new knowledge is not passively received by the student through textbook activities and lectures, or by simply asking students to memorize rote facts. Students learn more effectively if they have experience applying ideas to new situations. From this perspective, using technology is of great important. Some researchers express that using technology in mathematics learning environment support constructivism [2, 3, 4, 5, 6]. They explain some reasons as follows; • providing different representations of mathematical concepts; • acquiring knowledge by making experiments; • relating real life with mathematical concepts; • developing or enhancing students’ conceptual knowledge; • supplying individual and cooperative studies to learners; • presenting concrete representations of abstract mathematical concepts. • constructing meaningful learning; • motivating; • becoming lessons more interesting;
• • • •
providing an active learning environment; improving learners’ creativity; having positive attitudes towards mathematics supplying visualization.
In light of these reasons, mathematics teachers should integrate technology into mathematics learning. If it is wanted that mathematics teachers use computer-based presentations in their lessons, they are supported and encouraged using computer-based presentations during their teacher training years. Hereby, prospective mathematics teachers should develop and use the computer-based presentations in their future lessons. There are many forms of computer-based presentations. Animations may also use as computer-based presentations. Animations can be used to provide information that aids in understanding dynamic processes and summarizing major concepts, and can help students to construct mental models with which to organize new knowledge [7]. From this explanation, it is seen that animations can affect students in positive way while constructing mathematical concepts if teachers use them effectively. Therefore, this study focuses on the prospective mathematics teachers’ views about animations which prepared by using Macromedia Flash. The purpose of this study is to determine the secondary prospective mathematics teachers’ views related to using Flash animations in mathematics lessons and to reveal how the sample presentations towards different mathematical concepts altered their views. II. THEORITICAL FRAMEWORK
Technology has tremendous potential for enhancing mathematics instruction; it can be used to strengthen student learning and to assist in developing mathematical concepts [8]. As the National Council of Teachers of Mathematics (NCTM) that is a public voice of mathematics education, supporting teachers to ensure equitable mathematics learning of the highest quality for all students through vision, leadership, professional development, and research [16] - highlights in its standards; technology can facilitate mathematical problem solving, developing deep understanding of mathematics, communication, reasoning, proof; moreover, technology can provide students with Esra Bukova-Güzel is with Dokuz Eylul University, Facuty of opportunities to explore different representations of Education, Department of Science and Mathematics Education, Izmir, mathematical ideas, support them in making connections Turkey. (corresponding author to provide phone: +90 232 420 48 82; eboth within and outside of mathematics, and allow student mail:
[email protected]). , Berna Cantürk-Günhan is with Dokuz Eylul University, Facuty of to focus on decision making, reflection [9]. Because of the Education, Department of Primary Education, Izmir, Turkey. technology’s commit to user these effects to the learning, teacher must use (corresponding author to provide phone: +90 232 420 48 82; e-mail: the computer-based presentations in their classroom.
[email protected]).
International Scholarly and Scientific Research & Innovation 4(3) 2010
210
scholar.waset.org/1999.10/15846
World Academy of Science, Engineering and Technology
perpustakaan.uns.ac.id digilib.uns.ac.id International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering Vol:4, No:3, 2010 In a recent study, it has been argued that most prospective teachers identified technology as important in mathematics education to assist in the development of concepts but were uncomfortable discussing the specific uses of technology for instruction due to lack of knowledge [10]. Many prospective teachers feel that they are not prepared to teach using technology after they graduate [11]. If teachers want to use and integrate technology to their learning environment, they will have a great role. Especially, new teachers are expected to enter the educational field with knowledge not only in their content areas, but of technology as well [12].
International Science Index, Educational and Pedagogical Sciences Vol:4, No:3, 2010 waset.org/Publication/15846
III. METHODS The case study design was used in this study involving three secondary prospective mathematics teachers at Dokuz Eylül University in Izmir, Turkey. This study was realized in one week as two sections during 2006-2007 academic years. In the first section some of the prepared flash animations were shown to the participants approximately in one hour and after that in the second sections discussions about these presentations were made by the participants in one hour. The data gathered from two semi-structural interviews containing pre-interview and post-interview. The study consisted of the three phases. The pre-interview was realized with three secondary prospective mathematics teachers in the beginning of the study. The purpose of this pre-interview was to determine participants’ views about using flash animations in constructing mathematical concepts. After that, the flash animations prepared by the researcher were introduced to the participants. When the all presentations were made it was discussed with the participants about them. Finally, the post-interview was carried out with the participants. The purpose of this postinterview was to determine how the participants’ views altered about using flash animations in constructing mathematical concepts after the presentations in other words, whether their thought changed or not.
about mathematical content knowledge, general pedagogical knowledge and pedagogical content knowledge and Y is the lowest achievement -but enough for graduating our mathematics education program- in terms of this knowledge. B. Instruments The qualitative method was used to collect the data in this study. The data gathered from two semi-structural interviews containing the pre-interview and the postinterview. In these interviews, two open-ended questions were asked to the participants and the interview guide was used in this stage. The open-ended questions were related on the following areas: “How the flash animations affect mathematics lessons and constructing mathematical concepts”, and “Can you use or want to use these kinds of tools in your future class-in professional life? Why?”. These questions were asked to the participants both the preinterview and the post-interview. All the interviews were recorded by the audio-recorder and analyzed later. C. Materials
In this study, the Flash animations were used as a material to examine prospective mathematics teachers’ views about Flash animations and whether their views changed when they confronted with the different examples and discussed about these materials or not. While the presentations about some mathematical concepts were developing the principles of constructivism were used. On the other words, these presentations were suitable for constructivist learning environment. All the presentations were constructed by taking into account the critical points of mathematical concepts in question. The Flash animations were mainly used to sample the real world applications of mathematical concepts in this study. These representations were important to integrate the real world with the mathematical concept. It also provided to construct mathematical knowledge, procedures, and concepts by using mathematical models. It was intended that A. Participants these materials should be interesting, emphasize the critical The purposeful sampling method was used when the points of the concepts, and allow meaningful learning. participants were selected. There were three participants in Nine presentations were presented about the flash this study from the Faculty of Education. Their ages ranged animations such as limit concept, function concept, from 20 to 22 years old. The participants were educated for induction, and factorization. Some of the examples were being secondary school mathematics teachers. They given in Figure 1, 2, 3, 4, 5, 6. For example, in Figure 1 and completed the courses about mathematics content Figure2, it was aimed to construct the function concept as a knowledge, general pedagogical knowledge, pedagogical machine exactly the loom as a machine, the fiber as an incontent knowledge, integration technology into mathematics put, and the carpet as an out-put. education, and school experience. Three participants Figure 3, 4, 5, 6 were constructed to show the critical showed differences about knowing and using computer and points of the limit concept such as approaching, software programs. The first participant named Y who has approximate value, domain of function (the existences of limited knowledge and experiences of the computer and the limits of a functions at a points which are not necessary software programs, the second participant named Z has to be an element of the domain especially in Figure, 4, 5, 6 more knowledge and experiences of the computer and with burning pizza house), the relationship between limit software programs, and the third participant named B who concept and the real world. It was given a scenario with the had much knowledge and experiences of the computer figure, 4, 5, and 6. This scenario was started this sentence programs and software. Additionally, no one knows Flash “by commit to taking user into account movement of the cars in the entire program, Z is the most successful students in our situation, can they meet? Why? Try to draw their movement mathematics education program in terms of mathematics on a graph. Fort this reason, you can think that the cars are content knowledge, general pedagogical knowledge, and two points moved on a curve and the road is a curve. Be pedagogical content knowledge. B has average achievement careful, they are point on a curve and you make these move
International Scholarly and Scientific Research & Innovation 4(3) 2010
211
scholar.waset.org/1999.10/15846
World Academy of Science, Engineering and Technology
perpustakaan.uns.ac.id digilib.uns.ac.id International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering Vol:4, No:3, 2010 on a curve. You can also think that the Math Pizza Restaurant is a point on the curve.” In Figure 4 the cars move to the same Math Pizza Restaurant, and so they meet. In Figure 5, the cars move to the different Math Pizza Restaurant, so they did not meet. Finally, in Figure 6 it was considered the restaurant as a point on a curve; it showed the point was not defined. The cars move to the same restaurant. However, when they arrived at the restaurant, the restaurant had been burned but still they could meet.
International Science Index, Educational and Pedagogical Sciences Vol:4, No:3, 2010 waset.org/Publication/15846
Fig. 4 Flash animations about limit concept
Fig.1 Flash animations about function concept
Fig. 5 Flash animations about limit concept
Fig. 2 Flash animations about function concept
Fig. 6 Flash animations about limit concept D. Procedure
Fig. 3 Flash animations about approaching
The researchers investigated the learning tools in literature. Then the presentations were organized by the researchers. These are flash animations, dynamic graphics, Geometry Sketchpad activities, video-clips, spreadsheets, and power-point representations, etc. In this article, only the case of flash animations was used. The application was carried out within one week. The commit to user were interviewed in the beginning of the study. participants The interviews, which form the majority of the material, are characterized by reflective conversations. The length of the interviews varied between 20 and 25 minutes. Before each
International Scholarly and Scientific Research & Innovation 4(3) 2010
212
scholar.waset.org/1999.10/15846
World Academy of Science, Engineering and Technology
perpustakaan.uns.ac.id digilib.uns.ac.id International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering Vol:4, No:3, 2010 interview took place, the participants were informed of the purpose of the interview. All of the interviews were taperecorded with the permission of the participants. E. Data Analysis The interviews were recorded with the audio-taped. The data were transcribed verbatim. Evaluation was guided by the ideas of qualitative content analysis [13]. It could try to evaluate the differences between the pre-interview and the post-interview. IV. RESULTS AND DISCUSSIONS In this section, three cases were presented by comparing in terms of the pre- and the post interviews and each other.
International Science Index, Educational and Pedagogical Sciences Vol:4, No:3, 2010 waset.org/Publication/15846
A. The Case of Y In the pre-interview Y said nearly nothing about the questions “How the flash animations affect mathematics lessons and constructing mathematical concepts”, “Can you use or want to use these kinds of tools in your future class? Why?”. Y stated that animations (not only flash animations) were important for mathematics learning and added that Y never saw flash animations in preparing any mathematical concept. Y also remarked that was not able to prepare computer based materials because of the lack of technology knowledge. Y said very general sentences like;
In the pre-interview, Z stated that flash animations provided many benefits to mathematics lessons. Z explained that flash animations could represent mathematical concepts more concretely by making visualization, relate real world and mathematical concepts, facilitate retention of the learning, provide students’ motivation, advance students’ mathematical thinking, enhance students’ reasoning skills. Z was able to prepare some computer based materials using software programs such as Geometer’ Sketchpad, MathCAD, and Derive etc. on the other hand, Z was not able to prepare flash animations because of limited knowledge and experiences about this program. In the post-interview-in addition to Z’s pre-interview speaking- Z emphasized that using flash animations in mathematics lessons could sophisticate students’ intuitive thinking, provide for students to think creatively, give an opportunity for exploring and discovering, occur active learning, associate among the mathematical concept, block to constitute misconceptions about the mathematical concepts, emphasize the critical points of the concept, become lessons more interesting. Furthermore, Z remarked the following sentences: Samples about flash animations affected me very much. They were interesting because they were very new applications for me. They could gain different viewpoint to students. These animations could draw students’ attention. When students realized that they could understand mathematical concepts they attended lessons more. By using flash animations mathematics lessons become suitable for constructivist principles. Teachers could make an effort for students to think intuitively about mathematical concepts. For example, instead of saying what the limit is teachers ask questions so they could direct students to reach the meaning of limit. However, it was very hard to perform these kinds of lessons in considering Turkey’s basic facilities such as lack of technical structure in class, lack of teachers’ knowledge about computer-even some teachers did not know how computer started-, teachers’ beliefs about computer and computer-based materials. Teachers’ content knowledge and pedagogical content knowledge are also important. I mean if teacher’s knowledge about limit concept is not adequate he or she will not design the animations very well. He or she imagines very carefully reflecting the critical points of limit. I want to use flash animations but I do not prepare for now. I think cooperation is made with mathematics teachers and computer programmers. Mathematics teachers use content knowledge, learners’ knowledge, pedagogical content knowledge and others use software programs’ knowledge.
Using flash animations contribute mathematics learning and saving of time in mathematics lessons.
In the post-interview, it was seen that Y’s views changed completely. When Y responded the questions Y looked very exciting and said that was very happy for seeing these presentations. It can be understood Y’s following speaking; I like all the presentations. I never see before this kind of application. I saw only power point presentations. It changed my point of view. Participating of this study became the good experience for me. Before then, I had no idea about flash animations.
In the pre-interview, Y could not say advantages of using flash animations in mathematics lessons but after the sample flash animations Y stated many advantages. Y pointed out that these kinds of flash animations can relate the real world to the mathematical concepts, emphasize the critical points of the concept, provide for students to think creatively, block to constitute misconceptions about the mathematical concepts, and give an opportunity for exploring and discovering phenomena. Additionally Y specified that they can also lead students to deeply thinking about mathematical concepts and make lesson interesting. And finally, after this explanation Y said the followings:
C. The Case of B
In the pre-interview, B explained that flash animations may represent abstract mathematical concepts in a concrete way, provide visualization, and also relate the real world to the mathematical concepts, supply for students to interpret I really want to use flash animations in my future and generalize about mathematical concepts. B represented mathematics lessons. However, my knowledge about that B’s knowledge and experiences about computer and preparing flash animations does not allow this. We must be software programs was very good but not in Flash educated in our mathematics education program aboutcommit to user programs. using computer and software programs like this. After the sample presentations, B stated that want to improve about this animations. He expressed these B. The Case of Z sentences:
International Scholarly and Scientific Research & Innovation 4(3) 2010
213
scholar.waset.org/1999.10/15846
World Academy of Science, Engineering and Technology
perpustakaan.uns.ac.id digilib.uns.ac.id International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering Vol:4, No:3, 2010 I like all the animations, especially, about limit concept because I have always trouble with the limit concept. Whoever watches the animations about the limit concept apprehend that the limit concept is an approaching, an approximate value, relationship between limit concept and the real world, and the limit of a function at a point which is not necessary to be an element of the domain exist. I should use flash animations in my professional life. Because of this, I will develop myself about this issue.
International Science Index, Educational and Pedagogical Sciences Vol:4, No:3, 2010 waset.org/Publication/15846
In the post-interview-in addition to B’s pre-interview speaking- B stated that using flash animations in mathematics lessons could advance students’ mathematical thinking, occur active learning, associate among the mathematical concept, emphasize the critical points of the concept. Besides, B expressed the following sentences: When flash animations like these can use students learn by doing, making, thinking and relating. Because they are motivated students they must be used especially in difficult mathematical concept, and concepts which students never relate real world. It is very essential for students to understand the importance of mathematics. For example, constructing the correlation between the limit concept and the real world can assist for learning the limit concept meaningfully. Generally, it is thought that technology can be used as a computational tool but these representations exactly show opposite view. On the other words, it is showed technology can be used to visualize, explore, relate, generalize and analyze mathematical concepts and ideas.
V. DISCUSSION AND IMPLICATIONS
mathematics meaningfully, relate mathematics and real world, visualization, and comprehend the importance of mathematics. It was taken into account that the transition from concrete examples to the abstract concept is the most demanding step in mathematics learning [15], using flash animations is seen as an important beginning. REFERENCES [1] [2] [3]
[4]
[5]
[6]
[7] [8]
J. M. Mills, “A theoretical framework for teaching statistics,” Teaching Statistics, vol. 25, no.2, pp. 56-58, March 2003. S. Durmuş, “Constructivist approaches to mathematics education,” Journal of Educational Sciences: Theory & Practice, vol. 1, no. 1, pp. 91-107, Jun. 2001. E. Bukova Güzel, and H. Alkan, “Sampling of constructivist learning with learning activities developed in mathematics teaching,” presented at the 6th National Science and Mathematics Education Conference, Istanbul, September, 9-11, 2004. Mcdonalds, . (2005, Dec. 03). Using multiple intelligence activities to introduce limits [Online]. Available: http://www.math.montana.edu/mathed/distance/capstone/mcdonald/ index.html. E. Bukova, “The development of new curriculum to overcome students’ difficulties in perceiving the concept of limit and constructing the relationship between the concept of limit and the other mathematical concepts,” doctoral thesis, Dept. Math. Edu., Dokuz Eylul Univ., Izmir, Turkey, 2006. G. Kersaint, “Toward technology integration in mathematics education: A technology-integration course planning assignment,” Contemporary Issues in Technology and Teacher Education, vol. 7, no. 4, 2007. M. J. Taylor, D. C. Pountney, and M. Baskett, “Using animation to support the teaching of computer game development techniques,” Computer & Education. vol. 50, no. 4, pp. 1258-1268, May 2008. T. Kurz, J. A. Middleton, and H. B. Yanik, “Preservice teachers’ conceptions of mathematics-based software,” presented at the International Group for the Psychology of Mathematics Education Conference PME-28, Bergin, Norway, July, 14-18, 2004. M. Niess, (2006, Jan. 08). Preparing teachers to teach mathematics with technology [Online]. Available: http://site.aace.org/pubs/foresite/MathematicsEd.pdf. K. B. Smith, and P. G. Shotsberger, (2006, Oct. 27). Web-based teacher education: Improving communication and professional knowledge in preservice and inservice teacher training [Online]. Available: http://www.eric.ed.gov/ERICDocs/data/ericdocs2sql/content_storage_ 01/0000019b/80/19/7c/a1.pdf R. D. Carlson, and J. S. Gooden, “Mentoring pre-service teachers for technology skills acquisition,” presented at the Society for Information Technology & Teacher Education International Conference, San Antonio, Feb. 28-March 4, 1999. C. Ayas, “An examination of the relationship between the integration of technology into social studies and constructivist pedagogies,” The Turkish Online Journal of Educational Technology, vol. 5, no. 1, pp. 14-25, Jan. 2006. P. Mayring, (2006, Oct. 12). Qualitative Content Analysis [Online]. Available: http://nbnresolving.de/urn:nbn:de:0114-fqs0002204. P. Mishra, and M. J. Koehler, “Technological Pedagogical Content Knowledge: A new framework for teacher knowledge,” Teachers College Record, vol. 108, no. 6, pp.1017-1054, 2006. M. E. Pesonen, (2003, Dec. 25). Experiments on using interactive web-based mathematics problem sets based on dynamic geometry applets [Online]. Available: http://www.joensuu.fi/mathematics/MathDistEdu/Sortavala2003/Artic lePesonen6thConferenceFinal.pdf The National Council of Teachers of Mathematics. Available: http://www.nctm.org/
This study reports the views of the mathematics students’ teachers concerning using flash animations in mathematics [9] lessons. It is thought that this study provides an important contribution to prior research and researches about integrating technology into mathematics education. All the [10] participants agreed with the statement that flash animations should be used in a mathematics classroom. The results from the three interviewed present a development of views of using flash animations in mathematics education. The pre-interviews and post-interviews of the participants were [11] examined and it has seen that important changes occurred on the participants’ thoughts, especially, in the case of Y. This study indicated the importance of integration [12] technology into mathematics learning with application of the flash animations. The prospective mathematics teachers believe that technology is important for mathematics [13] learning. All the participants touched on mathematics teacher’s training. In this perspective, mathematics teacher [14] education program should value of technology integration in mathematics learning. But it is not enough mathematics [15] content knowledge and pedagogical content knowledge is also taken into account. Consequently it is handled technological pedagogical content knowledge (TPCK) which framework builds on Shulman's idea of Pedagogical [16] Content Knowledge and is the complex interplay of three primary forms of knowledge: Content, Pedagogy, and commit to user Technology [14]. This study has shown many benefits of using flash animations. The prospective mathematics teachers indicated likely benefits in terms of their experiences. It was seen from their views that these animations help understand International Scholarly and Scientific Research & Innovation 4(3) 2010
214
scholar.waset.org/1999.10/15846
World Academy of Science, Engineering and Technology
perpustakaan.uns.ac.id digilib.uns.ac.id International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering Vol:4, No:3, 2010 Esra Bukova-Güzel received her Ph.D. in mathematics education in 2006 at Dokuz Eylül University, Institute of Educational Sciences. She was born in Izmir, 1979. Her major fields of study are subject matter knowledge and pedagogical content knowledge of mathematics teachers, constructivist learning approach in mathematics teacher education, and mathematical modeling.
International Science Index, Educational and Pedagogical Sciences Vol:4, No:3, 2010 waset.org/Publication/15846
Berna Cantürk-Günhan received her Ph.D. in mathematics education in 2006 at Dokuz Eylül University, Institute of Educational Sciences. She was born in Denizli, 1975. Her major fields of study are problem-based learning, geometry teaching, and technology integration in mathematics learning, teacher education, and drama in mathematics education
commit to user
International Scholarly and Scientific Research & Innovation 4(3) 2010
215
scholar.waset.org/1999.10/15846
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
Effectiveness of computer animation and geometrical instructional model on mathematics achievement and retention among junior secondary school students Gambari, A. I.1, Falode, C. O. & Adegbenro, D. A. Science Education Department Federal University of Technology, Minna For correspondence:
[email protected] Abstract: This study investigated the effectiveness of computer animation and geometry instructional model on mathematics achievement and retention on Junior Secondary School Students in Minna, Nigeria. It also examined the influence of gender on students’ achievement and retention. The research was a pre‐test post‐test experimental and control group design. 40 junior secondary school students were drawn from two secondary schools within Minna metropolis. Stratified random sampling technique was used to select 40 students (20 males and 20 females). The Geometry Achievement Test (GAT) was used for data collection. The reliability coefficient of 0.87 was obtained using Kuder‐Richardson (KR‐20). GAT was administered to students as pre‐test and post‐test. The students’ pre‐ test and post‐test scores were analyzed using t‐test statistics. The results indicated that the students taught geometry using computer animation performed significantly better in posttest and retention test than their counterparts taught geometry using instructional model and conventional method respectively. However, there was no significant difference reported in the post‐test performance scores of male and female students taught geometry using computer animation and instructional model respectively. These findings indicated that geometry concept in mathematics could be taught and learnt meaningfully through the use of computer animation. Keywords: Computer Animation, Instructional Models; Geometry; Gender; Retention
Introduction Mathematics has become the central intellectual discipline of all technological societies and it is indispensable in helping the individual to think more clearly about the values involved in this fast changing world (Abimbade & Udousor, 1997). Fapohunda (2002) sees mathematics as an essential tool in the formation of the educated man. Its application in other disciplines, mostly in the sciences is appreciative and without it, knowledge of the sciences often remains superficial. In Nigeria, mathematics is taught as a core subject to all students at the primary and secondary school levels in order to give a sound basis for scientific and reflective thinking, and prepare them for the next level of education (FRN, 2004). In spite of the importance and popularity of mathematics among Nigerian students, performance at junior secondary school level had been poor (Iwendi, 2012; NECO, 2012). Studies have shown that Nigerian students’ achievement in secondary school mathematics has been relatively low over the years (Agwagah, 2000; Obodo, 2004; Osemwinyen, 2008; WAEC, 2011; & Gimba, 2013). Several factors have been attributed to the poor performance in secondary school mathematics, among which are: poor methods of teaching (Harbour‐Peters, 2001), poor interest in mathematics (Badmus, 2002 & Obodo, 2004), gender difference (Agwagah, 2000) and lack of appropriate instructional materials for teaching mathematics at all levels of education in Nigeria (Gambari, 2010). commit tothe user Various attempts have been made towards improving low achievement and retention level of
127
perpustakaan.uns.ac.id 128
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
secondary school students in mathematics without any remarkable success (Gimba, 2006; Iwendi, 2009) Poor teaching method is one of the major factors influencing poor achievement and retention (Osemwinyen, 2009; Tolu, 2009). Mathematics has several branches and some of these branches are more difficult for teachers to teach and students to learn than others. The basic geometry at junior secondary level serves as a background for understanding all branches of geometry at higher level. Research findings have confirmed that geometry is one of the topics among the abstract and complex aspects of mathematics, which students find difficult to learn, and some teachers find difficult to teach without the use of instructional materials (Akinlade, 2004 & WAEC, 2011). Instructional materials such as mathematical models have potentials in the teaching of abstract concepts such as geometry (Gambari & Gana, 2005). Abimbade (1997) concluded that instructional models enhance visual imagery, stimulates learning and assists the teacher to properly convey the topic content to the learner, in order to achieve better understanding and performance. In the review of empirical studies on instructional models, Shih, Kuo and Liu (2012) developed and evaluated the instructional model and learning system and found that the model enhanced mathematical achievement. Aboderin (1997) found that the use of Pythagoras model for mathematics instruction had positive effect on students’ achievement. Joshua (2007) reported that using geometrical globe model for teaching mathematics at senior secondary schools enhanced students’ performance. Also, Gimba (2006) and Gambari (2010) in different studies reported that using 3‐ dimensional instructional model to supplement conventional teaching method produced higher achievement than the use of conventional instruction alone. Computer has been used in the developed countries to tackle most of the teaching and learning challenges since 1980s. It has potential for arousing students’ interest, motivation and achievement (Yusuf & Afolabi, 2010). It can influence students’ attitudes and interest towards mathematics which may positively affect their achievements and retention (Golden, McCrone, Walker & Rudd, 2006). Computer‐Assisted Instructional (CAI) package can be used to teach all subjects including sciences. According to Scott (2004) CAI can be used to provide opportunities for students to learn using drill and practice, tutorial, games and simulation activities, animation, and many others. Animation is processed as a part of the visual information. There were two versions of the illustration mode, static and animated. The static version consisted of a graphic depicting the scientific process with no visual movement to show the process in operation, while the animated version showed the process with visual movement to demonstrate the process in operation. Animations have been defined as images in motion (Dwyer & Dwyer, 2003). The capable features of Animation can enliven the learning experience. Animation which promotes flexibility of learning allowed a wider range of stimuli thus increased the student engagement in learning. Animation seems to attract learners’ attention and increase their motivation to learn. Many students get stimulated on a daily basis by computer animation then our instruction needs to contain computer animation (Martindale, 2007). Animation as an attention gaining strategy helps to reduce the processing demands in science, technology and mathematics (STM). As an elaboration strategy, it also facilitates encoding and retrieval processes by connecting information and providing alternative retrieval pathways (Gagne, 1985). Pavio’s (1986) dual coding theory identified two separate information processing systems which is a visual system that processes visual knowledge, and a verbal system for processing verbal knowledge. According to Paivio (1986) and Riber (1994) animation that combines visual and verbal knowledge may store information into long‐term memory thus facilitates encoding and retrieval process. commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
Previous studies revealed that animation had facilitated the learner encoding process than static visuals (Lin, 2001). Rieber, Boyce and Assad (1990) suggested that animation helped decrease the time to retrieve information from long‐term memory and then subsequently reconstruct it in short‐term memory. Kearsley (2002) studies show that students who learn from animation have greater self‐ esteem and motivation. His studies also show that students may retain information and sustain the learning process increases. Mayer (1994) in his study showed that computer based animations can be used to promote scientific understanding. Finding also revealed that students performed better on recall and problem solving test when both the verbal and visual systems were utilized. Similarly, Westhoff, Bergman and Carroll (2010) reported that computer animations accompanied with traditional teaching increases the performance of high school biology students. In another study, Karacop and Doymus (2013) found that the teaching of chemical bonding via the animation and jigsaw techniques was more effective than the traditional teaching method in increasing academic achievement. In mathematics, Aktas, Bulut and Yuksel (2011) reported that academic performance of the students increased by using computer animations and activities about patterns. Similarly, Wang, Vaughn, and Liu (2011) found that animation interactivity improved studentsʹ performance in statistics. However, Palmiter and Elkerton (1993) studied the use of animation to aid computer authoring tasks, in their findings, Animation initially assisted both accuracy and speed, but after one week had elapsed, the subjects exposed to animations actually had regressed behind the non‐ animation subjects. Gender issues have been linked with performance of students in academic tasks in several studies but without any definite conclusion. Some studies revealed that male students performed better than females in science (Njoku, 2000). In a similar report, WAEC (1996‐2011) chief examiners’ reports confirmed that boys performed better than girls in mathematics. However, Spencer (2004), Osemmwinyen (2009) and Iwendi, (2012) found no gender difference in the performance of male and female students in school mathematics. Contrary to these reports, Kuruma (2004) and Gimba (2006) found that female students performed better than male students while exposed to geometry, mensuration and 3‐dimensional mathematics instructional materials respectively. Retention which is the ability to reproduce the learnt concept when the need arises has been researched by many researchers. However, Osemmwinyen (2009) found that students’ interests and retention could be aroused and retained through the use of an appropriate instructional media like e‐ learning. Bottge, Rueda, Serlin, Hung, Kwon (2007) found that students with learning disabilities retained what they had learned in mathematics several weeks after instruction, when exposed to Enhanced Anchored Instruction (EAI). Generally, the relevance of geometry and subsequent difficulties experienced by students at junior secondary schools in Nigeria made a study on it pertinent. Moreover only few studies on computer‐ animation in mathematics and related areas at secondary education level were conducted in Nigeria. Especially, using computer animation with special features that enabled learners to visualize the 3D object, receive immediate feedback, self‐paced learning, positive reinforcements, principles of mastery learning, associate learning and step by step learning among others. On these bases, this study examined the effectiveness of computer animation package and geometrical instructional model on the performance of junior secondary school students in mathematics. Purpose of the Study This study investigated the effectiveness of computer animation package and geometry instructional model on the achievement and retention of junior secondary schools students in mathematics. Specifically, the study examined the:
commit to user
129
perpustakaan.uns.ac.id 130
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
(i) (ii)
effectiveness of computer animation package (CAP), geometry instructional models (GIM) and traditional teaching method (TTM) on students’ posttest and retention test, influence of gender on the achievement of students taught geometry with computer animation package and geometry instructional model respectively,
Research Hypotheses (i) There is no significant difference in the mean achievement scores of students exposed to geometry with CAP, GIM and TTM. (ii) There is no significant difference in the mean achievement scores of male and female students taught geometry with CAP. (iii) There is no significant difference in the mean achievement scores of male and female students taught geometry with GIM. (iv) There is no significant difference in the mean retention scores of geometry students taught with CAP, GIM and TTM. Methodology This study adopted a pretest, posttest and delayed posttest design. Three levels of independent variable (two treatments and a control), two levels of gender (male and female) were investigated on students’ achievements and retention in mathematics. Pretest was administered before the treatment and posttest, after four weeks of treatment, delayed posttest (retention test) was administered using Geometry Achievement Test (GAT). The sample for the study was made up of 60 students, 30 male and 30 female students from three public co‐educational junior secondary schools. The schools with common features (equivalent, composition, facilities, exposure) were sampled. The schools were randomly assigned to each of the experimental groups [computer animation package (CAP), geometric instructional model (GIM)] and control group (Traditional Teaching Method) (TTM). A stratified random sample of 60 students (10 males and 10 females) from each of the three schools was employed. Two treatments (CAP and GIM instruments) and one testing instrument (GAT) were employed for this study: Computer Animation Package (CAP) consists of six topics in geometry: Cube; Cuboid; Cylinder; Cone; Sphere & Hemisphere; and Pyramid. The necessity for researcher‐made computer package was based on the fact that the commercially produced computer‐animation packages are not common. Even, if they were available, they may not be directly relevant to the topic or objectives to be achieved in this study. As a result of this, developing a computer package for use by the researcher was inevitable. The CAP was written in “Macromedia Dreamweaver 8” as the overall platform. Macromedia Flash utilizes the script symbolic instructional code (language) and animation that accommodates the interactive instructional process. Other computer programme and applications that were also utilized during the development process were Microsoft Word and Macromedia Fireworks 8. Macromedia Flash 8 was used for texts and graphics, Macromedia Fireworks also used for specific texts, graphics, and for buttons while Macromedia Flash was used for the Animation. The package consists of Introduction to the Package, General Preamble on Solid Geometry, Students’ Registration, List of module as in 1,2,3,4,5 & 6 and Click to Continue (Next Button) & Click to go back (Previous Button). Each Module starts with objectives of the lesson. The interactivity features of CAP allowed students to navigate from one link to another. There are Home, Next, Back, click Animation, and Exit buttons in the contents and quiz pages.
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
Fig. 1: General Introduction to Geometry
Fig. 2: List of Module The production of the package was effected through a team of professionals and specialists including the programmer, computer operator, and the instructional designers (the researchers). ADDIE instructional development model was adapted in developing the package. This involves Analysis, Design, Development, Implementation and Evaluation stages of CAP.
Fig. 3: ADDIE Model
commit to user
131
perpustakaan.uns.ac.id 132
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
In the analysis stage, the instructional problem is clarified, the instructional goals and objectives are defined; the learning environment is identified; and a clear understanding of the “gaps” between the desired outcomes or behaviours and the learner’s existing knowledge and skills is identified. At Design stage, the instructional designer deals with the selection of an instructional approach, learning objectives, assessment instruments, exercises, content, subject matter analysis, lesson planning and media selection. The design stage is systematic and specific. The development stage is where the Instructional Designers create and assemble the content assets (materials, resources, technologies, tests, etc.) that were created in the design stage. At this stage, CAP was developed and integrated. It was reviewed and revised according to the feedback given. Evaluation stage was conducted in two stages, formative was carried out in each stage of the ADDIE process, while, the summative evaluation determines the adequacy of the distributed materials in achieving the course objectives and provides opportunities for feedback from the users. The CAP was validated by computer programmers and educational technology experts; subject content (mathematics) specialists; and finally field tested on sample representative similar to the students used for the final study. The corrected version of CAP with the geometry content was installed in the school computers. The computer presents information and displays animation to the learner on each of the units after which the students assessed themselves with objective questions at the end of each unit. The students could only proceed to the next unit, if they satisfactorily answered the questions. When a student fails a question, the computer package will give a remedial lesson on that particular concept or question until the student is able to master the concept, then he/she moves to the next unit. CAP displays each student scores and monitors his/her progress.
Fig. 4: Cube with Animation Display
commit to user Fig. 5: Cube with worked example and Animation Display
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
Fig. 6: Quiz Section The GIM was designed to provide visual information covering the same topics and content in CAP specifically for junior secondary class II curriculum. The GIM was constructed using plywood to carve out the shapes of various geometrical objects. It was a three dimensional objects. The lesson was structured in such a way that students were allowed to touch and feel the objects. The instructional contents were taught followed by questions and answers related to instructional content. The GIM was validated by experts from educational technology and mathematics to determine the appropriateness of the materials. Their suggestions were used to improve the models. Geometrical Achievement Test (GAT) was used in collecting data for this study. It consists of 40 multiple choice objective items with four options adopted from past examination of West African Examination Council (WAEC, May/June, 1988‐2011) and National Examination Council (NECO, June/July, 2000‐2011). The GAT was based on the contents of the CAP and GIM. Students were required to indicate their correct answers by ticking one of the letters (A ‐ D) that corresponds to the correct option in each item. GAT was administered to the experimental and control groups as pre‐test, posttest and again for the delayed posttest (retention test) after it had been reshuffled. On the scoring of the multiple‐choice items, ‘1’ mark was awarded for each correct answer and ‘0’ for each wrong answer. The scores were converted to percentage. The test items were validated by experts in mathematics education and tested for reliability using 20 randomly selected JSII students outside the study area but within the population. The test was administered once on the pilot samples. A reliability test using the Kudar‐Richardson (KR‐20) revealed a reliability coefficient of 0.82 which was considered adequate for the research study. Results Geometry Achievement Test (GAT) was used as a pre‐test for determining the academic levels of both experimental and control groups. Pre‐test data for the groups were analyzed using One‐way Analysis of Variance. The results of the analysis are presented in Table 1. Table 1: ANOVA results of experimental and control groups Sources of Sum of df Mean Square F‐value p‐value Variation Square Between groups Within Group Total
11.433 381.150 392.583
ns = not significant P>0.05
2 57 59
5.717 6.687
commit to user
0.855ns
0.431
133
perpustakaan.uns.ac.id 134
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
Table 1 shows one‐way ANOVA results of students taught geometry using geometry instructional model, computer animation package and traditional teaching method. From table 1, the results revealed that there was no significant difference in the mean achievement scores of students in the three groups (Fcal = 0.855; df = 59, p = 0.431). This indicates the three groups are academically equivalent before the experiment started. Hypothesis One: There is no significant difference in the achievement scores of students exposed to geometry with CAP, GIM and TTM. To test this hypothesis, one‐way ANOVA was employed as shown in Table 2A. Table 2A: ANOVA results of experimental groups and control group Sources of Sum of df Mean F‐Calculated p‐Value Variation Square Square Between groups 3348.933 2 1674.467 Within Group 1490.800 57 26.154 64.022* 0.000 Total 4839.733 59 *Significant at P< 0.05 Table 2A shows ANOVA results of the mean achievement scores of students in the experimental and control groups. The results revealed that there was significant difference in the mean achievement scores of students in the three groups (Fcal = 64.022, df = 59, p = 0.000). On this basis, hypothesis one is rejected. Therefore, the achievement scores of students exposed to CAP, GIM, and TTM instructional methods differed significantly. To determine the location of the significant difference between the three groups, Scheffe’s post‐hoc test was conducted on the data. The result is shown in Table 2B. Table 2B: Scheffe’s post‐hoc analysis of the groups means scores Groups Mean Group I Group II Group III Scores (CAP) (GIM) (TTM) Group I (CAP)
73.20
*0.000
Group II (GIM)
64.10
*0.000
Group III (TTM)
54.90
*0.000
*0.000 *0.000
*0.000
* The mean difference is significant at the 0.05 level. The data in Table 2B indicates that there was significant difference in the posttest mean scores of students exposed to CAP (X=73.33) and those exposed to GIM (X=64.10) in favour of experimental group I (CAP). It also indicates that significant difference exists in the posttest scores of students exposed to GIM (X = 64.10) and those exposed to TTM (54.90) in favour of experiment group II (GIM). Also, significant differences was established in the posttest scores of students exposed to CAP (X=73.20) and those exposed to TTM (X=54.90) in favour of CAP group. Hypothesis Two: There is no significant difference in the mean achievement scores of male and female students taught geometry with CAP. To test this hypothesis, t‐test statistic was employed and the result is presented in table 3. commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
Variable
Table 3: t‐test results on gender (experimental group I) Number of df Mean SD t – value sample (X)
Male Female
10 10
18
73.20 71.30
4.517 2.003
p‐value 0.240
1.216ns
ns = not significant P>0.05 Table 3 revealed that the mean achievement scores for male and female students taught geometry with CAP (Group I) are 73.20 and 71.80 respectively. The mean achievement scores for male did not differ significantly from that of the female counterparts when both groups were exposed to geometry using computer simulation package (tcal = 1.216, df = 18, p = 0.240). On this basis, hypothesis 2 is not rejected. Therefore, there was no significant difference between the mean achievement scores of male and female students taught geometry with CAP. Hypothesis Three: There is no significant difference in the mean achievement scores of male and female students taught geometry with GIM. To test this hypothesis, t‐test statistic was employed. The result is presented in table 4. Table 4: t‐test results on gender (GIM) Variable
Number of df sample
Male 10 Female 10 ns = not significant P>0.05
18
Mean (x)
SD
t‐value
P‐value
64.60 62.60
6.240 6.204
0.719ns
0.482
Table 4 shows t‐test results of male and female students taught with geometric instructional model (GIM). The mean achievement scores for male and female students are 64.60 and 62.60 respectively. The mean achievement scores for male did not differ significantly from the female (tcal = 0.719, df = 18, p = 0.482). On this basis, hypothesis three was not rejected. Therefore, there is no significant difference between the mean achievement scores of male and female students taught geometry with GIM. Hypothesis Four: There is no significant difference in the mean retention scores of geometry students taught with CAP, GIM and TTM. Table 5: ANOVA results on CAP, GIM and TTM Sources of Sum of Square df Mean F‐value P‐value Variation Square Between groups Within Group Total *Significant at P<0.05
3524.700 1834.550 5359.250
2 57 59
1762.350 32.185
commit to user
54.757*
0.000
135
perpustakaan.uns.ac.id 136
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
Table 5 shows ANOVA results of mean retention scores of students exposed to CAP, GIM and TTM groups. From the table, the results revealed significant difference among students exposed to GAP, GIM and TTM (Fcal = 54.575; df = 59, p = 0.000). On this basis, hypothesis four was rejected. Therefore, this implies that significant difference exist in the mean retention scores of junior secondary students taught geometry with CAP, GIM and CTM. To determine the direction of the significant difference between the three groups, Scheffe’s post‐hoc test was conducted on the data. The result is shown in Table 6. Table 6: Scheffe’s post‐hoc analysis of the groups mean scores Groups Mean Group I Group II Group III Scores (CAP) (GIM) (TTM) Group I (CAP) 70.40 0.000* 0.000* Group II (GIM) 60.20 0.000* 0.000* Group III (TTM) 51.65 0.000* 0.000* * The mean difference is significant at the 0.05 level. The data in Table 6 indicates that there was significant difference in the posttest mean retention scores of students exposed to CAP (X=70.40) and those exposed to GIM (X = 60.20) in favour of experimental group I (CAP). It also indicates that significant difference exists in the posttest scores of students exposed to GIM (X = 60.20) and those exposed to TTM (51.65) in favour of experiment group II (GIM). Also, significant difference was also established in the delayed posttest mean scores of students exposed to CAP (X = 70.40) and those exposed to TTM (X = 51.65) in favour of CAP group. Discussion The results of hypothesis one reveals that there is significant difference in the students achievements in favour of the group taught with geometrical concepts with computer animation. This results agreed with findings of (Lin, 2001), Mayer (1994), Westhoff, Bergman & Carroll (2010), Karacop and Doymus (2013), Aktas, Bulut and Yuksel (2011), and Wang, Vaughn, and Liu (2011) which in their previous studies found that students taught using computer animation performed better than their counterparts taught with any other teaching methods. The superiority of computer animation to other methods may be attributed to several factors, some of which are learners’ ability to visualize the 3D object, receive immediate feedback, self paced learning, reinforcement, principles of mastery learning, associate learning and step by step learning among others. Furthermore, Animation facilitates learner encoding process, greater self‐esteem and motivation (Lin, 2001 & Kearsley, 2002). All these are attributes of computer animation package makes it a unique instructional tool. The finding on students taught with geometry instructional model having superiority over the traditional teaching method, this could be attributed to the assertion of Abimbade (1997) who said that instructional model enhances visual imagery, stimulates learning and assists the teacher to properly convey the topic content to the learners to achieve better performance. The findings support the earlier findings of Aboderin (1997), Gimba (2006) and Joshua (2007) who reported that the use of Pythagoras model for mathematics instruction, 3‐dimesional instructional model for mathematics and geometrical globe instructional model for teaching mathematics at senior secondary schools enhanced students academic performance. The results of hypotheses two and three shows that there is no gender effect on the achievement of male and female students taught geometrical concepts with CAP and GIM. This implies that irrespective of the instructional methods, male and female commit to userstudents benefitted equally. This result
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
differed with the findings of Njoku (2000), WAEC, chief examiners’ report (2011) which revealed that boys performed better than girls in mathematics. It also disagrees with the findings of Kuruma (2004) and Gimba (2006) who reported that female students performed better than male students when exposed to geometry, mensuration and 3‐dimensional mathematics instructional materials respectively. In another study, Anagbogu and Ezelioras’ (2007) revealed that female students performed better than males in science process skills. Meanwhile, this finding is in agreement with the results of Etukudo (2003) Spencer (2004), Osemmwinyen (2009) and Iwendi, (2012) who found that there is no statistically significant difference between male and female students taught mathematics. One factor which is said to distinguish male from female in their achievement in science is the presence of mathematics. Even then, Maccoby (1970) has noted that between the ages 7, 11, and 12, males and females perform about equally in skills connected with arithmetic computation. The test contained little or no mathematics. Therefore, the finding that both male and female students in this study performed evenly is not misleading. The results of hypothesis four reveals that there is significant difference in the delayed posttest of three groups in favour of the group taught geometrical concept with computer animation. The results supported the earlier findings of Golden, McCrone and Ruud (2006) and Bottge, Rueda, Serlin, Hung, Kwon (2007). However, this differs to the findings of Birgan (2010) who reported that there was no difference in retention rates among students who utilized computerized homework and those who did not. The superiority of this finding could be deduced from Lin (2001), Kearsley (2002) and Osemwinyen’s (2009) that Animation facilitates learner encoding process, greater self‐esteem and motivation. Conclusion The study has examined the poor performance in mathematics education especially within the secondary school level in a rapidly technology changing world. The innovative technology using computer animation package for teaching mathematics seems to be the answer to the poor performance problem. Computer animation package was more effective in teaching the mathematical concept of geometry, improved learners’ performance, enhanced their retention, and is also gender friendly. Recommendations
(i)
(ii)
(iii)
(iv)
Based on the findings of this study, the following recommendations are made. Computer animation package was found to be effective as a teaching strategy for geometry instruction when compared with instructional models and traditional method of instruction. Therefore, mathematics teachers should be encouraged to use it. Male and female students were affected positively and evenly by the use of computer animation package. Therefore, mathematics teachers should employ this strategy to improve male and female students’ achievement and retention in mathematics at junior secondary school level in particular and other levels in general. Geometry instructional model was also found effective as a teaching strategy for geometry instruction as compared to traditional teaching method. Teachers should use instructional model for teaching geometry concept if they could not develop computer animation package or where there is no power supply. It is an interesting and useful experience to improvise using local resources for teaching some units of mathematics at junior secondary school level. Mathematics teachers should improvise instructional material to teach abstract concepts in mathematics in order to improve students’ understanding.
commit to user
137
perpustakaan.uns.ac.id 138
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
References Abimbade, A (1997). Principle and practice of educational technology. Ibadan: International Publishers Ltd. Abimbade, A. & Udousoro, U. J. (1997). The place of computer‐assisted instruction in mathematics education. In Olrenwaju, A. (ed). Proceeding of Ajumogbobia Memoria Conference 1997 (40th Annual Conference of STAN) UNESCO, Pp. 238‐243. Aboderin, G. S. (1997). Construction of Pythagoras model for mathematics instruction in secondary schools. Unpublished B.Tech Project, Department of Science Education, FUT Minna. Agwagah, U. N. V. (2000). Influence of gender difference of students in their achievement in secondary school mathematics. Abacus, 25(1), 102‐112. Aktas, M., Bulut, M & Yuksel T. (2011). The effect of using computer animations and activities about teaching patterns in primary mathematics. The Turkish Online Journal of Educational Technology, 10(3), 273‐277. Akinlade, C. R. (2004). Computer in teaching mathematics. Ibadan: University Press Ltd. Anagbogu, M. A. & Ezeliora, B. (2007). Sex differences and scientific performance. Women Journal of Science and Technology. 4, 10‐20. Araromi, M. A. (1998). Effect of visual imagery instruction on achievement in language with particular reference to French in Nigeria. Nigeria. Journal of Curriculum Studies, 21, 14. Badmus, G. A. (2002). Interest and attitude as correlated of mathematics achievement of secondary school students. npublished Paper, Faculty of Education, Uniben. Baki, A. Kosa, T. Guven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulative on the spatial visualization skills of pre‐service mathaematics teachers. British Journal of Educational Technology, 42(2), 291‐310. Birgan, L. J. (2010). The effects of multimedia technology on students’ perceptions and retention rates in mathematics at a community college. Dissertation, Northcentral University. Bottge, B. A. Rueda, E. Serlin, R. C. Hung, Y. Kwon, J. (2007). Shrinking achievement differences with anchored math problems: Challenges and possibilities. Journal of Special Education, 41(1), 31‐49. Dwyer, F. & Dwyer, C. (2003). Effect of animation in facilitating knowledge acquisition. Paper Presented at the Meeting of Pennsylvania Educational Research Association, Hershey, PA. Etukudo, U. E. (2003). The effects of formula approach on the performance of senior secondary school students in mathematics. Abacus, 28(1), 8‐12. Ezekoka, G. K. (2010). Effect of gender on the use of computer in the teaching learning process in Nigerian school systems. Minna: 31st National Education Association and Media Technology (NEAMT), Annual Convention and National Conference. Fapohunda, O. M. (2002). Educational computing: Learning with tomorrow’s technologies. Ibadan: University Press. FRN (2004). National policy on education. Lagos: NERDC Press. Gagne, R.M. (1985). The conditions of learning. New York: Holt, Rinehart and Winston. Gambari, A. I. (2010). Effect of instructional models on the performance of junior secondary school students in geometry in Minna, Nigeria. Delsu Journal of Educational Research and Development, 9(1), 54‐65. Gimba, R. W. (2006). Effects of 3‐dimensional instructional materials on the teaching and learning of mathematics among senior secondary schools in Minna metropolis. 2nd SSSE Annual National Conference, Federal University of Technology, Minna. Held between 19th – 2nd November, 2006. Gimba, R. W. (2013). Effects of computer package on achievement, retention and interest in set theory among secondary school students in Niger state. Unpublished Ph.D thesis, University of Nigeria, Nsukka. Golden, S., McCrone, T. & Ruud, P. (2006). Impact of e‐learning in further education: Survey of scale and breadth. (Online). Available: http://www.dfes.giv.uk/research/data/uploadfiles/RR745.pdf Harbour‐Peters, V. F. A. (2001). Noteworthy points on measurement and evaluation. Enugu: Swaap Press Ltd. Iwendi, B. C. (2012). Effects of gender and age on the mathematics achievement of secondary school students in Minna metropolis, Nigeria. JOSTMED, 9(1), 215‐223. Available online: http://www.jostmed.com Joshua, F. (2007). Design and construction of geometrical model for learning mathematics in the senior secondary schools. Unpublished B.Tech.project, Science Education Department, Federal University of Technology, Minna. Karacop, A. & Doymus, K. (2013). Effects of jigsaw cooperative learning and animation techniques on students’ understanding of chemical bonding and their conceptions of the particulate nature of matter. Journal of Science Education and Technology, 22(2), 186‐203. Kearsley, G. (2002). Exploration in learning & instruction: The theory into practice. Database (Online). Kiboss, J. K. (2012). Effects of special e‐learning program on hearing‐impaired learners’ achievement and perceptions on basic geometry in lower primary mathematics. Journal of Educational Computing Research, 46(1), 31‐59. Kurumeh, M. S. C. (2004). Effect of ethno‐mathematics teaching approach on students achievement and interest in geometry and mensuration. Unpublished Ph.D thesis, University of Nigeria Nsukka. Lin, C.H. (2001). The effect of varied enhancements to animated instruction on test measuring different educational objectives. Unpublished Doctoral Dissertation, The Pennsylvania State University. Martin, P. & Velay, J. (2012). Do computer improve the drawing of a geometrical figure for 10 year‐old children? International Journal of Technology and Design Education, 22(1), 13‐23. Martindale, G. (2007, November 21). Know your learning style. Message posted to http://www.stateuniversity.com/blog/permalink/Know‐Your‐Learning‐Style.html
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
National Examination Council (NECO). (2012). Chief examiner’s report. Njoku, Z. C. (2000). Gender and acquisition of science process skills among secondary school students: Implication for science and teaching. 42nd annual conference proceeding of STAN (206 – 209). Obodo, G. C. (2004). Principles and practices of mathematics education in Nigeria. Enugu: Floxtone Press. Osemwinyen, A. C. (2009). Effects of e‐learning on retention and achievement in secondary school mathematics in Abuja, Nigeria. Unpublished Ph.D thesis, University of Nigeria, Nsukka. Palmiter, S. (1993). The effectiveness of animated demonstrations for computer‐based tasks: A summary, model, and future research. Journal of Visual Languages and Computing, 4(1), 71‐89. Pavio, A. (1986). Mental representations: A dual coding approach. Oxford, England. Oxford University Press. Riber, L.P. (1994). Computer, graphics and learning. Madison, Wisconsin: Brown & Benchmark Publishers. Riber, L. P, Boyce, M. J. & Assad, C. (1990). The effect of computer animation on adult learning and retrieval task. Journal of Computer‐based Instruction, 17(2). Shih, S, Kuo, B, Liu, Y. (2012). Adaptively ubiquitous learning in campus math path. Educational Technology & Society, 15(2), 298‐ 308. Spencer, D. J. (2004). Engagement with mathematics courseware in traditional and online learning environments: Relationship to motivation, achievement, gender, and gender orientation. Unpublished Ph.D dissertation submitted to the Faculty of Graduate School of Emory University. Retrieved March 17, 2007, from http://www.dcs.emory.edu/mfp/Spencer Dissertation2004.pdf. Tolu, O. T. (2009). Effects of computer animation and instruction model on the Performance of students in senior secondary students biology in Minna, Niger State, Nigeria. Unpublished Bachelor of Technology, (B, Tech) Project, Department of Science Education, Federal University of Technology, Minna, Nigeria Wang, P, Vaughn, B.K. & Liu, M. (2011). The impact of animation interactivity on novices’ learning of introductory statistics. Computer & Education, 56(1), 300 – 311. West African Examination Council (WAEC) (2011). West African senior secondary school certificate examination May/June Chief examiner’s report. WAEC: Lagos. Westhoff, B. W., Bergman, D. & Carroll, J. (2010). The effects of computer animations on high school students performance and engagement in biology. Proceedings of the 6th Annual GRASP Symposium, Wichita State University, 2010. Yusuf, M. O. & Afolabi. A. O. (2010). effects of computer assisted instruction (CAI) on secondary school students’ performance in biology. Turkish Online Journal of Educational Technology 9(1). Available online at www.tojet.com
commit to user
139
perpustakaan.uns.ac.id 140
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
APPENDIX A GEOMETRY ACHIEVEMENT TEST [GAT] SECTION A 1. Introduction The purpose of this question paper is to collect information which will be used in a research study to improve the teaching and learning of physics at senior secondary school level. Every information you give is, therefore, strictly for academic purpose and will be treated confidentially. Your name is NOT required. 2. Instructions (i) Please read the questions or statements very carefully and respond appropriately. (ii) Choose the most appropriate alternative from the options A to E given for each item. (iii) Shade only one answer for each question. (iv) Attempt all the questions (v) Respondents are free to ask questions on any of the items that need clarification. (vi) Erase any incorrect answer properly before choosing another option (viii) Use pencil only. (ix) Time allowed: 60 minutes 3. Bio-Data Male Female NAME OF SCHOOL: …………………………………….………………………………... CLASS: …………………………………..………………. DATE: ……………………….. SECTION B MULTIPLE CHOICE OBJECTIVE TEST 1. A solid shape which has a circular face and a curved surface is known as ……………..………. (A). A Cube (B). Rectangle (C). Cylinder (D). Cone 2. With the aid of the diagram below, identify the formula of a curved surface area of a Cone (A). πrL (B). πr2h (C). πrh (D). πrL2 3. The total curved surface area of a Cone is define as (A). πrh + πr2 (B). πr (L + r) (C). πr2L + πr (D). πr2L 4. The curved surface area of a cylinder is define as (A). 2π (h + r) (B). 2πr2 (C). 2πrh (D). 3πrh 5. Which of the formulae is correct in determine the volume of a cylinder. commit to user A. πrh
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
6.
7.
8.
9.
10.
11.
12.
B. πr2h C. πr D. πrh2 A point or corner where three (3) or more edges meet is called ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ A. Sharp point B. Plane C. Vertex D. rectangle A Cuboid has ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ straight lines A. 4 B. 12 C. 8 D. 5 The formula used to calculate the volume of cuboid is ………………. A. L x w B. W x h C. ½ w x h h D. L x w A Cube is a cuboid in which all faces are ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ A. Rhombus W B. Rectangle L C. Square D. Cone. The typical example of a cube is ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ A. Tin B. Cylinder C. An empty box of matches D. A cube of sugar The formula use to calculate the volume of a cube is A. L2 B. L3 C. L D. L4 The formula use to find the area of a cube is ………………………..………. A. 6L2 B. 4L2 C. 2L2 D. L2 Find the total surface area of the cube in the figure
13. 8cm (A). 384cm (B). 512cm (C). 288cm (D) 216cm
8cm
commit to user
141
perpustakaan.uns.ac.id 142
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
14.
15.
16.
17.
18.
19.
20.
Calculate the diagonal of the cube shown in the figure below.
8cm 8cm (A). 13.8cm (B). 11.3cm (C). 27.6cm (D) 16.0cm Calculate the volume of the cube shown in the figure below.
8cm (A). 384cm (B). 512cm (C). 288cm 8cm (D) 216cm 8cm If the volume of a cube is 216cm3, find the length of one side of the cube. (A). 6cm (B). 12cm (C). 18cm (D) 27cm
If the total surface area of a cube is 384cm2, find the length of one of the faces. (A). 0.8cm (B). 8cm (C). 18cm (D) 28cm Calculate the total surface area of a cuboid with dimensions 12cm by 10cm by 8cm. (A). 528cm (B). 376cm (C). 296cm (D) 692cm Calculate the volume of a cuboid with dimensions 8cm by 3cm by 7cm. (A). 118cm (B). 156cm (C). 168cm (D) 180cm Calculate the length of the diagonal in the figure below.
(A). (B). (C). (D)
8c
2.24cm 4.24cm 6.24cm 8.24m
5c
3cto user commit
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
21.
22.
23.
If the volume of a cuboid is given by 120cm3, calculate the length of the cube if the breath and height are given as 5cm and 3cm respectively. (A). 0.8cm (B). 8.0cm (C). 18.0cm (D) 80.0cm Calculate the height of a cuboid if the volume is 210cm3 and the length and breadth are 5cm and 7cm respectively. (A). 6cm (B). 16cm (C). 26cm (D) 36cm Find the curved surface area of the cylinder in figure below. 8cm
12cm
(A). (B). (C). (D) 24.
25.
26.
27.
602.88cm2 401.92cm2 200.96 cm2 1004.80cm2
Calculate the volume of the cylinder in the figure below. 8cm
12cm
(A). 153.68cm3 (B). 175.84cm3 (C). 183.14cm3 (D) 2411.52cm3 A cylindrical tank has its base radius of 3cm and height of 7cm, calculate the total surface area. (A). 188.40cm2 (B). 198.44cm2 (C). 208.14cm2 (D) 218.52cm2 A bucket in the form of a container has a volume of 1908.75cm3, calculate the height of the container given that the base radius is 9cm. (A). 170.55cm (B). 75.50cm (C). 17.54cm (D) 7.50cm Calculate the depth of a cylindrical whose capacity is 17325cm3 if the base radius is 7cm. (A). 112.5cm commit to user
143
perpustakaan.uns.ac.id 144
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
28.
29.
30.
31.
32.
33.
34.
(B). 102.5cm (C). 12.5cm (D) 11.2cm A sector of a circle of radius 7cm which subtends an angle of 75o at the centre is used to form a cone, calculate the base radius of the cone. (A). 1.92m (B). 1.98m (C). 1.89m (D) 1.70m A cone of base diameter 12cm and slant height of 10cm, calculate the total surface area. (A). 113.40cm2 (B). 213.04cm2 (C). 301.44cm2 (D) 414.48cm2 Calculate the volume of a cone of slant height 10cm and base diameter 12cm. (A). 904.32cm3 (B). 804.34cm3 (C). 708.14cm3 (D) 608.52cm3
Find the curved surface area of a cone of base radius 6cm and slant height 10cm. (A). 1884.04cm2 (B). 188.40cm2 (C). 18.84cm2 (D) 8.18cm2 Calculate the volume of a sphere with radius 9cm.
(A). 4156.24cm3 (B). 3052.08cm3 (C). 2017.36cm3 (D) 1138.04cm3 Calculate the surface area of a sphere with radius 11cm. (A). 1512.64cm2 (B). 1515.46cm2 (C). 1519.76cm2 (D) 1516.67cm2 A sphere of radius 7cm is cut into two equal parts, calculate the volume of one of the parts.
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
35.
36.
37.
38.
39.
40.
(A). 918.04cm3 (B). 718.01cm3 (C). 518.06cm3 (D) 418.08cm3 A hemisphere of radius 14cm, calculate its surface area in terms of π. (A). 588π (B). 438π (C). 328π (D) 218π A sphere has a radius of 8cm, find the surface area and volume. (A). 703.54cm2; 3143.75cm3 (B). 613.44cm2; 4234.72cm3 (C) 523.41cm2; 5334.78cm3 (D). 803.84cm2; 2143.57cm3 Calculate the height of a square based pyramid if the height of the triangle is 10cm and square length 12cm. (A). 64cm (B). 36cm (C). 18cm (D) 8cm Calculate the total surface area of the pyramid in the figure shown below.
1
(A). 384cm2 (B). 284cm2 (C). 240cm2 1 (D) 144cm2 A rectangular based pyramid of base dimension 12cm by 10cm has a height of 8cm, calculate the volume of the pyramid. (A). 240cm3 (B). 320cm3 (C). 420cm3 (D) 528cm3 A right pyramid consists of a square base side 13cm and four isosceles triangles whose equal sides are 27cm each, calculate the total surface area and volume of the pyramid.
2
(A). (B). (C). (D)
754cm2; 2437cm3 845cm2; 1430cm3 645cm2; 3430.72cm3 545cm2; 4430cm3
1
commit to user
145
perpustakaan.uns.ac.id 146
digilib.uns.ac.id
European Journal of Science and Mathematics Education Vol. 2, No. 2, 2014
APPENDIX B KEY TO THE ANSWER 1. D. 2. A 3. B 4. C 5. B 6. C 7. B 8. D 9. C 10. D 11. B 12. A 13. B 14. C 15. A 16. A 17. B 18. D 19. C 20. B 21. B 22. A 23. D 24. D 25. A 26. D 27. A 28. D 29. C 30. A 31. A 32. B 33. C 34. B 35. A 36. D 37. D 38. A 39. C 40. B
commit to user
Jurnal MEDTEK, Volume 1, Nomor 2, Oktober 2009digilib.uns.ac.id perpustakaan.uns.ac.id
PEMAHAMAN TENTANG GAYA BELAJAR Hasrul Dosen Jurusan Pendidikan Teknik Elektro Fakultas Teknik UNM e-mail:
[email protected]
Abstrak Gaya belajar merupakan suatu kombinasi dari bagaimana seseorang menyerap dan kemudian mengatur serta mengolah informasi. Gaya belajar bukan hanya berupa aspek ketika menghadapi informasi, melihat, mendengar, menulis dan berkata tetapi juga aspek pemrosesan informasi sekunsial, analitik, global atau otak kiri dan otak kanan. Aspek lain adalah ketika merespon sesuatu atas lingkungan belajar (diserap secara abstrak dan konkret). Terdapat tiga tipe gaya belajar yang akan dibahas dalam penelitian ini yaitu visual (cenderung belajar melalui apa yang mereka lihat), auditorial (belajar melalui apa yang mereka dengar) dan kinestetik (belajar melalui gerak dan sentuhan). Sebagai pengajar, guru atau dosen tidak hanya melakukan proses transformasi ilmu pengetahuan kepada peserta didik, akan tetapi lebih dari itu seorang pengajar harus berperan sebagai motivator, inspirator, fasilitator dan mediator dalam proses belajar peserta didik. Olehnya itu seorang guru atau dosen tidak hanya melakukan proses pengajaran tetapi juga dituntut melakukan proses pembelajaran. Efektivitas pembelajaran mengacu kepada pencapaian tujuan pembelajaran yang merupakan hal sangat penting dalam proses belajar mengajar karena model, pendekatan, strategi, metode dan teknik pembelajaran sangat menentukan berhasil tidaknya pencapaian tujuan. Untuk menetapkan metode dan teknik pembelajaran yang efektif dan efesien diperlukan pedoman yang bersumber dari berbagai faktor yaitu tujuan pembelajaran, peserta didik, dan sarana/prasarana yang mendukung. Kata Kunci: Gaya belajar, Visual, Auditorial dan Kinestetik
benda-benda, hewan, tumbuh-tumbuhan, Belajar pada manusia merupakan suatu manusia atau hal-hal yang dijadikan bahan proses psikologis yang berlangsung dalam belajar. interaksi aktif antara subjek dengan Sebagai pengajar, guru atau dosen lingkungan dan menghasilkan perubahantidak hanya melakukan proses transformasi perubahan dalam pengetahuan, ilmu pengetahuan kepada peserta didik, keterampilan, dan sikap yang bersifat akan tetapi lebih dari itu seorang pengajar konstan/menetap. Belajar merupakan hal harus berperan sebagai motivator, inspirator, yang kompleks. Kompleksitas belajar dapat fasilitator dan mediator dalam proses belajar dipandang dari dua subyek yaitu peserta peserta didik. Olehnya itu seorang guru atau didik dan pengajar (guru atau dosen). dosen tidak hanya melakukan proses Sebagai tindakan belajar, hal ini pengajaran tetapi juga dituntut melakukan dialami oleh peserta didik sendiri. Peserta proses pembelajaran. Pengajaran didik adalah penentu terjadinya atau tidak (instructional) lebih berpusat kepada guru, terjadinya proses belajar. Proses belajar commit to user artinya guru lebih berperan dalam proses terjadi berkat peserta didik memperoleh belajar mengajar. Peran peserta didik sangat sesuatu yang ada di lingkungan sekitarnya terbatas dan cenderung hanya menerima apa baik berupa keadaan alam,
Hasrul, Pemahaman Tentang Gaya Belajar perpustakaan.uns.ac.id
digilib.uns.ac.id
pada karakteristik psikis, kepribadian, dan yang disampaikan oleh guru atau dosen. sifat-sifatnya. Perbedaan individual ini Tetapi dalam proses pembelajaran, kegiatan berpengaruh pada cara belajar dan hasil belajar mengajar berpusat pada siswa, belajar siswa. Karenanya, perbedaan artinya seorang guru berperan untuk individual perlu diperhatikan oleh pengajar membelajarkan peserta didik. dalam upaya pembelajaran. Sistem Efektivitas pembelajaran mengacu pendidikan klasikal yang dilaksanakan kepada pencapaian tujuan pembelajaran selama ini belum memperhatikan masalah yang merupakan hal sangat penting dalam perbedaan individual, umumnya proses belajar mengajar karena model, pelaksanaan pembelajaran di kelas dengan pendekatan, strategi, metode dan teknik melihat peserta didik sebagai individu pembelajaran sangat menentukan berhasil dengan kemampuan rata-rata, kebiasaan tidaknya pencapaian tujuan. Untuk yang kurang lebih sama, demikian pula menetapkan metode dan teknik dengan pengetahuannya. pembelajaran yang efektif dan efesien Gaya belajar merupakan suatu diperlukan pedoman yang bersumber dari kombinasi dari bagaimana seseorang berbagai faktor yaitu tujuan pembelajaran, menyerap dan kemudian mengatur serta peserta didik, dan sarana/prasarana yang mengolah informasi. Gaya belajar bukan mendukung. hanya berupa aspek ketika menghadapi Pembelajaran dapat dikatakan efektif informasi, melihat, mendengar, menulis dan jika mampu memberikan pengalaman baru, berkata tetapi juga aspek pemrosesan dan membentuk kompetensi peserta didik, informasi sekunsial, analitik, global atau otak serta menghantarkan mereka ke tujuan yang kiri dan otak kanan. Aspek lain adalah ketika dicapai secara optimal. Hal ini dapat dicapai merespon sesuatu atas lingkungan belajar dengan melibatkan peserta didik dalam (diserap secara abstrak dan konkret). perencanaan, pelaksanaan dan penilaian Terdapat tiga tipe gaya belajar yang akan pembelajaran. Seluruh peserta didik harus dibahas dalam dalam tulisan ini, yaitu visual dilibatkan secara penuh agar bergairah (cenderung belajar melalui apa yang mereka dalam pembelajaran, sehingga suasana lihat), auditorial (belajar melalui apa yang pembelajaran betul-betul kondusif dan mereka dengar) dan kinestetik (belajar terarah pada tujuan dan pembentukan melalui gerak dan sentuhan). Prestasi belajar kompetensi peserta didik. Pembelajaran masih tetap menjadi indikator untuk menilai efektif menuntut keterlibatan peserta didik tingkat keberhasilan peserta didik dalam secara aktif, karena merupakan pusat proses belajar. Prestasi belajar yang baik kegiatan pembelajaran dan pembentukan dapat mencerminkan gaya belajar yang baik kompetensi. Peserta didik harus didorong karena dengan mengetahui dan memahami untuk menafsirkan informasi yang disajikan gaya belajar yang terbaik bagi dirinya akan oleh guru sampai informasi tersebut dapat membantu siswa dalam belajar sehingga diterima oleh akal sehat dalam prestasi yang dihasilkan akan maksimal. pelaksanaannya. Hal ini memerlukan proses pertukaran pikiran, diskusi dan perdebatan dalam rangka pencapaian pemahaman yang GAYA BELAJAR sama terhadap materi standar. Gaya belajar adalah kunci untuk Demi terwujudnya pembelajaran yang mengembangkan kinerja dalam pekerjaan, di efektif, hal yang harus diketahui seorang sekolah dan dalam situasi situasi antar pengajar adalah mengetahui gaya belajar pribadi. Ketika sesorang menyadari peserta didiknya. Peserta didik merupakan bagaimana ia dan orang lain menyerap dan individual yang unik artinya tidak ada dua commit to user mengolah informasi, maka ia dapat orang peserta didik yang sama perisis, tiap menjadikan belajar dan berkomunikasi lebih peserta didik mempunyai perbedaan satu mudah dengan gaya Anda sendiri. dengan yang lain. Perbedaan itu terdapat
Jurnal MEDTEK, Volume 1, Nomor 2, Oktober 2009digilib.uns.ac.id perpustakaan.uns.ac.id
Dan juga, dengan mempelajari bagaimana Di beberapa sekolah dasar dan sekolah memahami cara belajar orang lain, seperti lanjutan di Amerika, para guru menyadari atasan, rekan, guru, suami/istri, orangtua bahwa setiap orang mempunyai cara yang dan kanak-kanak seseorang dapat optimal dalam mempelajari informasi baru. memperkuat hubungan dengan mereka. Mereka memahami bahwa beberapa murid Pada awal pengalaman belajar, salah perlu diajarkan cara-cara yang lain dari satu diantara langkah-langkah pertama metode mengajar standar. Jika murid-murid adalah mengenali modalitas sebagai ini diajar dengan metode standar, modalitas visual, auditorial, atau kinestatik kemungkinan kecil mereka dapat memahami (V-A-K). Seperti yang diusulkan istilahapa yang diberikan. Mengetahui gaya belajar istilah ini, orang visual belajar melalui apa yang berbeda ini telah membantu para guru yang mereka lihat, pelajar auditorial dimana pun untuk dapat mendekati semua melakukannya melalui apa yang mereka atau hampir semua murid hanya dengan dengar, dan pelajar kinestatik belajar lewat menyampaikan informasi dengan gaya yang gerak dan sentuhan. Walaupun masingberbeda-beda. masing dari manusia belajar dengan Menurut Rita Dunn seperti dikutip menggunakan ketiga moidalitas ini pada oleh Bobbi DePorter dan Mike Hernacki tahapan tertentu, kebanyakan orang lebih telah menemukan banyak variabel yang cenderung pada salah satu diantara menpengaruhi cara belajar orang. Ini ketiganya. mencakup faktor-faktor fisik, emosional, Michael Grinder, pengarang Risgting sosiologis, dan lingkungan. Sebagian orang, The Egucation Conveyor Belt, telah misalnya dapat belajar paling baik dengan mengajarkan gaya-gaya belajar dan mengajar cahaya terang, sedang sebagian orang lain kepada banyak instruktur. Ia mencatat dengan pencahayaan suram. Ada orang yang bahwa dalam setiap kelompok yang terdiri belajar paling baik secara berkelompok, dari tiga puluh murid, sekitar dua puluh dua sedang yang lain lagi memilih adanya figur orang mampu belajar secara cukup efektif otoriter seperti orang tua atau guru, yang dengan cara visual, auditorial, dan kinestetik lain lagi merasa bahwa bekerja sendirilah sehingga mereka tidak membutuhkan yang paling efektif bagi mereka. Sebagian perhatian khusus. Dari sisa delapan orang orang memerlukan musik sebagai latar sekitar enam orang memilih satu modalitas belakang, sedangkan yang lain tidak dapat belajar dengan sangat menonjol melebihi dua berkonsentrasi kecuali dalam ruangan sepi. modalitas lainnya. Sehingga, setiap saat Ada orang yang yang memerlukan mereka harus selalu berusaha keras lingkungan kerja yang teratur dan rapi, memahami perintah, kecuali jika perhatia tetapi yang lain lagi lebih suka menggelar khusus diberikan kepada mereka dengan segala sesuatunya supaya semua dapat menghadirkan cara yang mereka pilih. Bagi terlihat. orang-orang ini, mengetahui cara belajar Telah disepakati secara umum adanya terbaik mereka bisa bearti perbedaan antara dua kategori utama tentang bagaimana kita keberhasilan dan kegagalan. Dua orang belajar. Pertama, bagaimana kita menyerap murid lainnya mempunyai kesulitan belajar informasi dengan mudah (modalitas). Dan karena sebab-sebab eksternal. kedua, cara kita mengatur dan mengelola informasi tersebut (dominasi otak). Gaya belajar seseorang adalah kombinasi dari MENGETAHUI KARAKTERISTIK bagaimana ia menyerap kemudian mengatur PELAJAR VISUAL, AUDITORIAL serta mengelolah informasi. DAN KINESTETIK Jika seseorang akrab dengan commit gaya to user Banyak ciri-ciri perilaku yang belajarnya sendiri, ia dapat mengambil merupakan kecenderungan belajar. Berikut langkah-langkah penting untuk membantu ciri-ciri modalitas belajar yang terbaik. dirinya belajar lebih cepat dan lebih mudah.
Hasrul, Pemahaman Tentang Gaya Belajar perpustakaan.uns.ac.id
1)
2)
digilib.uns.ac.id
Orang-orang Visual: c) Menggerakan bibir mereka dan a) Rapi dan teratur mengucapkan tulisan dibuku ketika b) Berbicara dengan cepat membaca c) Perencana dan pengatur jangka d) Senang membaca dengan keras dan panjang yang baik mendengarkan d) Teliti terhadap detail e) Dapat mengulangi kembali dan e) Mementingkan penampilan, baik menirukan nada, birama, dan warna dalam hal pakaian maupun suara presentasi f) Merasa kesulitan untu menulis, f) Pengeja yang baik dan dapat melihat tetapi hebat dalam bercerita kata-kata yang sebenarnya dalam g) Berbicara dengan irama yang pikiran mereka terpolah g) Mengingat apa yang dilihat, h) Biasanya suka musik daripada seni daripada yang didengar i) Belajar dengan mendengarkan dan h) Mengingat dengan asosiasi visual mengingat apa yang didiskusikan i) Biasanya tidak terganggu oleh daripada yang dilihat keributan j) Suka berbicara, suka berdiskusin j) Mempunyai masalah untuk dan menjelaskan sesuatu panjang mengingat instruksi verbal kecuali lebar jika ditulis dan sering kali minta k) Mempunyai masalah dengan bantuan orang untuk pekerjaan-pekerjaan yang mengulanginya melibatkan visualisasi seperti k) Pembaca cepat dan tekun memotong bagian-bagian hingga l) Lebih suka membaca daripada sesuai satu sama lain dibacakan l) Lebih pandai mengeja dengan keras m) Membutuhkan pandangan dan daripada menuliskannya tujuan yang menyeluruh dan m) Lebih suka gurauan lisan daripada bersikap waspada sebelum secara membaca komik 3) Orang-orang kinestatik mental merasa pasti tentang suatu a) Berbicara dengan perlahan masalah atau proyek b) Menanggapi perhatian fisik n) Mencoret-coret tanpa arti selama c) Menyentuh orang untuk berbicara ditelpon dan dalam rapat mendapatkan perhatian mereka o) Lupa menyampaikan pesan verbal d) Berdiri dekat ketika berbicara kepada orang lain dengan orang p) Lupa menjawab pertanyaan dengan e) Selalu berorientasi pada fisik dan jawanban singkat ya atau tidak banyak bergerak q) Ledih suka melakukan demonstrasi f) Mempunyai perkembangan awal daripada berpidato otot-otot yang besar r) Lebih suka seni daripada musik g) Belajar melalui memanipulasi dan s) Seringkali mengetahui apa yang peraktik harus dikatakan, tetapi tidak pandai h) Menghafal dengan cara berjalan dan memilih kata-kata melihat t) Kadang-kadang kehilangan i) menggunakan jari sebagai penunjuk konsentrasi ketika mereka ingin ketika membaca memperhatikan Orang-orang Auditorial j) Banyak menggunakan isyarat tubuh a) Berbicara kepada diri sendiri saat commit to k)user Tidak dapat duduk diam untuk kerja waktu lama b) Mudah terganggu oleh keributan
Jurnal MEDTEK, Volume 1, Nomor 2, Oktober 2009digilib.uns.ac.id perpustakaan.uns.ac.id
q) Pandangan sempit Tidak dapat mengingat geografi, r) Pamer kecuali jika mereka memang telah s) Visi lurus pernah berada di tempat itu 2) Audotorial m) Menggunakan kata-kata yang a) Mendengarkan dengan seksama mengandung aksi b) Menyeru n) Menyukai buku-buku yang c) Jelas bagai bunyi bel berorientasi pada plot – mereka d) Diunkapan dengan jelas mencerminkan aksi dengan gerakan e) Dijelaskan secara terperinci tubuh saat membaca f) Pendengar yang baik o) Kemungkinan tulisannya jelek g) Dengarkan baik-baik p) Ingin melakukan segala sesuatu h) Mendengar suara-suara q) Menyukai permainan yang i) Pesan yang tersembunyi menyibukkan j) Percakapan yang membosankan Adalah mudah untuk mengetahui k) Jelas dan tegas orang lain dalam hidupnya dengan l) Terus terang memperhatikan kata-kata proses. Ketika m) Mengoceh seperti burung suatu situasi diserap dalam pikiran n) Mengingatkan akan sesuatu seseorang, ia memproses modalitas pilihan o) Mengatakan yang sejujurnya orang itu, kata-kata dan frase-frase yang p) Mendengarkan/tidak mendengarkan digunakan orang itu untuk menjelaskannya q) Tak mendengar tentang sesuatu menunjukan modalitas pribadi orang r) Menyuarakan pendapat tersebut. Begitu Anda mengenali predikat s) Selalu dalam batas pendengaran seseorang. Anda dapat menjadikannya satu 3). Kinestetik sarana untuk menyesuaikan dengan bahasa a) Rajin mereka ketika Anda berbicara dengan b) Mempersingkat hingga mereka. c) Berpikir serius Menyesuaikan modalitas seseorang d) Menyebar kemana-mana dengan orang lain adalah cara sangat baik e) Bisa merasakan untuk menciptakan keakraban dan suasana f) Bagai disambar halilintar saling pengertian. Ini adalah daftar ucapang) Berhubungan/kontak ucapan yang biasa dipakai oleh modalitas h) Menagkap alur tertentu : i) Bertahanlah! 1) Visual j) Tahanlah! a) Tampak bagi saya k) Pemarah b) pandangan menyeluruh l) Berterus terang c) Melihat sekilas m) Mengatur d) Nyata pasti, tidak diragukan n) Sangat rapi e) Pandangan yang kabur o) Menyimpangkan pikiran saya f) Tepat, pas p) Mulai dari awal g) mempunyai ryang lingkup tentang q) Pendiam sesuatu r) Berahasia, tidak jujur, curang h) Gagasan yang samar s) Berahasia i) Dalam cahaya Mengenali modalitas belajar peserta j) Secara pribadi didik adalah kunci penting untuk k) Dalam pandangan pembelajaran yang efektif. Misalnya bila l) Mirip pengajar mengetahui bahwa m) Citra diri commit toseorang user muridnya adalah orang visual, akan lebih n) Mata hati efektif untuk menyampaikan materi o) Indah bagai lukisan pembelajaran menggunakan material visual, p) Melihat l)
Hasrul, Pemahaman Tentang Gaya Belajar perpustakaan.uns.ac.id
seperti slide dan makalah dalam suatu presentasi. b. Mengolah Informasi Sistem indentifikasi V-A-K membedakan bagaimana kita menyerap informasi. Untuk menentukan dominasi otak dan bagaimana anda memproses informasi. Model ini awalnya dikembangkan oleh Anthony Gregorc, profesor di bidang kurikulum dan pengajaran di Universitas Connecticut. Kajian investigatifnya menyimpulkan adanya dua kemungkinan dominasi otak : 1) Persepsi konkret dan abstrak dan 2) Kemampuan pengaturan secara sekuensial (linear) dan acak (nonlinear) Ini dapat dipadukan menjadi empat kombinasi kelompok perilaku yang kita sebut gaya berpikir. Gregorc menyebut gayagaya ini dengan skusensial konkret, skuensial abstrak, acak konkret, acak abstrak. Orang yang termasuk dalam kategori ”sekuensial” cenderung memiliki dominasi otak kiri, sedang orang-orang yang berpikir secara ”acak” biasanya termasuk dalam dominasi otak kanan. Mengenai indentifikasi V-A-K, tidak setiap orang harus masuk ke dalam salah satu klasifikasinya. Walaupun demikian, kebanyakan orang cenderung pada yang satu daripada yang lain. Dengan mengetahui ciri dominasi otak, membuat seseorang ”bekerja dengannya” dan juga menetapkan cara-cara tersebut untuk menjadi lebih seimbang. Aktivitas-aktivitas yang berbeda memerlukan cara berpikir yang berbeda pula, jadi keuntungan untuk mengetahui dominasi otak adalah: pertama, yang mana cara dominan yang dapat dilakukan dan kedua, apa yang dapat dilakukan untuk mengembangkan cara berpikir yang lain.
digilib.uns.ac.id
peraba, pendengaran, perasa dan pencuiman. Mereka memperhatikan dan mengingat realitas dengan mudah dan mengingat faktafakta, informasi, rumus-rumus dan aturanaturan khusus dengan mudah. Catatan atau makalah adalah cara baik bagi orang-orang ini untuk belajar. Pelajar SK harus mengatur tugas-tugas menjadi proses tahap demi tahap dan berusaha keras untuk mendapatkan kesempurnaan pada setiap tahap. Mereka menyukai pengarahan dan prosedur khusus. Karena kebanyakaan dunia bisnis yang sangat baik. 2) Pemikir Acak konkret (AK) Pemikir Acak Konkret mempunyai sikap eksperimental yang diiringi dengan perilaku yang kurang terstruktur. Seperti pemikir sekuensial konkret, mereka berdasarkan pada kenyataan, tetapi ingin melakukan pedekatan coba-salah (trial and error). Karenanya, mereka sering melakukan lompatan intuituf yang diperlukan untuk pemikiran kreaktif yang sebenarnya. Mereka mempunyai dorongan kuat untuk menemukan alternatif dengan mengerjakan segala sesuatu dengan cara mereka sendiri. Waktu bukanlah perioritas bagi orang-orang AK, dan mereka cenderung tidak menperdulikannya terutama jika sedang terlibat dalam situasi yang menarik. Mereka lebih terorientasi pada proses daripada hasil; akibatnya, proyek-proyek sering kali tidak berjalan sesuai dengan yang mereka rencanakan karena kemungkinan yang muncul dan yang mengandung ekplorasi selama proses.
3) Pemikir Acak Abstrak (AA) Dunia ”nyata” untuk pelajar acak abstrak adalah dunia persasaan dan emosi. Mereka tertarik pada nuansa, dan sebagian lagi cenderung pada mistisisme. Pikiran AA menyerap ide-ide, informasi, dan kesan dan 1) Pemikir Sekuensial Konkret (SK) mengaturnya dengan reflek ( KadangPemikir sekuensial konkret kadang hal ini memakan waktu lama hingga berpegang pada kenyataan dan proses orang lain tidak menyangka bahwa orang informasi dengan cara yang teratur, linear, commit to user AA mempunyai reaksi dan pendapat ). dan sekuensial. Bagi para SK, realitas terdiri Mereka mengingat degan sangat baik jika dari apa yang dapat mereka ketahui melalui informasi sipersonihikasikan. Perasaan juga indra fisik mereka, yaitu indra penglihatan,
Jurnal MEDTEK, Volume 1, Nomor 2, Oktober 2009digilib.uns.ac.id perpustakaan.uns.ac.id
lebih seimbang dengan sesekali memaksa diri Anda untuk menyerap informasi yang kurang sesuai bagi anda. Inilah beberapa latihan yang diusulkan oleh Ned Hermann, seorang ahli dominan otak, untuk membantu mengembangkan kuadran-kuadran yang tidak begitu anda sukai. 1) Jika Anda adalah Pemikir Dominan Otak Kanan (AA atau AK) a) Pelajarilah bagaimana sebenarnya cara kerja mesin yang sering anda gunakan. b) Aturlah foto-fota anda kedalam album c) Usahakalah untuk tepat waktu sepanjang hari d) Aturlah pengeluaran prubadi e) Rangkailah rakitan model berdasarkan instruksi f) Bergabunglah dengan klub insvestasi g) Atasi masalah yang ada dan analisalah bagian-bagian utama. h) Belajarlah untuk mengoprasikan komputer pribadi i) Tulislah tinjauan kritis terhadap film 4) Pemikir Sekuensial Abstrak (SA) favorit anda Realitis bagi para pemikir sekuensial j) Aturlah buku-buku Anda menurut Abstrak adalah dunia teori metafisis dan urutan jenisnya pemikiran abstrak. Mereka suka berpikir 2) Jika Anda adalah Pemikir Dominan Otak dalam konsep dan menganalisa informasi. Kiri (SA atau SK) Mereka sangat menghargai orang-orang dan a) Usahakalah untuk memahami peristiwa-peristiwa yang teratur dan rapi. perasaan binatang peliharaan anda Adalah mudah bagi mereka meneropong b) Temukan resep masakan dan hal-hal penting., seperti titik-titik kunci dan siapkanlah detail-detail penting. Proses berpikir mereka c) Bermainlah dengan tanah liat dan logis, rasional, dan intelektual. temukan hakikatnya Aktifitas favorit pemikir sekuensial d) Buatlah lima ratus foto tangpa abstrak adalah membaca dan jika suatu menghawatirkan biayanya proyek perlu diteliti, mereka akan e) Ciptakalah logo pribadi Anda melakukannya dengan mendalam. Mereka f) Kemudikanlah mobil ”ke mana saja” ingin mengetahui sebab-sebab dibalik akibat tanpa merasa bersalah dan memahami teori serta konsep. Seperti g) Bermainlah-mainlah dengan anakyang dapat anda bayangkan, orang-orang ini anak Anda dengan cara yang mereka adalah filosof-filosof besar dan ilmuwaninginkan ilmuwan peneliti. Biasanya, mereka lebuh h) Sisihkan waktu jeda ”perasaan” suka bekerja sendiri daripada berkelompok. sepuluh menit setiap hari i) commit to user Pasang musik yang Anda suka ketika e. Menyeimbangkan Kekuatan Pikiran Anda ingin mendengarkannya. Ketika Anda mengetahui cara berpikir j) Alami spiritualitas dengan cara nonAnda, Anda akan menjadi pemikir yang religius
lebih meningkatkan atau mempengaruhi belajar mereka. Mereka merasa dibatasi ketika berada dilingkungan yang dangat teratur hingga Anga tidak menemuka banyak dari mereka beketja diperusahaan asuransi, bank atau sejenisnya. Mereka berkiprah dilingkungan yang tidak teratur yang berkaitan dengan orang-orang. Pemikir AA mengalami peristiwa secara holistik. Mereka perlu melihat keseluruhan gambar sekaligus, bukan bertahap. Dengan alasan inilah, mereka akan terbantu jika mengetahui bagaimana segala sesuatu terhubung dengan keseluruhanuya sebelum masuk ke dalam detail. Walaupun orang-orang AA cukup banyak junlahnya, dunia tidak berjalan dengan gaya AA. Orang-orang dengan cara pikir seperti ini bekerja dengan baik dalam situasi-situasi yang kreatif dan harus bekerja lebih giat dalam situasi yang lebih teratur. Inilah beberapa cara bagi orang-orang AA untuk memanfaatkan bakat mereka degan sebaik-baiknya.
Hasrul, Pemahaman Tentang Gaya Belajar perpustakaan.uns.ac.id
k) Ambilah ”belokan yang keliru’’ dan telisuri lingkungan yang baru. Orang-orang berbakat tampaknya dapat belajar dengan cara yang sama baik secara visual, auditorial, dan kinestetik. Mereka lebih seimbang dalam mengunakan belahan otak kanan dan otak kiri. Anda dapat meningkatkan kemampuan Anda untuk belajar dan berhubungan dengan orang lain dengan mengembangkan modalitas yang paling tidak Anda sukai. Seorang visual dapat mengembangkan cara-cara auditorial dan kinestetik dengan berbicara mengenai berbagai hal dan melakukannya dengan gerakan tubuh. Misalnya, setelah menghadiri suatu seminar ceritakanlah kepada seseorang secara terperinci dengan menggunakan tangan dan tubuh anda untuk menekankan hal-hal dan informasi penting. Seorang auditorial, tunggulah seminar selesai buatlah peta pikiran dari informasi yang anda tangkap, dengan menggunakan beraneka macam warna, simbol, dan grafik. Seperti orangorang visual, Anda juga dapat mengembangkan cara kinestetik dengan melakukan konsep-konsep kunci dengan gerakan tubuh, atau dengan benar-benar membentuk model untuk mendemonstrasikannya, kalau ini memungkinkan. Seorang kinestetik, juga dapat membuat peta pikiran dari materi yang Anda dapatkan dan menarik gambaran dari hal tersebut (orang kinestetik suka menggambar) untuk mengembangkan gaya visual Anda. Lalu bicarakanlah dengan suara keras, dengan mengatur atau mengubahubah nada dan keras suara Anda untuk menekankan bagian-bagian penting. Cobalah untuk berbicara dengan irama.
digilib.uns.ac.id
lebih baik antara ketiga modalitas belajar, tergantung bagaimana memaksimalkannya. 3. Dalam mengolah informasi, dapat dipadukan menjadi empat kombinasi kelompok perilaku yang kita sebut gaya berpikir. Yaitu: skusensial konkret, skuensial abstrak, acak konkret, acak abstrak. 4. Observasi dan penelitian gaya belajar siswa sangat diperlukan oleh pengajar (guru, dosen, instruktur, tentor) untuk mendesain model, pendekatan, strategi dan metode pembelajaran. Berdasarkan simpulan di atas, disarankan beberapa hal: 1. Secara personal, diharapkan seseorang dapat mengetahui gaya belajarnya sehingga dapat memaksimalkan secara maksimal potensi dan modalitas belajar yang dimiliki. 2. Dalam hubungannya dengan pembelajaran, pengajar seharusnya melakukan obserbasi, eksplorasi dan penelitian sebelum melakukan kegiatan pembelajaran, sehingga dapat menentukkan model, pendekatan, strategi dan metode pembelajaran yang tepat untuk mengakomodasi keseluruhan gaya belajar peserta didik.
DAFTAR PUSTAKA
Abdul Haling, 2007. Belajar dan Pembelajaran. Makassar : Badan Penerbit UNM. Amstrong, Thomas, 2000. Sekolah Para Juara: Menerapkan Multiple Intellegences di Dunia Pendidikan, Jakarta: Kaifa. Bobbi Deporter & Hernacky, Mike, 2004. SIMPULAN DAN SARAN Quantum Learning, Jakarta: Kaifa. Berdasarkan uraian di atas, dapat _______________________, Mike, 2004. disimpulkan: Quantum Teaching, Jakarta: Kaifa 1. Gaya belajar manusia terdiri dari tiga, yaitu: visual, auditorial dan kinestetik. Budiningsih, commit to user C. Asri, 2005. Belajar dan 2. Gaya belajar merupakan modalitas belajar Pembelajaran, Jakarta: Rineka Cipta. seseorang yang “built up” sejak manusia Campbell, Linda, Bruce Campbell, Dee lahir. Tidak ada modalitas belajar yang Dickinson, 2004. Metode Praktis
Jurnal MEDTEK, Volume 1, Nomor 2, Oktober 2009digilib.uns.ac.id perpustakaan.uns.ac.id
Pembelajaran Berbasis Multiple Intellegences, terjemahan Tim Inisiasi, Jakarta: Inisiasi Press. Dimyati dan Mudjiono. 2006. Belajar dan Pembelajaran. Jakarta: Rineka Cipta. Effendi, Agus, 2005. Revolusi Kecerdasan Abad 21, Bandung: Alfabet. Gardner, Howard, 1993. Frame of Mind: The Theory of Multiple Intellegences, New York: Basic Book. ______________, 2003. Kecerdasan Majemuk: Teori dalam Pratek, terjemahan Alexander Sindoro, Batam: Interaksara. Mohammad Surya. 2003. Psikologi Pembelajaran & Pengajaran. Bandung: Pusaka Bani Quraisy.
Roestiyah. 1998. Strategi Belajar Mengajar. Jakarta: Rineka Cipta. Ruslan, dkk. Edisi 2006. Panduan Penulisan Skripsi dan Tugas Akhir. Fakultas Teknik Universitas Negeri Makassar. Slameto. 1995. Belajar dan Faktor-faktor yang Mempengaruhinya. Jakarta: Rineka Cipta. Sternberg, Robert J, 1988. Dasar-dasar Proses Belajar Mengajar, Bandung: Sinar Baru. Sugiyono. 2006. Metode Penelitian Pendidikan, Pendekatan Kuantitatif, Kualitatif dan R&D. Bandung:Alfabeta. Suparno, Paul, 2004. Teori Intelegensia Ganda dan Aplikasinya di Sekolah, Yogyakarta: Kanisius.
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
JPE 1 (1) (2012)
Journal of Primary Educational http://journal.unnes.ac.id/sju/index.php/jpe
PENGEMBANGAN PERANGKAT PEMBELAJARAN MATEMATIKA MODEL KOOPERATIF TIPE TWO STAY TWO STRAY DENGAN PENDEKATAN KONSTRUKTIVISME UNTUK MENINGKATKAN KEMAMPUAN KOMUNIKASI MATEMATIS SISWA Bambang Junaryadi
1,2
Prodi Pendidikan Dasar, Program Pascasarjana, Universitas Negeri Semarang, Indonesia SMP 1 Wonokerto Kabupaten Pekalongan
1 2
Info Artikel
Abstrak
Sejarah Artikel: Diterima Januari 2012 Disetujui Februari 2012 Dipublikasikan Juni 2012
Tujuan dari penelitian ini adalah untuk menciptakan instrumen matematika yang baik belajar dalam bentuk kurva tepi volume pada siswa kelas sembilan. Prosedur dikembangkan meliputi tahap analisis pra, panggung perancah analisis, pelaksanaan (konstruksi) tahap, tahap tes, evaluasi, revisi dan implementasi. Subyek penelitian ini adalah 36 siswa kelas sembilan mahasiswa IX.6 Kelas SMP 1 Wonokerto Pekalongan pada tahun 2011/2012. Instrumen untuk mengumpulkan penilaian validator data terdiri dari RPP, buku siswa, LKPD, Uji yang bertujuan untuk mengukur kemampuan komunikatif matematika; lembar observasi RPP pelaksanaan; kuesioner terhadap kuesioner, guru kepada siswa, dan siswa lembar kegiatan penilaian; ini analisis data menggunakan pendekatan deskriptif kualitatif dengan hasil penelitian. Skor perkembangan hasil instrumen penelitian menunjukkan skor rata-rata rencana pembelajaran (RPP) adalah 3,74; siswa ‘buku rata-rata adalah 3,80; siswa lembar kerja rata-rata adalah 3,80, dan rata-rata skor tes adalah 3,85, dengan kata lain belajar instrumen valid. Kegiatan belajar menggunakan ‘dua tinggal dua nyasar’ pembelajaran kooperatif tipe oleh konstruktivisme praktis, hal itu dibuktikan oleh beberapa bukti yaitu (1) lebih dari 80% RPP diimplementasikan dalam kegiatan belajar (2) guru memberikan respon yang baik untuk kegiatan pembelajaran dan ( 3) respon positif siswa untuk lebih dari 80%. Efektivitas kegiatan belajar diperoleh oleh bukti yaitu (1) siswa rata-rata aktivitas lebih dari 75, (2) siswa skor lulus KKM dengan nilai kelulusan klasik selama lebih dari 75 skor (3) Rata-rata dari kelas eksperimen lebih besar dari kelas kontrol (4) kegiatan pembelajaran memiliki pengaruh kemampuan komunikasi matematika siswa untuk 56,2%. Titik rata-rata
Keywords: Constructivism Cooperative Development Two stay two stray
pengembangan komunikasi matematika kelas eksperimen ‘adalah 0,71.
Abstract The purpose of this study is to create a good mathematics learning instrument in the curve edge volume shape at ninth graders. The development procedure consists of pre analysis stage, scaffolding analysis stage, implementation (construction) stage, test stage, evaluation, revision and implementation. The subjects of this study are 36 ninth graders students of IX.6 Class of SMP 1 Wonokerto Pekalongan at the year 2011/2012. Instruments to collect the assessment validator data consists of RPP, students’ books, LKPD, Test which has purpose to measure the mathematical communicative proficiency; observation RPP implementation sheet; questionnaire to the teacher, questionnaire to the students; and students activity assessment sheet; The data analysis employs descriptive and qualitative approach to the result of research. The score of development of instrument research result shows the average score of lesson plan (RPP) is 3.74; the students’ books average score is 3.80; students’ worksheet average score is 3.80; and the test average score is 3.85; in other words the learning instrument is valid. Learning activities using cooperative learning ‘two stay two stray’ type by the practical constructivism, it is proved by some evidences namely (1) more than 80% RPP implemented in learning activities (2) teacher give a good response to the learning activities and (3) students’ positive response for more than 80%. The effectiveness of learning activities is acquired by the evidence namely (1) the students’ activity average is more than 75; (2) the students’ score pass the KKM by the classical passing grade for more than 75 (3) The average score of experimental class is greater than control class (4) Learning activities has the influence of the students’ mathematical communication proficiency for 56.2%. The average point of the development of experimental class’ mathematical communication is 0.71.
© 2012 Universitas Negeri Semarang
Alamat korespondensi: Kampus Unnes Bendan Ngisor, Semarang 50233 E-mail:
[email protected]
commit to user
ISSN 2252 - 6404
perpustakaan.uns.ac.id
digilib.uns.ac.id Bambang/ Journal of Elementary Education 1 (1) (2012)
jar matematika menggunakan model kooperatif, siswa sering meningkatkan kemampuan mengatasi masalah mereka, memecahkan masalah matematika yang lebih abstrak dan mengembangkan pemahaman matematika mereka (Leikin dalam Tarim, 2008).
Pendahuluan
Proses pembelajaran yang efektif merupakan harapan semua pihak terkait dengan pendidikan. Untuk mencapai hal tersebut, antara lain diperlukan adanya partisipasi aktif dari guru, siswa dan suasana kelas yang mendukung (kondusif). Pembelajaran yang efektif menekankan pada Metode bagaimana agar peserta didik mampu ’belajar Penelitian ini dilaksanakan di SMP 1 Wocara belajar’ (learning how to learn), dan melalui kreatifitas guru, pembelajaran di kelas menja- nokerto Kabupaten Pekalongan kelas IX dengan di sebuah aktivitas yang menyenangkan (joyfull satu kelas sebagai kelas eksperimen dan satu kelearning) (Mulyasa, 2008:19). Dengan demikian las lagi sebagai kelas kontrol. Pembelajaran pada kegiatan pembelajaran yang akan dilaksanakan kelas eksperimen menggunakan perangkat yang benar-benar direncanakan untuk meningkatkan dikembangkan peneliti yaitu perangkat pembelapemahaman siswa yang pada akhirnya berdam- jaran matematika model kooperatif tipe two stay pak pada hasil belajar yang baik. Tugas guru bu- two stray dengan pendekatan konstruktivisme. kan lagi aktif menstransfer pengetahuan (transfer Sedangkan pada kelas kontrol, pembelajaran diof knowledge) dari benaknya ke benak siswa di laksanakan secara konvensional dengan menggudalam kelas, tetapi menciptakan kondisi belajar nakan metode ekspositori. Pada saat pelaksanaan dan merencanakan jalannya pembelajaran den- pembelajaran di kelas eksperimen dilakukan pengan pilihan materi yang cocok dan representatif, gamatan keaktifan peserta didik. Setelah pembesehingga mereka mendapat pengalaman belajar lajaran materi luas permukaan dan volum tabung yang optimal (Marpaung, 2006; & Dahar, 1989). dan kerucut selama empat kali pertemuan, kedua Menurut Witrock (dalam Rusyan, et al kelas diadakan tes hasil belajar dengan menggu1989) siswa akan memahami pelajaran bila siswa nakan naskah soal yang sama. Instrumen yang dipergunakan dalam penaktif sendiri membentuk atau menghasilkan pengertian dan hal-hal yang diinderanya, penginde- elitian eksperimen ini adalah (1) lembar pengaraan dapat terjadi melalui penglihatan, penden- matan keaktifan peserta didik dan (2) Tes Hasil garan, penciuman, dan sebagainya. Pengertian Belajar (THB). Lembar pengamatan aktivitas yang dimiliki siswa merupakan bentukannya sen- peserta didik terlebih dahulu divalidasi oleh ahli. diri dan bukan hasil bentukan orang lain. Piaget Skor rata-rata dari penilaian keempat ahli terhadengan teori konstruktivisnya berpendapat bah- dap lembar pengamatan aktivitas peserta didik wa pengetahuan akan dibentuk oleh siswa apa- dengan skor tertinggi 4 atau pada kriteria sangat bila siswa dengan obyek/orang dan siswa selalu baik. Naskah soal THB sebelum dipergunakan mencoba membentuk pengertian dari interaksi terlebih dahulu divalidasi ahli dan dilakukan uji coba naskah soal. Skor rata-rata dari penilaian tersebut. Materi Geometri khususnya materi ban- keempat ahli terhadap soal THB dengan skor gun ruang sisi lengkung adalah bagian dari mate- tertinggi 4 atau pada kriteria sangat baik. Berdasmatika yang memiliki tingkat keabstrakan tinggi arkan hasil uji coba dilakukan analisis butir soal karena objek yang dibicarakan di dalamnya me- yang meliputi validitas, reliabilitas, daya pemberupakan benda-benda pikiran yang sifatnya abst- da soal, dan tingkat kesukaran butir soal. Dari 10 rak (Iswadji, 1993:1). Keabstrakan objek-objek butir soal essay dipilih 5 butir soal essay untuk matematika perlu diupayakan agar dapat diwu- tes hasil belajar (THB) kelas eksperimen dan kejudkan secara lebih konkret, sehingga akan mem- las kontrol. Dengan menggunakan instrumen terpermudah siswa memahaminya (Dindyal, 2007). sebut, akan diperoleh data keaktifan peserta didik Oleh karena itu perlu dikembangkan perangkat dan data prestasi belajar. Data keaktifan peserta pembelajaran yang dapat digunakan sebagai didik diperoleh dengan cara mengamati yang upaya mengkondisikan pembelajaran geometri dilakukan oleh dua pengamat pada saat pelakkhususnya volum dan luas permukaan tabung sanaan pembelajaran. Data prestasi belajar kelas dan kerucut menjadi bermakna, kontektual, tidak eksperimen dan kelas kontrol diperoleh dengan membosankan, menyenangkan dan menarik mi- cara memberikan tes setelah kegiatan pembelajaran berlangsung dengan menggunakan naskah nat siswa (Damayani, 2010) Pembelajaran kooperatif dalam matema- soal THB. commit to user Untuk mengetahui ketuntasan belajar petika akan dapat membantu siswa meningkatkan sikap positif siswa dalam matematika. Saat bela- serta didik, nilai tes hasil belajar masing-masing 20
perpustakaan.uns.ac.id
digilib.uns.ac.id Bambang/ Journal of Elementary Education 1 (1) (2012)
Tabel 1. Hasil Penilaian Validator Terhadap Perangkat Pembelajaran
Skor dari Validator
Perangkat Pembelajaran
IV
Skor Rata-rata
I
II
III
Kriteria
RPP LKPD BS
3,74 3,80 3,80
3,68 3,50 3,80
3,58 3,60 3,70
3,95 3,90 3,90
3,74 3,80 3,80
Sangat baik Sangat baik Sangat baik
THB
3,80
3,80
3,70
4,00
3,85
Sangat baik
Simpulan : Sangat baik dan dapat dipergunakan tetapi masih terdapat sedikit revisi peserta dibandingkan dengan nilai KKM yaitu 70. Hasil belajar peserta didik disebut tuntas belajar klasikal (ketuntasan klasikal) apabila sekurang-kurangnya 75% dari jumlah peserta didik di kelas tersebut tuntas belajar. Untuk menguji tiap peserta didik tuntas atau tidak digunakan uji proporsi. Hasil belajar tiap peserta didik dikatakan tuntas dari segi hasil, menurut Mulyasa (2008: 218) adalah seluruh atau setidaknya 75% peserta didik mencapai KKM. Teknik pengumpulan data meliputi : (1) penilaian ahli, (2) pengamatan keterlaksanaan RPP , (3) keaktifan peserta didik, (4) tes, (5) angket respon guru dan siswa. Teknik analisis data meliputi : analisis deskripsi penilaian ahli, uji ketuntasan, uji proporsi, uji pengaruh, uji perbedaan rata-rata. Peningkatan komunikasi matematis pada kelas eksperimen dapat diukur dengan perhitungan gain ternormalisasi berdasarkan data pretes dan postes.
wa mampu menemukan konsep sendiri; (2) kegiatan kelompok yang sebelumnya jarang dilakukan siswa dapat dilatih dengan pembelajaran model kooperatif tipe two stay two stray dengan pendekatan konstruktivisme; (3) para siswa pada dasarnya dapat mengkomunikasikan ide di depan kelas; (4) aktivitas belajar siswa akan berpengaruh pada hasil belajar; dan (5) sebenarnya siswa menyukai pembelajaran yang inovatif karena merupakan sesuatu yang baru bagi siswa seperti pembelajaran matematika model kooperatif tipe two stay two stray dengan pendekatan konstruktivisme. Tahap Perancangan ini dirancang perangkat pembelajaran yang sesuai dengan pembelajaran geometri khususnya materi bangun ruang sisi lengkung model kooperatif dengan pendekatan konstruktivisme. Perangkat yang dirancang adalah RPP, Buku Siswa, LKPD, dan THB. Selanjutnya direalisasikan dengan menyusun RPP, Buku Siswa, LKPD, dan THB yang sesuai dengan pengembangan perangkat pembelajaran model Hasil dan Pembahasan kooperatif tipe two stay two stray dengan pendekatan konstruktivisme pada materi bangun ruang Pengembangan perangkat pembelajaran sisi lengkung. matematika model kooperatif tipe two stay two Tahap pengkajian, evaluasi, dan revisi berstray dengan pendekatan konstruktivisme untuk tujuan untuk mengetahui: (a) kevalidan draf 1 pemeningkatkan kemampuan komunikasi matema- rangkat pembelajaran yang telah disusun, koreksi tis siswa mengacu pada model pengembangan dan saran perbaikan dari para ahli; (b) ketercapendidikan umum Plomp (1997) yang terdiri atas paian tujuan pembelajaran akibat penerapan pebeberapa tahap yaitu (1) tahap investigasi awal, rangkat pembelajaran. Hasil penilaian (validasi) (2) tahap perancangan (design), (3) tahap realisa- terhadap perangkat pembelajaran pada tabel 1. si/konstruksi, (4) tahap pengujian, evaluasi, dan Pada tahap implementasi dilakukan beberevisi, dan (5) tahap implementasi. Hasil pen- rapa kegiatan uji empirik. Hal penting lain dalam gembangan perangkat pembelajaran ini adalah tahap implementasi perangkat pembelajaran adasebagai berikut. lah dilakukannya evaluasi dan refleksi atas tiap Tahap investigasi awal dilakukan kajian pembelajaran. terhadap perangkat pembelajaran matematika Setelah semua perangkat pembelajaran model kooperatif tipe two stay two stray dengan divalidasi oleh para ahli dan dinyatakan layak pendekatan konstruktivisme baik tentang kuri- untuk digunakan, selanjutnya dilakukan uji coba kulum matematika, keadaan/kondisi siswa dan perangkat pembelajaran pada kelas uji coba. tuntutan lingkungan terhadap pembelajaran ma- Sedangkan khusus untuk tes hasil belajar digutematika. Berdasarkan pengamatan peneliti dan nakan untuk mengukur kelas eksperimen dan to user teman-teman guru diperoleh asumsi bahwacommit (1) kelas kontrol. Selama proses pembelajaran beraktivitas belajar siswa dapat ditingkatkan agar sis- langsung dilakukan proses pengambilan data ak21
perpustakaan.uns.ac.id
digilib.uns.ac.id Bambang/ Journal of Elementary Education 1 (1) (2012)
tivitas belajar melalui pengamatan, diambil juga selama pembelajaran baik. Uji banding dianalisa menggunakan Indedata-data yang lain, yaitu: angket keterlaksanaanpenden Sample Test diperoleh rata-rata kelas ekspenya RPP dalam mengelola pembelajaran, angket rimen = 77,6944 dengan standar deviasi 8,35411 respon guru terhadap perangkat dan pelaksanaan lebih dari rata-rata kelas kontrol = 70,8333 denpembelajaran, dan angket angket respon siswa gan standar deviasi 4,8726, ini menunjukan bahterhadap perangkat dan pelaksanaan pembelajawa hasil belajar kelas eksperimen lebih baik dari ran. pada hasil belajar kelas kontrol. Rekapitulasi hasil dari pengamatan kedua Uji pengaruh keaktifan siswa terhadap observer dengan menggunakan lembar pengamaprestasi belajar pada Model Summary, terlihat tan keterlaksanaan RPP pada pertemuan ke-1, bahwa nilai R Square = 0,562 = 56,2%, artinya kedua observer memberikan skor rata-rata 3,16 variabel keaktifan memberi kontribusi terhadap (dari skor tertinggi 4) atau pada kriteria “baik”. prestasi belajar sebesar 56,2%, sisanya 34,8% diPada pertemuan ke-2, ke-3, dan ke-4 skor ratapengaruhi faktor lain. rata kedua observer masing-masing adalah 3,44; Berdasarkan data pretes dan postes, per3,52; dan 3,60 atau masing-masing pada kriteria kembangan komunikasi matematis pada kelas “sangat baik”. Skor rata-rata kedua observer seeksperimen yang diukur dengan perhitungan lama 4 kali pertemuan tersebut adalah 3,43 atau gain ternormalisasi diperoleh skor rata-rata 0,71 pada kriteria “sangat baik”. dengan katagori tinggi. Respons guru terhadap kegiatan pembelaProses pengembangan perangkat pembejaran yang dilakukan pada saat uji coba peranglajaran ini dilakukan beberapa kali revisi dalam kat diperoleh rata-rata skor respons guru yang rangka untuk mendapatkan perangkat pembelameliputi perasaan dan pendapat terhadap suasajaran yang valid. Revisi terhadap RPP ada tiga na pembelajaran, RPP, BS, LKPD, dan THB macam yaitu kegiatan penutup lebih lengkap kaadalah 3,43 (dari skor tertinggi 4) atau pada kritelau ditambah refleksi, soal kuis agak komplek seria “sangat baik”. hingga kurang mengena dengan tujuan pembelaRespons siswa terhadap kegiatan pembejaran, dan beberapa gambar belum proporsional. lajaran diperoleh banyak siswa yang menyatakan Revisi LKPD dilakukan pada kalimat-ka“senang” terhadap kegiatan pembelajaran ratalimat cek dengan teliti, dan gambar dibuat lebih rata adalah 91,8 %. Banyak siswa yang menycermat. Dari masukan validator kemudian dilaatakan “baru” terhadap kegiatan pembelajaran kukan revisi. Validator menyarankan agar waktu rata-rata adalah 89,2 %. Secara keseluruhan, rata-rata banyak siswa yang menyatakan perasaan yang disesuaikan antara di RPP dan LKPD. Revisi buku siswa dilakukan pada peta “senang” dan berpendapat “baru” terhadap kekonsep belum ada jalinan antar konsep, gambargiatan pembelajaran yang dilaksanakan adalah gambar buat lebih cermat, kalimat-kalimat cek 90,5 %. dengan teliti. Dari saran-saran validator kemudiHasil belajar siswa yang nilainya mencaan dilakukan revisi untuk mendapatkan buku sispai KKM sebanyak 34, dan yang tidak mencapai wa yang dapat dijadikan pegangan siswa dalam KKM sebanyak 2. Sehingga dapat dilihat prosenbelajar, sehingga siswa mampu mencerna semua tase jumlah siswa yang nilainya mencapai KKM materi yang ada pada buku siswa dengan mudah sebesar 94,44%. Setelah dilakukan perhitungan tanpa mengalami kesulitan. diperoleh z = 3,464, dengan alpha = 5%, diperoRevisi pada Tes Hasil Belajar dilakukan leh ztabel = 1,645. Karena zhitung > ztabel, maka dapat pada tes hasil belajar yang diukur masih umum disimpulkan bahwa lebih dari 75% siswa yang belum spesifik, perlu soal yang sesuai dengan kememperoleh pembelajaran menggunakan model mampuan komunikasi matematis, beberapa soal kooperatif tipe two stay two stray dengan pendekayang kalimat belum baik perlu susun kembali. tan konstruktivisme memperoleh nilai tes di atas Kemudian setelah divalidasi dengan kriteria nilai KKM. baik dan dapat dipakai maka soal THB diterapRata-rata aktivitas belajar matematika siskan pada kelas uji coba. Hasil uji coba tersebut wa pada pertemuan pertama adalah 59,29; pada didapatkan soal yang memenuhi kriteria reliabel, pertemuan kedua 61,66; pada pertemuan ketiga tingkat kesukaran yang berimbang dan daya beda 64,64; dan rata-rata aktivitas pada pertemuan yang baik. Soal yang tidak memenuhi kriteria terkeempat adalah 67,66. Hal ini menunjukkan bahsebut tidak digunakan. wa komponen aktivitas siswa yang meningkat. Berdasarkan hasil pengamatan observer Sedangkan rata-rata dari aktivitas belajar siswa diperoleh to userskor rata-rata keterlaksanaan RPP adaselama proses pembelajaran adalah 63,31. commit Selah 3,43 (dari skor tertinggi 4) atau dalam kriteria hingga dapat disimpulkan bahwa aktivitas siswa 22
perpustakaan.uns.ac.id
digilib.uns.ac.id Bambang/ Journal of Elementary Education 1 (1) (2012)
sangat baik. Hal ini menunjukkan bahwa RPP dan perangkat pembelajaran lainnya yang dikembangkan dapat dilaksanakan dengan baik di dalam kelas. Rata-rata skor respons guru yang diberikan oleh guru model adalah 3,40 (dari skor tertinggi 4) dengan kriteria sangat baik. Guru menyatakan perasaan sangat senang dengan suasana pembelajaran yang dilaksanakan dan juga terhadap perangkat pembelajaran yang dikembangkan. Guru juga berpendapat bahwa suasana pembelajaran yang dilaksanakan dan perangkat pembelajaran yang digunakan tergolong baru. Berdasarkan persentase siswa yang memberikan respons positif terhadap suasana pembelajaran, perangkat pembelajaran dan cara guru mengajar, diperoleh masukan yang positif. Siswa menyatakan perasaan senang terhadap suasana pembelajaran dan perangkat pembelajaran baru yang digunakan. Siswa yang nilainya mencapai KKM ada 34, sedangkan yang tidak tuntas KKM ada 2. Setelah dianalisis dari kedua siswa yang tidak tuntas KKM diantaranya karena: (1) ada pesta didik yang masih belum paham mengenai materi bangun ruang sisi lengkung, (2) ada siswa yang masih kurang sehat, sehingga kurang konsentrasi ketika mengerjakan soal-soal.Hasil pengujian ketuntasan klasikal di depan hasilnya lebih dari 75%. Hal ini menunjukkan bahwa lebih dari 75% siswa di kelas eksperimen telah mencapai nilai di atas KKM (70) ini menunjukkan bahwa pembelajaran matematika model kooperatif tipe two stay two stray dengan pendekatan konstruktivisme dapat meningkatkan kemampuan komunikasi matematis siswa. Rata-rata aktivitas belajar matematika siswa menunjukkan bahwa komponen aktivitas siswa yang meningkat. Sedangkan rata-rata dari aktivitas belajar siswa selama proses pembelajaran tinggi. Hasil data menunjukan rata-rata hasil belajar kelas eksperimen lebih baik dari kelas kontrol, hal ini dikarenakan pembelajaran matematika model kooperatif tipe two stay two stray dengan pendekatan konstruktivisme mampu menumbuhkan siswa untuk berkomunikasi matematis. Selain itu pembentukan kelompok yang memungkinkan siswa untuk saling bekerja sama berdiskusi untuk memecahkan masalah. Sementara pada kelas kontrol mendapatkan pembelajarn konvensional yaitu dengan metode ekspositori dan hanya didukung buku pegangan siswa. Hasil pembelajaran dengan pendekatan
kostruktivisme telah menunjukan hasil antara lain : (1) hasil belajar mencapai tuntas (2) aktivitas belajar berpengaruh terhadapa hasil belajar (3) hasil belajar kelas eksperimen lebih baik daripada kelas kontrol. Ini menunjukan bahwa pembelajaran tersebut adalah efektif. Karena hasil penelitian ini telah menghasilkan perangkat pembelajaran yang valid dan pembelajaran yang efektif, maka penelitian ini berhasil, sesuai dengan tujuan penelitian. Simpulan Pada penelitian ini diperoleh hasil: (1) Perangkat pembelajaran yang dikembangkan dalam penelitian adalah baik atau valid; (2) Pembelajaran yang dilakukan menggunakan perangkat pembelajaran yang dikembangkan praktis; (3) Pembelajaran menggunakan perangkat pembelajaran yang dikembangkan efektif. (4) Perangkat pembelajaran yang dikembangkan dalam penelitian dapat meningkatkan komunikasi matematis siswa. Daftar Pustaka Dahar, W. R. 1989. Teori-Teori Belajar. Jakarta: Erlangga. Damayani, A.T., 2010. Pengembangan Perangkat Pembelajaran Matematika Model Pemecahan Masalah Untuk Meningkatkan Kemampuan Komunikasi Siswa Materi Kubus SMP 2 Kaliwungu. Tesis Universitas Negeri Semarang. Dindyal, J. 2007. The Need for an Inclusive Framework for Students’ Thinking in School Geometry, Vol. 4, no. 1. Singapore: ISSN 1551-3440. Iswadji, D. 1993. Materi Pokok Geometri Ruang. Jakarta: Universitas Terbuka. Marpaung, Y. 2006. Metode Pembelajaran Matematika untuk Anak SD/MIN. Makalah disampaikan pada Sarasehan Pengembangan Pembelajaran di SD dan TK Fakultas Ilmu Pendidikan, UNY, Karangmalang, 1 Oktober 2006. Yogyakarta. Mulyasa, E. 2008. Kurikulum Tingkat Satuan Pendidikan. PT Remaja Rosdakarya Offset: Bandung. Plomp, Tjeerd., 1997. Educational and Training System Design. Enschede, The Netherlands: Univercity of Twente Popham, J.W. 1994. Classroom Assesment, What Teachers Need T Know. Los Angeles: Allyn and Bacon. Rusyan, T A, at al (1989). Pendekatan dalam Proses Belajar Mengajar. Remadja Karya: Bandung. Tarim, K. 2008. The effects of cooperative learning on Turkish elementary students’ mathematics achievement and attitude towards mathematics using TAI and STAD methods. Educ Stud Math, 67/1: 77 – 91.
commit to user 23
In the Classroom Prewriting Tasks for Auditory, Visual, and Kinesthetic Learners Lisa Leopold Although it is a well-known fact that students’ preferred learning styles vary, many instructors teach in the way that reflects their own learning style preferences despite the fact that mismatches in teacher-learner styles may result in lower student achievement. In a traditional ESL or EAP writing class, students who prefer to learn by reading and writing may be privileged over those who have a visual, auditory, or kinesthetic style preference. In this article, I describe a variety of prewriting tasks that appeal to diverse learners and complement a processoriented approach to writing. Même s’il est bien connu que les styles d'apprentissage préférés des élèves varient, plusieurs enseignants présentent la matière selon leurs propres préférences. De cet écart entre les styles de l'enseignant et des élèves peut découler un rendement inférieur chez ces derniers. Dans un cours traditionnel de rédaction en anglais langue seconde ou anglais à des fins académiques, les élèves qui préfèrent apprendre en lisant ou en écrivant pourraient être avantagés par rapport à ceux qui préfèrent apprendre de façon visuelle, auditive ou kinesthésique. Dans cet article, je décris une variété de tâches de pré-écriture qui plaisent à divers apprenants et qui complètent une approche à la rédaction orientée sur le processus.
Introduction In 2008, an Iraqi student in my policy-writing class at a small private graduate school in the United States raised her hand and politely asked, “Can we have a visual representation of the policy memo?” I was stumped. Although I had provided explicit and detailed guidelines for this writing assignment, these four pages of prose evidently were not presented in an easily accessible way to this student. I wondered how many other students would have appreciated a visual representation of the policy memo. Thus I began my exploration of students’ preferred learning styles and my attempt to diversify my writing pedagogy to accommodate all students’ learning preferences. Learning styles have been defined as “the cognitive, affective, and physiological traits that are relatively stable indicators of how learners perceive, interact with, and respond to the learning environment” (Keefe, 1979, p. 4)
96
LISA LEOPOLD
commit to user
and “the general approaches students use to learn a new subject or tackle a new problem” (Oxford, Holloway, & Horton-Murillo, 1992, p. 440). Learning styles may broadly cover cognitive, affective, social, or perceptual styles, the last of which I focus on in this article, because they are relatively easy to assess and familiar to most instructors and learners. Perceptual learning styles describe learners’ preferences for processing information through visual, auditory, kinesthetic, or tactile channels. In the 1980s and 1990s, scholarship on learning styles was prominent in TESOL (Oxford et al., 1992; Reid, 1987, 1998). Several scholars concluded that culture is one of the determining factors that affect students’ preferred learning styles (Oxford et al.; Stebbins, 1995). In studying cultural differences in learners’ preferences, Reid (1987) found that most high intermediate and advanced ESL students enrolled in an intensive English program in the US strongly preferred kinesthetic learning, particularly those from Arabic, Spanish, Chinese, Korean, Malay, and Thai backgrounds. In a study of 227 East Asian university students, Goodson (1994) found that most students preferred visual and kinesthetic styles. More specifically, mainland Chinese and Taiwanese students favored visual approaches to learning, Japanese students preferred kinesthetic approaches, and Korean students favored tactile and visual modes. Auditory and visual modes were preferred among 500 Arabic students learning English in Australia (Willing, 1988). Although research on learners’ preferences across cultures has not always produced consistent results, several scholars have noted cultural patterns in learning style preferences and perhaps not surprisingly, that ESL/EFL instructors’ teaching styles often reflect their own learning styles (Oxford et al.). The potential for a mismatch between teachers’ and learners’ preferred styles may be high, particularly in postsecondary educational settings where lectures in the second language still serve as a predominant mode of instruction. Asian international students in particular tended not to do well academically when the primary mode of instruction in their college courses was auditory (Ladd & Ruby, 1999). Among children of cultural minority groups, a mismatch in teaching and learning styles has been linked to poor academic performance and negative attitudes toward education (Morgan, 2010). Conversely, a match between learning and teaching styles has been correlated with higher student achievement rates (Dunn & Griggs, 1995; Ellis, 1989; Oxford, Ehrman, & Lavine, 1991). As a result, many scholars (Franklin, James, & Watson, 1996) have called for educators to adopt a culturally sensitive inclusive approach to their pedagogy to foster positive learning outcomes among students. Since the 1990s, less research has been published on learning styles in the field of TESOL. While such publications were beginning to wane in TESOL, the process approach to writing had already gained prominence (Hyland, 2003). This recursive approach, which involves prewriting, drafting, revising,
TESL CANADA JOURNAL/REVUE TESL DU CANADA VOL. 29, NO 2, SPRING 2012
commit to user
97
and editing one’s work, may privilege those who prefer to learn via reading and writing, rather than those whose preferred learning style is visual, auditory, or kinesthetic. However, barring a few exceptions (Leki, 1991; Stebbins, 1995), relatively few scholars have focused on the importance and classroom application of a process approach to writing that appeals to students with diverse learning styles. Without abandoning the principal tenets of the process approach to writing, I argue that instructors should attempt to diversify their writing pedagogy to include all learning style preferences. Just because learners need to write does not mean that the prewriting process, which involves activities such as brainstorming, data-collecting, note-taking, outlining, and free writing, could not (or should not) appeal to those with visual, auditory, or kinesthetic preferences. In fact during the prewriting stage of the writing process, instructors have the most flexibility to design creative tasks that appeal to diverse learners, because prewriting, unlike writing, is not limited to a single mode. Integrating diverse activities at this stage may be easier for instructors and may result in better learning outcomes for students.
Diversity of Learning Styles in the Classroom Visual learners learn best when they see something; auditory learners prefer to process information through oral/aural modes; and kinesthetic learners prefer to learn through activities that require total physical involvement. Table 1 presents a small repertoire of activities and materials that instructors can use to appeal to learners with each perceptual preference. Table 1 Auditory
Visual
Kinesthetic
Discussion
Texts
Movement
Debate
Charts
Role-plays
Podcasts
Tables
Drama
Dictations
Graphs
Races and competitions
Jigsaw reading
Mind maps
Handling objects or props
Reading aloud
Graphic Organizers
Storytelling
Art
Chain games/chants
Drawings
Lectures
Pictures Posters Realia Visualizations
98
LISA LEOPOLD
commit to user
In the following section, I suggest several ways that instructors can use stories, graphic organizers, mind-maps, and other tools creatively in prewriting instruction so that course content is presented in a culturally sensitive, inclusive way that takes into account the diversity of learning styles in the classroom. I implemented these activities with international graduate students enrolled in my credit-bearing English for Academic Purposes writing courses in the US. The learners were pursuing a master’s degree in international policy studies or international business, and all had attained a TOEFL score of at least 79 (Internet-based) on admission to their graduate program.
Prewriting Tasks for Auditory Learners 1. Auditory learners respond well to discussions and oral brainstorming, both of which are widely used as prewriting activities in the traditional writing classroom. Instructors can also make use of technological tools such as Voxopop and Audacity, which can serve as a more permanent archive of students’ ideas. Students in my business communication class recorded and posted reflections on http://www.voxopop.com before composing a letter of recommendation for one of their peers. I asked them to respond to a set of questions about their educational and professional background, greatest professional or scholarly achievements, and skill sets. Students uploaded their responses to these questions and listened to one of their peers’ recordings, asked follow-up questions, and composed a letter of recommendation for their classmate based on information that they had collected from the oral recording. These tools, which allow students and teachers to make oral recordings, may also have relevance later in the writing process as an alternative to face-to-face conferencing or peer review. 2. Auditory learners love stories, and stories can be useful for teaching students techniques for paraphrasing before assigning them to write a paraphrase. I begin this activity by asking a student to tell the class about a memorable experience or simply an exciting activity that he or she did over the weekend. Then I call on another student to retell the classmate’s memorable event. I ask the entire class to identify what was similar and what was different about these stories. Students recognize that the gist of both stories was similar and that no new information was added to the rendition. However, the stories were different in that the chronological sequence of events may have been altered in the second story, a few details may have been omitted, other words may have been used to tell the story, and the rendition was probably told in the third person rather than the first person. I use these insights as a bridge to teach students about the concept of paraphrasing: the goal is to capture the author’s main point while rephrasing it in one’s own words using another sentence structure. 3. Auditory learners may understand the concept of supporting a claim with evidence more easily if it is first presented as an oral rather than textual
TESL CANADA JOURNAL/REVUE TESL DU CANADA VOL. 29, NO 2, SPRING 2012
commit to user
99
activity. To introduce this activity, I have students take a stance on any controversial issue about which they feel passionate. I tell them that they are to convince their partner of their point of view in two minutes. Then I have them switch roles and listen to their partner’s persuasive pitch. Afterward I ask them: Were they convinced? Why or why not? This usually leads to a fruitful discussion of evidence including facts, statistics, expert opinions, and true anecdotes as a way to strengthen one’s position. I remind students that these lessons apply to writing; few readers will be convinced based solely on conjecture.
Prewriting Tasks for Visual Learners 1. Mind-mapping is a wonderful way for visual learners to brainstorm ideas and to map cause-effect sequences. Bubbl.us allows users to convey the relationship and hierarchy among ideas using color-coded boxes that are appealing to visual learners. Moreover, students can collaborate in creating a mind-map on Bubbl.us. I have played the two-minute trailer of An Inconvenient Truth and asked students to create a mind-map of the causeeffect sequences (e.g., the problem, the causes leading to the problem, and the consequences resulting from the problem). This prewriting activity helped students outline the cause-effect framework that they were to model in their policy analysis papers. 2. Graphic organizers are helpful for visual learners to categorize, classify, and organize their ideas. I have used a graphic organizer of a tree to teach students how to conceptualize a problem for a policy memo. The roots of the tree are the causes of the problem, the trunk is the problem, and the branches and fruits represent the consequences of the problem. Because students sometimes have difficulty in distinguishing the causes from the consequences, this graphic organizer helps them outline their ideas clearly before writing their policy memo; it can also be used for outlining any cause-effect or problem-solution structure for essay writing.
Prewriting Tasks for Kinesthetic Learners 1. Kinesthetic learners, who love to move around and do things in class, react favorably to the following dynamic activity for learning how to organize and categorize information for an essay. Each student receives a colored card with the name and location of a vacation destination. Then I ask students to stand up and organize themselves into groups based on the information on their cards. Students must develop an organizational scheme or pattern as if they were writing an essay; they are not provided with any more explicit instruction than this. When students are satisfied with how they have organized themselves, I ask them to explain the pattern they chose. Perhaps they have developed categories such as “Vacations to take if you like nature,” “Vacations to take on a romantic getaway,” “Vacations
100
LISA LEOPOLD
commit to user
to take with young children,” “Vacations to take if you want to be physically active,” or “Vacations to take to learn about history,” among others. Then I ask students to reflect on what they have learned about categorizing and organizing information for an essay. Key points for discussion include the importance (a) that each subpoint connect to the overarching theme (in this case, vacations one can take); (b) that each category (or paragraph) have multiple examples; and (c) that the categorization be logical. In this case, the subpoints are all related to vacations one can take. One could imagine alternate and perhaps illogical ways to organize this information: by alphabetical order or by the color of the card. 2. If students are assigned to write a genre that can be divided into multiple sections such as a research paper that has an abstract, literature review, method, results, and discussion or an essay that has an introduction, body, and conclusion, the following activity can help them learn about the rhetorical purpose of each section. I write the title of each section of the paper on the board (e.g., abstract, literature review, method, results, and discussion). Then I give each student a card that describes a key purpose of one of the sections (e.g., This synthesizes previous research; This describes the number of participants). I tell students to match the descriptor on their card to the appropriate section and tape it to the board. Then I lead the class in a discussion of the accuracy if their categorization is correct and move the pieces to the correct section as needed. Although I designed these activities for my advanced language-learners, they could be adapted for learners at lower proficiency levels with appropriate scaffolding. For example, students at lower proficiency levels might complete a graphic organizer in pairs or listen to a video clip twice: once to comprehend the content and a second time to complete the assigned activity. In my writing courses, these activities helped to foster a more interactive, studentcentered classroom environment. Students commented on course evaluations that material was presented in a clear and accessible way for all learners and that the classroom environment was a place where “everyone is comfortable to learn” (Anonymous student).
Conclusion According to some researchers, what constitutes good teaching may be a culturally bound phenomenon (Hofstede, 1986; Xiao, 2006), but if we were to assess the quality of our teaching based on our students’ learning, we would aim to diversify our instructional approach to be more inclusive of all learners’ preferences. Aside from creating a more engaging classroom environment, such diversification would ensure that no student is disadvantaged based on a mismatch in teachers’ and learners’ preferences. Instructors might also wish to have students complete a learning-style preferences survey (such as those found in Reid, 1998) at the beginning of each course to create a proTESL CANADA JOURNAL/REVUE TESL DU CANADA VOL. 29, NO 2, SPRING 2012
commit to user
101
file of their students’ preferred learning styles. Students can reflect on, write about, and discuss their learning style preferences. They can brainstorm learning strategies that they might use to be successful and explore how their cultural or educational background may influence their preferred learning style(s). Moreover, instructors can solicit students’ input as to how classroom activities and materials might accommodate their learning styles and take this into consideration when designing activities that meet the course goals. Perhaps the culturally based notion of good teaching no longer needs to be an elusive concept: matching our instruction with our learners’ style preferences may be part of the solution.
References Dunn, R.S., & Griggs, S.A. (1995). Multiculturalism and learning style: Teaching and counseling adolescents. Westport, CT: Praeger. Ellis, R. (1989). Classroom learning styles and their effect on second language acquisition: A study of two learners. System, 17(2), 249-262. Franklin, M.E., James, J.R., & Watson, A.L. (1996). Using a cultural identity development model to plan culturally responsive reading and writing instruction. Reading and Writing Quarterly, 12(1), 41-58. Goodson, T. J. (1994). Learning style preferences of East Asian ESL students. CSA Linguistics and Language Behavior Abstracts. (9500403). Hofstede, G. (1986). Cultural differences in teaching and learning. International Journal of Intercultural Relations, 10, 301-320. Hyland, K. (2003). Second language writing. New York: Cambridge University Press. Keefe, J.W. (1979). Learning style: An overview. In National Association of Secondary School Principals, Student learning styles: Diagnosing and prescribing programs (pp. 1-17). Reston, VA: NASSP. Ladd, P.D., & Ruby, R. (1999). Learning style and adjustment issues of international students. Journal of Education for Business, 74, 363-367. Leki, I. (1991). Twenty-five years of contrastive rhetoric: Text analysis and writing pedagogies. TESOL Quarterly, 25, 123-143. Morgan, H. (2010). Improving schooling for cultural minorities: The right teaching styles can make a big difference. Educational Horizons, 88, 114-120. Oxford, R., Ehrman, M., & Lavine, R.Z. (1991). Styles wars: Teacher-student style conflicts in the language classroom. In S.S. Magnan (Ed.), Challenges in the 1990s for college foreign language programs (pp. 1-25). Boston, MA: Heinle & Heinle. Oxford, R., Holloway, M., & Horton-Murillo, D. (1992). Language learning styles: Research and practical considerations for teaching in the multicultural tertiary ESL/EFL classroom. System, 20, 439-456. Reid, J. (1987). The learning style preferences of ESL students. TESOL Quarterly, 21, 87-111. Reid, J. (Ed.). (1998). Understanding learning styles in the second language classroom. Upper Saddle River, NJ: Prentice-Hall. Stebbins, C. (1995). Culture-specific perceptual-learning-style preferences of postsecondary students of English as a second language. In J. Reid (Ed.), Learning styles in the ESL/EFL classroom (pp. 108-117). Boston, MA: Heinle & Heinle. Willing, K. (1988). Learning styles in adult migrant education. Adelaide, Australia: National Curriculum Resource Centre. Xiao, L. (2006). Bridging the gap between teaching styles and learning styles: A cross-cultural perspective. TESL-EJ, 10(3). Available: http://tesl-ej.org/ej39/a2.html
102
LISA LEOPOLD
commit to user
perpustakaan.uns.ac.id digilib.uns.ac.id © Journal of Education and Sociology, ISSN: 2078-032X, December, 2010
STUDENT TEAM ACHIEVEMENT DIVISION (STAD) AS AN ACTIVE LEARNING STRATEGY: EMPIRICAL EVIDENCE FROM MATHEMATICS CLASSROOM Muhammad Iqbal Majoka1*, Malik Hukam Dad2, Tariq Mahmood3 1
Department of Education, Hazara University, Mansehra 2 Department of Education, NUML, Islamabad 3 Ph. D (HEC) Research Scholar, Division of Education, University of Education, Lahore (PAKISTAN) *Corresponding author:
[email protected] ABSTRACT Student Team Achievement Division (STAD) is a cooperative-learning strategy in which small groups of learners with different levels of ability work together to accomplish a shared learning goal. This study was conducted to have empirical evidence about the effectiveness of STAD in Mathematics classroom at Secondary level. 10th class students equally divided into two sections on the basis of teacher-made pretest scores were taken as sample of the study. Data analysis revealed that both the experimental (N=28) and the control groups (N=25) were almost equal in mathematical base at the beginning of the experiment. The classroom observation indicated that the students of experimental group were engaged in learning at a higher level as compared to the counterpart students of control group. Furthermore, the experimental group outscored significantly the control group on posttest showing the obvious supremacy of cooperative learning over traditional method of teaching. On retention test, again the experimental group was a little bit superior in achievement but there was no significant difference between the mean scores of the experimental and the control groups. Hence, ultimate result of the study indicated that STAD (Student Team Achievement Division) was more effective instructional paradigm for mathematics as compared to the traditional method of teaching. Due to its provision for higher learning engagement, it proved to be an active learning strategy. Key words: Student Team Achievement Division, Active Learning Strategy, Empirical Evidence. Mathematics Classroom 1. INTRODUCTION Continuum of teaching-learning strategies swings from passive lecturing to active and reflective instructional modes. The teaching-learning methods occupy a crucial position in education process as these pave a way for students being passive or active learners. Active learning is a method of educating students that confirms their active participation in the learning process. According to Hung, Tan, and Koh (2006), active learning is act of learners becoming responsible for their own learning during which they are “actively developing thinking/learning strategies and constantly formulating new ideas and refining them through their conversational exchanges with others” (p. 30). In the process of active learning, learners are engaged in active cognitive processing during learning, such as attending to relevant information, organizing the selected information into a coherent cognitive structure, and integrating the information with existing knowledge (Mayer, 2003). Active learning model is characterized by students’ more involvement in discovery learning or problem solving than listening lectures that permit direct transmission of factual knowledge; students’ involvement in multiple small group activities, higher-order thinking processes and students’ exploration of their own attitudes and values instead of spoon feeding (Bonwell & Eison, 1991; Leu & Price-Rom, 2006: p. 19). Consequently, active learning maximizes students' attention and increases the likelihood that learning is occurring (Stover, Neubert, & Lawlor, 1993). The net consequences of active learning emerge in the form of students’ high level of engagement in learning tasks. Because active learning and engagement in learning are interdependent, Bulger, Mayer, & Almeroth (2006) acknowledged engaged learning as having high levels of active learner participation designed into the plan for learning; and thus learning engagement is also associated with positive academic outcomes, including achievement and persistence in school ( Fredricks, Blumenfeld, and Paris, 2004). Treat et al., (2008) have traced the roots of active learning in work of ancient philosophers. They referred that Confucius (551-479 BC) argued for individualized instruction through discussion; Socrates (470-399 BC) emphasized involving individual learners in a philosophic dialogues; Johann Heinrich Pestalozzi (1746-1827) encouraged firsthand experience in learning environments; and Friedrich Froebel (1782-1852) argued for learning via free self-activity that allows for active creativity and social participation. The focus on active learning in contemporary educational scenario is rooted in arguments by John Dewy, Carl Rogers, Jean Piaget and Vygotsky. Dewey (1938) developed a pragmatist philosophy and promoted learning by experimentation and practice – learning by doing. Rogers (1969, p. 162) argued that “much significant learning is acquired by doing” and that “learning is facilitated when the student is a responsible participant.” According to Piaget, contradiction between learner’s knowledge and what he experiences creates disequilibrium and leads her/him to question her/his beliefs as well as to try out new ideas (Palincsar, 2005). Similarly, Vygotsky stated that learning takes place in a social context and that interaction with others (Roblyer, 2004). Besides this, an important concept of Vygotsky about learning commit in social context to useris zone of proximal development that advocates for cooperative efforts in the classroom.
16
perpustakaan.uns.ac.id digilib.uns.ac.id © Journal of Education and Sociology, ISSN: 2078-032X, December, 2010 Active learning offers a paradigm for student learning that differs from the traditional lecture based, model (Johnson et al., 2006). Difference in provision for learning and amount of learning is obvious from the following cone of learning:
The types of active teaching-learning techniques cover a wide array of both in-class and out-of class activities that can range on a continuum from simple to complex tasks (Van Amburgh et al., 2005). Mackeachie and Svinicki (2006) have introduced a variety of active learning techniques and strategies in the various chapters of their book “Teaching Tips”. Modified lecture (including pausing during the lecture to allow discussion); high-stakes and low-stakes writing; problem-based learning i.e. teaching with cases, simulations, and games; laboratory instruction; technology-based teaching; and cooperative, collaborative, peer learning are the in-class techniques that provide for active learning. Among active learning techniques, cooperative learning is an instructional paradigm that has numerous structures/ methods of cooperative learning (Slaven, 1995) e.g. STL (student team learning), STAD (student team achievement division), TGT (Team-Games-Tournaments), Jigsaw, TAI (team accelerated instruction), CIRC (Cooperative Integrated Reading and Composition) etc. Different methods of cooperative learning are recommended for specific subjects of study. Many researchers have used cooperative learning in mathematics classroom because on the learning aspect, mathematics involves typical logic and argumentation, which require specific teaching-learning methodologies. Besides this, mathematics is given vital importance in pedagogies as it is considered inevitable for social life as well as exploration of the universe. In general, many educators of modern age have found “co-operative learning” as a beneficial teaching-learning technique for different subjects. Robertson et al, (1999) reported cooperative learning as viable and effective instructional methodology for teaching and learning mathematics. It helps to make mathematics exciting and enjoyable for both students and teachers. Similarly, several studies have examined the effects of cooperative learning methods on student’s learning. The researches by Whicker et al. (1997); Brush (1997) and Vaughan (2002) yielded results in the faviour of cooperative learning in mathematics classroom. However, among different cooperative learning methods, STAD is easy for teachers to apply and can be used to teach a variety of subjects from primary to university level. In this scenario, it seemed plausible to investigate the reflection of STAD (student team achievement division) in mathematics classroom in term of active learning strategy. Thus a study was conducted to have empirical evidence about STAD as an active learning strategy in mathematics classroom. Objective of this study included: (i) To investigate the effect of STAD on learning engagement of students in mathematics classroom; (ii) To examine the effect of STAD on academic achievement of students in mathematics classroom; and (iii) To find the effect of STAD on the retention capacity of math students at secondary level. To achieve the objectives of the study, following null hypotheses were tested. 1. The students taught by STAD (student team achievement division) and the students taught by traditional method of teaching are at the same level of engagement in learning process in mathematics classroom. 2. There is no significant difference between mean achievement scores of the students taught by STAD (student team achievement division) and the students taught by traditional method of teaching commit user of the experimental and the control groups on 3. There is no significant difference between the meanto scores retention test.
17
perpustakaan.uns.ac.id digilib.uns.ac.id © Journal of Education and Sociology, ISSN: 2078-032X, December, 2010 2. RESEARCH METHODOLOGY The sample students of 10th class were divided into two sections on the basis of pretest. One section served as the control group and the other section served as the experimental group. Two mathematics teachers having equal qualification with equal teaching experience and considerably equal teaching potential were selected to teach the control and experimental groups. The teacher volunteering for teaching the experimental group was provided two weeks training in cooperative learning i.e. one week for theory and one week for practical teaching. Same lesson plans and worksheets were used along with the direct teaching strategy for both control and experimental groups. The control group was kept under control condition by providing traditional competitive situation in the class while the experimental group was provided with cooperative learning method STAD (Students Team Achievement Division) as treatment. This experiment lasted for a period of 10 weeks. In the 10th week of experiment, both groups were observed to measure the level of students’ engagement in learning process for three days. After the provision of instruction and practice on 18 lesson plans covering five chapters, the academic achievement of control and experimental group was examined through a posttest. The students and teachers continued working on next chapters. The same posttest was administered surprisingly six weeks after the first evaluation to test the retention level of students of both experimental and control group. It is obvious from discussions by Ellett & Chauvin ( 1991) and Assor & Connell (1992) that direct observation is the most suitable and reliable tool for measuring students’ engagement. Therefore observation checklist was used to measure students’ engagement level in learning during last six days of this treatment. Using momentary time sampling system technique, each student of experimental and control groups was observed for performance orientation, rigorous thinking, meaningfulness of work, clarity of learning, individual attention, confidence, verbal participation, consistent focus and positive body language. Individual engagement score was calculated on basis of five points scale of observation checklist. Moreover, pretest and posttest were used as research tools to measure the academic achievement and retention of comparison groups. Actually posttest was a test parallel to pretest. Equality and similarity of these two tests was ensured on the basis of judgmental evaluation by the experts. Reliability of this test was determined by using Spearman – Brown’s prophecy formula. Reliability of the posttest was found to be 0.75. McDaniel (1994) has mentioned this value of reliability coefficient is acceptable. To observe the significant/ non-significant difference between the mean scores of experimental and control groups on the variables of pretest, posttest and retention, t-test was applied as statistical tool. 3. RESULTS In the last week of experiment, students’ engagement in learning process was observed using observation checklist. For both comparison groups, mean engagement scores were displayed on bar chart (See Figure 1) in the form of engagement level.
commit to user Fig. 1. Engagement level of experimental and control groups.
18
perpustakaan.uns.ac.id digilib.uns.ac.id © Journal of Education and Sociology, ISSN: 2078-032X, December, 2010 Figure 1 shows that the students of control group were at low level of engagement in rigorous thinking, meaningfulness of work, confidence, verbal participation, and positive body language, while they were engaged at moderate level in performance orientation, clarity of learning, individual attention and consistent focus. On the other hand, the students of experimental group were at high level of engagement in all these aspects of learning. Table 1. Comparison between mean scores of the experimental and control groups Test Pre-test Posttest Retention Test *Significant
Group Experimental Control Experimental Control Experimental Control
N 28 25 28 25 28 25
M 14.23 14.74 53.76 42.2 39.46 34.8
SD t 4.76 0.37 4.89 13.8 2.41* 17.89 12.33 1.10 18.22 t at 0.05=2.00
Table 1 indicates that the difference between the mean scores of the experimental group and control groups on pretest was found to be non significant at 0.05 level. Hence, both the groups were found to be almost equal before intervention. The comparison of posttest scores reflects that the difference between the mean scores of experimental and control groups after treatment was significant at 0.05 level. Thus the experimental group outperformed the control group. However, the difference between the mean retention scores of the experimental group and that of the control group was not significant. 4. DISCUSSION Findings of the study show that students of experimental group were engaged in learning at a high level while engagement level for the control group was low. The main cause of this difference can be accredited to the provision of small group work in STAD that is characterized by mutual interdependence of group members, individual accountability, peer pressure due to common learning goals, continuous assessment and performance rewards. All these characteristics grounded in STAD make the students responsible of their own learning. Thus ‘Student Team Achievement Division’ qualifies the merit of active learning strategy (Bulger, Mayer, & Almeroth, 2006). The findings also reflect that there was a significant difference between the experimental and control groups on posttest in favour of experimental group. The result is similar to that of Sherman and Thomas (1986) and Whicker et al. (1997). Both the studies reported significantly high scores by cooperatively-goal structured class as compared to the other groups. The results also supported by Qin, Johnson & Johson (1995) in their review of 46 studies on the mathematics subject where they concluded that cooperative learning groups performed significantly better than the groups taught by traditional methods of teaching. However the findings on the retention test show no significant difference in experimental and control groups in contrast to the results reported by Humphery et al. (1982) who found that significant difference in mean scores of experimental and control groups existed on retention test. The reason for this discrepancy in findings can be attributed to trace decay as well as retroactive inhibition as described by Slavin (1994) and Mangal (2004). 5. CONCLUSIONS On the basis of results and findings of this study, following conclusions were drawn: i) STAD (student team achievement division) provided for higher level of engagement in learning process as compared to traditional method of teaching. ii) STAD (student team achievement division) was more effective for academic achievement in mathematics classroom as compared to traditional (Lecture & direct method) method of teaching. iii) STAD (student team achievement division) was also more effective for retaining learnt material in mathematics classroom as compared to traditional method of teaching, but it did not make a significant difference. Thus it is evident that STAD (student team achievement division) is an active learning strategy. 6. RECOMMENDATIONS In the light of findings and conclusions of this study, following recommendations were made.
The retention aspect of STAD (student team achievement division) may be further researched by taking different time periods and situations where the students are in knowledge of the date of retention test. Previous studies conducted on cooperative learning in different cultures by different researchers as well as this study prove cooperative learning as more effective mode of instruction for math as compared to traditional method of teaching. Therefore, teachers of mathematics should use cooperative learning to improve the academic achievements of students. The results of few studies are insufficient to decide about the maximum use of STAD (student team achievement division) in our culture. Thus a series of action researches using different cooperative learning commit to user strategies in different situations i.e. rural, urban, male, female students and mixed genders at different levels are proposed to be carried out.
19
perpustakaan.uns.ac.id digilib.uns.ac.id © Journal of Education and Sociology, ISSN: 2078-032X, December, 2010 REFERENCES 1. 2. 3. 4. 5.
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.
Assor, A., & Connell, J. P. (1992). The validity of students' self-reports as measures of performanceaffecting self-appraisals. In D.H. Schunk & J. Meece (Eds.), Student Perceptions in the Classroom (pp.25-46). Hillsdale, NJ: Lawrence Erlbaum. Bonwell, C. C. & Eison, J. A. (1991). Active learning: Creating excitement in the classroom. The George Washington University, School of Education and Human Development, Washington, D.C, Brush, T. A. (1997). The effects on students’ achievement and attitudes when using in learning systems with cooperative pairs. Educational Technology, Research and Development. 45 (1): 51-64. Dewey, John. 1938. Experience and Education. New York, The Macmillan Company. Dale, E. (1969). Audio-Visual Methods in Teaching (3rd Edition). Holt, Rinehart, and Winston. Retrieved on 5th January, 2010 from http://www.publichealth.uiowa.edu/icphp/ed_training/ttt/archive/2002/2002_course_materials/Cone_of_L earning.pdf Ellett, C.D., & Chauvin, E. (1991). Development, validity, and reliability of a new generation of assessments of effective teaching and learning: Future directions for the study of learning environments. Journal of Classroom Interaction, 26(2): 25-36. Fredricks, J. Blumenfeld, P. & Paris, A. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74, 59-109. Humphreys, B., R. T. Johnson and D. W. Johnson. (1982). Effects of cooperative, competitive and individualistic learning on students' achievement in science class. J. Res. Sc. Teach. 19(5): 351-356. Hung, D., Tan, S. C., & Koh, T. S. (2006). Engaged learning: Making learning an authentic experience. In D. Hung & M. S. Khine (Eds.), Engaged learning with emerging technologies (pp. 29-48). Dordrecht, Netherlands: Springer. Johnson J, Finney J, Moos R. (2006). Proximal outcomes in cognitive-behavioral and 12-step substance use treatment programs: Do they differ and do they predict one-year outcomes? J. Subst Abuse Treat;31:41–50. Johnson, David W., Roger T. Johnson, and Karl A. Smith. (2006). Active Learning: Cooperation in the College Classroom, 3rd ed. Edina, MN: Interaction Book Company. Leu, Elizabeth and Alison Price-Rom. (2006). Quality of Education and Teacher Learning: A Review of the Literature. Washington, DC: USAID Educational Quality Improvement Project 1. Mangal, S. K. (2004). Advanced Educational Psychology. (2nd Ed.). New Delhi: Prentice-Hall of India, pp.273-274. McDaniel, E. (1994). Understanding Educational Measurement. New York: McGraw Hill. p.56. Mackeachie,W.J. & Svinicki, M. (2006). Mackeachie’s Teaching Tips. Houghton Mifflin Company Boston New York, USA. Mayer, R. E. (2003). Learning and instruction. Upper Saddle River, NJ: Prentice Hall. Palincsar, A. (2005). ‘Social constructivist perspectives on teaching and learning’, in H. Daniels (ed.) An Introduction to Vygotsky. London: Routledge. Qin, Z., D. W. Johnson and R. T. Johnson. (1995). Cooperative versus competitive efforts and problem solving. Review of Educational Research. 65 (2): 129-143. Robertson, L., N. Davidson and R. L Dees. (1999). Cooperative learning to support thinking, reasoning, and communicating in mathematics. In: S. Sharen. (Ed.). A Hand Book of Cooperative Learning Methods. Greenwood Press, an Imprint of Green Wood Publishing Group. pp. 245-266. Roblyer, M. D. (2004). Integrating educational technology into teaching (3rd ed.). Upper Saddle River, NJ: Pearson Education. Rogers, Carl. (1969). Freedom to Learn. Columbus, OH: Charles Merrill. Slaven, R. E. (1994). Educational Psychology: Theory and Practice. Allyn and Bacon, pp.200-201. Slavin, R. E. (1996). Research on cooperative learning and achievement: What we know, what we need to know. Contemporary Educational Psychology. 2(1): 43-69. Stover, L. T., Neubert, G. A., & Lawlor, J. C. (1993). Creating interactive environments in the secondary school. Washington, D.C.: National Education Association. Treat, A., Wang, W., Chadha, R., & Hart Dixon, M. (2008). Major Developments in Instructional Technology: Prior to the 20th Century. Available online at: http://www.indiana.edu/~idt/shortpapers/documents/ITprior20.html Van Amburgh, J., J. Devlin, J. Kirwin, and D. Qualters.( 2005). Active Learning Inventory Tool. Department of Pharmacy Practice and Center for Effective University Teaching, Northeastern University, Boston, MA. Vaughan, W. (2002). Effects of Cooperative learning on achievement and attitude among students of color. Journal of Educational Research. 95 (6): 359-364. Whicker, K. M., Bol, L. and Nunnery, J. A. (1997). Cooperative learning in the secondary mathematics classroom. Journal of Educational Research. 91: 42-48.
commit to user
20
perpustakaan.uns.ac.id
digilib.uns.ac.id
Copyright of Journal of Education & Sociology is the property of International Journal of Academic Research and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
Volume 1, Spring 2012
Journal Editor
Dr. James E. Witte Auburn University
[email protected]
http://www.learningstyles.org/ commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
Volume 1, Spring 2012 Table of Contents A Comparison of Preferred Learning Styles between Vocational and Academic Secondary School Students in Egypt
Asmaa M. El Sayed Makhlouf, Suez Canal University Maria Martinez Witte, Auburn University Nafsaniath Fathema, Auburn University Bayoumi M. Dahawy, Suez Canal University ......................................................... 1
Learning Style Preferences of Student Teachers: A Cross-Cultural Perspective
Mohamed Sywelem, Suez Canal University Qassem Al-Harbi, Jazan University Nafsaniath Fathema, Auburn University James E. Witte, Auburn University......................................................................... 10
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
A Comparison of Preferred Learning Styles between Vocational and Academic Secondary School Students in Egypt Asmaa M. El Sayed Makhlouf Suez Canal University, Egypt Maria Martinez Witte Nafsaniath Fathema Auburn University, AL, USA Bayoumi M. Dahawy Suez Canal University, Egypt Abstract In recent years, there has been a renewed interest in the dichotomy of vocational education versus general education. This has become a political pronouncement in many countries and has adopted knowledge and skills as the key focus to improve education at all levels (Oketch, 2007). This article is an extension of a comparative study on learning style and method preference of students from vocational and general (academic) secondary schools. The learning style preferences of (461) students in both vocational and academic secondary schools in Egypt are examined using The Steinbach LS Quiz. As the factor of teaching and learning styles play a major role for the students to maximize performance within the classroom. Introduction Learning styles are simply different approaches to learning. Each individual has his/her unique way of learning. Learning style greatly affects the learning process, and, therefore, the outcome (Carver, Howard, & Lane, 1999; Vincent & Ross, 2001). Stellwagen (2001) argued that flexible combinations of learning and teaching styles allow all students to develop effective ways of gaining positive educational outcomes. The topic of learning styles and its effect on student performance have been extensively examined in the educational research literature (Felder & Henriques, 1995), specifically in the context of differences in student learning styles by Felder and Brent (2005). Many learning style assessment instruments have been developed in the past five decades (Felder & Henriques, 1995). Chan (2001) described that the assessment of students’ preferences for specific learning styles is basically to help teachers employ strategies that are congruent with students’ preferences in order to maximize the learning outcomes of students. Teachers commit to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 1
perpustakaan.uns.ac.id
digilib.uns.ac.id
who taught with learning styles as a basis adapted themselves more often to students' learning preferences, cooperated and reflected more with colleagues, were more development-oriented and more open to change compared with those who did not use learning styles as a pedagogical basis (Boström, 2011). Purpose of the Study According to Griggs (1984), the correct learning style is important because it can help to increase the academic performances of the students. Therefore; this study has been conducted in order to reveal the learning style preferences of secondary school students in both academic and vocational education. This study further examined the relationship of gender and learning style among the population of interest. The method of teaching and learning plays a major role in students to performance and success can be achieved if students and teachers employ appropriate learning styles. Research Questions This research is to identify the learning style preferences between vocational and academic secondary school students in Egypt. The research questions are as follows: 1. What are the learning styles preferences between Vocational and Academic Secondary School Students in Egypt? 2. Are there any differences between Vocational and Academic Secondary School Students in relation to learning style preferences? 3. What is the relationship between students’ gender and learning style preferences in both academic and vocational secondary schools? Research Objectives The objectives of this research are as follows: 1. To identify learning styles preferences between Vocational and Academic Secondary School Students in Egypt. 2. To identify whether there are differences between Vocational and Academic Secondary School Students in Egypt in relation to learning style preferences. 3. To identify whether there is a relationship between students’ gender and their learning style preferences in both academic and vocational secondary schools. Review of Literature Learning style refers to simple preference for the method by which we learn and remember what we learned; show us the way and how we learn; involve that the subjects are processing the information in different ways, involving cognitive part, the commit to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 2
perpustakaan.uns.ac.id
digilib.uns.ac.id
affective emotional elements, psychomotor and some learning situation characteristics. Researchers such as (Dunn, Griggs, & Price, 1993; Park, 1997; Restak, 1979) also found gender differences in their studies of learning styles. Assessing an individual’s learning style is vital to the teaching and learning process. Most education research has confirmed that knowledge of student learning preferences do yield benefits, for example, Diaz and Cartnal (1999) compared the student learning styles of two online health education classes (N = 68) with an equivalent on-campus class (N = 40). They found significant differences in learning preferences for both group of students and concluded that knowledge of student learning preferences influenced learning performance. Felder and Silverman (1988) and Felder and Dietz (2002) also examined effects of learning and teaching styles in engineering education. They found that knowledge of students learning preferences were a determinant of student success. Dunn (1992) has also offered the following mission statements to assure that every person has the opportunity to learn: 1. Individual learning styles should be acknowledged and respected. 2. Individual information processing is fundamental to a learning style and can be strengthened over time with intervention. 3. Learning style is a complex construct for which a comprehensive understanding is evolving. 4. Learners are empowered by aknowledge of their own and others’ learning styles. 5. Effective curriculum and instruction are learning-style based and personalized to address and honor diversity. 6. Effective teachers continually monitor activities to ensure compatibility of instruction and evaluation with each individual’s learning style strengths. 7. Teaching individuals through their learning style strengths improves their achievement, self-esteem, and attitude toward learning. 8. Every individual is entitled to counseling and instruction that responds to his/her style of learning. 9. A viable learning style model must be grounded in theoretical and applied research, periodically evaluated, and adapted to reflect the developing knowledge base. 10. Implementation of learning style practices must adhere to accepted standards of ethics. Definition of learning style The term learning styles refers to the view that people learn information in different ways. The variety of concepts found on learning styles literature makes it, nevertheless, difficult to build a unified commit framework. to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 3
perpustakaan.uns.ac.id
digilib.uns.ac.id
Learning style is a biologically and developmentally imposed set of personal characteristics that make the same teaching (and learning) methods effective for some and ineffective for others. According to Keefe (1979), learning styles generally refer to cognitive, affective, and physiological behaviors that perform as relatively stable indicators of how people perceive, interplay with, and respond to their environment in learning situations. Learning involves the totality of human activities: feeling, reflecting, thinking, and doing (Kolb, 1984). Cano (2005) pointed out learning styles deployed by students may well reflect the quality of the education they are receiving. Learning styles are usually described as the cognitive, affective, and physiological traits that students exhibit as they interact in the classroom environment. Some consider learning styles are related to individual methods and strategies of information processing (Reid, 1995). Additionally, Haar, Hall, Schoepp, and Smith (2002) also elaborated learning styles as individual’s differences in which information is perceived, processed, and communicated. Secondary (High) Schools in Egypt Secondary education reform in Egypt in the 1990s is consistent with the country’s historical background in both its economic and social dimensions. Since the 1952 revolution, Egypt pursued economic policies based on state intervention, centralized decision-making, public sector dominance of industrial production, import substitution and a highly regulated system of controls on private economic activity. The education system as a whole expanded rapidly, especially in the secondary and university subsectors. All levels of education (primary, preparatory, secondary, and higher education) were offered free of charge. Moreover, in 1964, the government guaranteed a government job to any university graduate (Richards, 1992). Secondary education has crucial importance in the Egyptian education structure because its graduates compete for university admission or for work. During the 1980s secondary education was structured in three broad types: 1) a three-year general or academic program; 2) three or five-year vocational and technical programs; and 3) a five-year primary teacher training program (Clementina, 2002). According to the structure of the education system in Egypt, graduates of general secondary schools may go to the university, while graduates of technical secondary schools may only go to non-university higher and middle institutes or to the job market. Generally, less than 5% of the technical school graduates are admitted to the universities (Wilcox, 1988; World Bank, 1999); while, more than 80% of the general secondary school graduates enter the universities (Clementina, 2002). commit to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 4
perpustakaan.uns.ac.id
digilib.uns.ac.id
Table 1 Structure of the Educational System in Egypt Age
Grade
Level
22 21 20 19 18
17 16 15 14 13
Universities
17 16 15
12 11 10
General Secondary School
14 13 12
9 8 7
(Basic) Preparatory
11 10 9 8 7 6
6 5 4 3 2 1
Non-Universities Higher and Middle Institutes
Technical Secondary School (3 Year)
Technical Secondary School (5 Year)
(Basic) Primary
3, 4, 5 Pre-Primary Source: Case Studies in Secondary Education Reform: Improving Educational Quality (IEQ) Project, American Institutes for Research (Clementina, 2002) Methods The Steinbach LS Survey was translated into Arabic. This Arabic version was constructed in the same format as the English version, and was given to two language experts for back translation. A corrected final version of the survey was administered to High School students in both academic and vocational schools in Egypt. The Steinbach LS survey, consisted of (12) statements with forced choice items with two options (yes, no). The participants are expected to select the appropriate choice for each statement. The researchers designed a survey to collect demographic information from the learners. Demographic data consisted of Education (vocational & academic) and gender (male & female).
commit to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 5
perpustakaan.uns.ac.id
digilib.uns.ac.id
Participant Selection This research focuses on secondary (high) school students in both academic and vocational education. The participants in this study were selected from secondary (high) schools in Ismailia and Suez Governorates. The research focuses on 3rd year high school students in both vocational and academic schools. The participants in this study, 441 students, represent a convenience sample of Egyptian students. Data Analysis The descriptive statistics show a total of 441 students (161 males and 280 females) participated in the survey. Out of them, 261 students were Academic secondary schools students and 180 were Vocational secondary schools students. A two way multivariate analysis of variance (MANOVA) was conducted to examine the relationship of gender and types of education on three different learning styles (Auditory, Visual and Kinesthetic). The Box’s M test was not statistically significant and indicates that homogeneity of variance-covariance assumptions is not violated, F (18, 332516.580) = 1.180, p = 0.267, so the Wilks’ Lambda test statistic is used in interpreting the MANOVA results. Factor interaction was examined and it was statistically significant, [F (3,435) = 5.793, p = .001, η2 = .038], however, the multivariate effect size was small. The Levene’s tests of equality of error variances for Kinesthetic learning style was statistically significant with a value of .002 and indicated equality of variance assumption was violated. However, the Levene’s tests for the other two dependent variables (Auditory and Visual learning styles) were not statistically significant with values of .469 and .678 for Auditory learning style for Visual learning style respectively, which indicated that the variances were fairly equivalent between the groups. Prior to examining the univariate ANOVA results, the alpha level was adjusted to α = 0.025 because two dependent variables were analyzed. Univariate ANOVA results indicated that there is a statistically significant interaction effect of gender and education on Kinesthetic learning style [F (1,437) = 15.513, p = .000, partial η2 = .034]. The effect size was small. No significant difference was found in Auditory and Visual learning abilities across male and female students or across Academic secondary schools students and Vocational school students. However significant results were found for Kinesthetic learning ability. The main effect of school type yielded an F ratio of F(1, 259) = 9.546, p = .002, indicating that in Academic secondary schools, the Kinesthetic learning ability of male students was significantly higher (M = 7.01, SD = 1.04) than that of the female students (M = 6.60, SD = .912). However for Vocational schools an F ratio of F (1, 178) = 6.268, p = .013 indicated that the female students had higher Kinesthetic learning ability (M = 6.93, SD = .858) than male students (M = 6.57, SD = 1.03). commit to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 6
perpustakaan.uns.ac.id
digilib.uns.ac.id
Figure 1: Kinesthetic Learning in Academic and Vocational secondary schools Findings No statistical differences were found among the Auditory, Visual and Kinesthetic learning modalities. The researchers had anticipated a strong representation of kinesthetic learners within the vocational population; however, this was not the case. Data indicated that the Kinesthetic preference was higher among males in academic programs of study than for females in the same program. Within the vocational settings females had higher kinesthetic preference than the males. No gender-based differences were found. As a result of these findings, further research is recommended in these areas. References Boström, L. (2011). Students’ learning styles compared with their teachers' learning styles in secondary schools. Institute for Learning Styles Journal, 1, 17-38. Cano, F. (2005). Epistemological beliefs and approaches to learning: Their change through secondary school and their influence on academic performance. British Journal of Educational Psychology, 75(2), 203-221. Carver, C. A., Howard, R. A., & Lane, W. D (1999). Enhancing student learning through hypermedia courseware and incorporation of student learning styles. IEEE Transactions on Education, 42(1), 33-38. commit to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 7
perpustakaan.uns.ac.id
digilib.uns.ac.id
Chan, D. W. (2001). Learning styles of gifted and non-gifted secondary students in Hong-Kong. Gifted Children Quarterly, 45(1), 35-44. Clementina, A. (2002). Case Studies in Secondary Education Reform: Improving Educational Quality (IEQ) Project, American Institutes for Research.. Diaz, D. P., & Cartnal, R. B. (1999). Comparing student learning styles in an online distance learning class and an equivalent on-campus class. College Teaching, 47(4), 130-135. Dunn, R. (1992). Learning styles network mission and belief statements adopted. Learning Styles Network Newsletter, 13(2), 1. Dunn, R., Beaudry, J. S., & Klavas, A. (1989). Survey of research on learning styles. Educational Leadership, 46(6), 50–58. Dunn, R., Griggs, S., & Price, G. E. (1993). Learning styles of Mexican American and Anglo-American elementary students. Journal of Multicultural Counseling and Development, 21(4), 237-247. Felder, R. M., & Brent, R. (2005). Understanding student differences. Journal of Engineering Education, 94(1), 57-52. Felder, R. M., & Dietz, E. J. (2002). The effects of personality type on Engineering student performance and attitudes. Journal of Engineering Education, 91(1), 3-17. Felder, R. M., & Henriques, E. R. (1995). Learning and teaching styles in foreign and second language. Foreign Language Annals, 28(1), 21-31. Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles In Engineering education. Engineering, 78(7), 674-681. Griggs, S. A. (1984). Selected case studies at preferences of gifted students. Gifted Quarterly, 28(3), 115–119. Haar, J., Hall, G., Schoepp, P., & Smith, D. H. (2002). How teachers teach to students with different learning styles. The Clearing House, 75(3), 142-145. Keefe, J. W. (1979). Learning style: an overview. In J.W. Keefe (ed.), Student Learning Styles: Diagnosing and Prescribing Programs (pp. 1–17). National Association of Secondary School Principals: Reston. commit to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 8
perpustakaan.uns.ac.id
digilib.uns.ac.id
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice-Hall. Oketch, M. (2007). To vocationalise or not to vocationalise? Perspectives on current trends and issues in technical and vocational education and training (TVET) in Africa. International Journal of Educational Development, 27(2), 220–234. Park, C. C. (1997). Learning style preferences of Korean, Mexican, Armenian-American and Anglo students in secondary schools. National Association of Secondary School Principals (NASSP) Bulletin, 81(585), 103-111. Reid, J. M. (1995). Learning styles in the ESL/EFL classroom. Florence, KY: Heinle & Heinle Publishers. Restak, R. M. (1979). The other difference between boys and girls. In Student learning styles: Diagnosing and prescribing programs (pp. 75-80). Reston,VA: National Association of Secondary School Principals. Richards. A. (1992). Higher education in Egypt. World Bank Working Paper. Stellwagen, J. B. (2001). A challenge to the learning style advocates. Clearing House, 74 (5), 265-268. Vincent, A., & Ross, D. (2001). Personalized training: Determine learning styles, personality types and multiple intelligence online. The Learning Organization, 8(1), 36-43. Wilcox, L. (1988). Arab Republic of Egypt: A study of the educational system of the Arab Republic of Egypt and a guide to academic placement of students in educational institutions of the United States. Washington, DC: World Education. World Bank. (1999). Secondary education enhancement project in Egypt. Project Appraisal. Retrieved from http://web.worldbank.org/external/projects/main?menuPK=228424&theSiteP K=40941&pagePK=64283627&piPK=73230&Projectid=P050484 Author’s Notes Dr. Asmaa M. El Sayed Makhlouf, Suez Canal University, Egypt Dr. Maria Martinez Witte, Auburn University, Alabama, USA Nafsaniath Fathema MBA, Auburn University, Alabama, USA Dr. Bayoumi M. Dahawy, Suez Canal University, Egypt commit to user Institute for Learning Styles Journal • Volume 1, Spring 2012 • Page 9
perpustakaan.uns.ac.id
digilib.uns.ac.id
Learning Style Preferences of Student Teachers: A Cross-Cultural Perspective Mohamed Sywelem Suez Canal University, Egypt Qassem Al-Harbi Jazan University, KSA Nafsaniath Fathema James E. Witte Auburn University, AL, USA Abstract All students learn, but not all learn in the same way. Educational researchers postulate that everyone has a learning style. This article examines how cultural variability is reflected in the learning style of students in Egypt, Saudi Arabia and United States. In this study, the learning styles of over 300 students in Teacher Education Institutions in Egypt; Saudi Arabia and United States of America were examined with What’s My Learning Style? Instrument developed by Steinbach (1993). Introduction Each person has his or her own individual way of gathering and processing information, and solving problems in day-to-day situations. These personal cognitive abilities, acquired in the course of a long socialization process are called ‘‘learning styles’’ (Reynolds, 1997). Riding (2005) assured that students are not all the same and that individual differences influence both their learning and their academic achievement. Knowledge of one’s learning style can lead to enhanced learning and helps the learner focus on improving weaker points. Learning styles analysis is also useful for informing the teaching and learning process and can be used as a tool to enhance achievement and inclusion (DFES, 2004; Rose & Nicholl, 1997). How we learn is influenced by culture. As cultures are different, it’s natural to expect differences in the styles of learning in different countries. Previous studies (Katz, 1988; Pratt, 1992) suggest that University students’ learning styles differ across cultures because of the constraints that various cultures place on the behavioral patterns of commit to user1, Spring 2012 • Page 10 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
people. The perspective that there is a relationship between learning styles and culture is not new and has been discussed in scholarly research for a few decades. Some crosscultural research has revealed that certain ethnic groups have learning styles that are distinct from those of other ethnic groups (Dunn & Griggs, 1990; Jacobs, 1987; Jalali, 1989; Sims, 1988; Williams, 1990). This study concentrates on a theoretical and empirical comparative-analysis between the learning styles and cultural typologies presented in three countries: Egypt, Saudi Arabia and United States. Review of Literature Many different learning styles/preferences and definitions of learning styles exist in the literature. Learning style is an ongoing issue of great importance to educational research. Researchers recognized that different learners had different cognitive styles and habitual information–processing strategies that determine a learner’s typical mode of perceiving, remembering, thinking, and problem solving (Messick, 1976). In examining learning styles of college students in various disciplines Canfield (1988) reported significant differences among groups of students enrolled in various majors in collegiate settings. Kolb (1984) described learning as a four-stage process consisting of concrete experience, observation and reflection, formation of abstract concepts and generalizations and the testing of the implications of these concepts in new situations. Different learners may start at different phases of the cycle. Some individuals integrate and use all four learning modes; for others, some learning modes will come to redominate. For this reason, every human being develops a specific learning style (see Figure 1). According to Kolb’s learning styles, learners can thus be classified into one of four learning styles, namely, converger, diverger, assimilator, and accommodator, mapped in one of the four quadrants (Kolb, 1985). Convergers combine AC and AE. Convergers are best at finding practical use to theories and ideas and are good at solving problems and making decisions. Kolb suggests they prefer dealing with technical tasks than with social and interpersonal issues. Divergers combine CE and RO. Divergers are best at viewing concrete situations from different points of view, they prefer brainstorming situations to taking action. commit to user1, Spring 2012 • Page 11 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
Figure 1. Kolb’s Learning Styles Assimilators are learners who combine AC and RO. Assimilators are best at understanding a wide range of information and organizing them into concise, logical form. They are more interested in abstract ideas and concepts rather than people. They value more of the logical soundness of a theory than its practical value. Accommodators are learners who combine the learning steps of CE and AE. Accommodators learn primarily from ‘hands-on’ experience. They prefer to act on feelings rather than on logical analysis. In solving problems, they rely more heavily on people for information than on their own technical analysis. Various families of learning styles have been developed. There may be encountered four basic types of approaches for identifying different learning styles (Sadler-Smith, 1997): 1. learning styles presenting personal cognitive characteristics about dependence or independence in given area; 2. styles dealing with specific learning preferences; 3. approaches combining elements of cognitive and personal learning preferences; commit to user1, Spring 2012 • Page 12 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
4. styles determined by ways of processing information - based on the cyclical model of (Kolb, 1984) for converger, diverger, accommodator, and assimilator styles. Learning styles, however, is an umbrella concept bringing together various schools of thought (Butler, 1986) which share the belief that students learn best when they are given the opportunity to learn, deal with information, and communicate in a manner that they feel most comfortable with (Pallof & Pratt, 2003). As a result, diverse models have been developed to explain these individual differences in learning. Coffield, Moseley, Hall and Ecclestone (2004) developed a continuum of five ‘families’ into which any particular learning style model can be identified. Along this continuum, the learning style families are scaled from the greatest to least degree to which the belief that learning styles are relatively fixed individual characteristics has influenced the model’s development (see Figure 2).
Learning styles and preferences are largely constitutionally based including the four modalities: visual, auditory, kinesthetic and tactile.
Learning styles reflect deepseated features of the cognitive structure, including ‘patterns of ability’
Learning styles are one component of a relatively stable personality type
Learning styles are flexibly stable learning preferences
Move on from learning styles to learning approaches, strategies orientations and conceptions of learning
Figure 2. Family of Learning Styles Definition of learning style Researchers have made efforts to define and categorize learning styles in different ways, such as:
The “characteristic, cognitive, affective, and psychological behaviors that serve as relatively stable indicators of how learners perceive, interact with, and respond to a learning environment”( Keefe, 1979, p. 4). A predisposition to adopt a particular learning strategy which involves a particular pattern of information processing activities (Schmeck, 1983). The “modes of perceiving, remembering, thinking, problem solving, and decision making, reflective of information-processing regularities that develop in congenial ways around underlying personality trends” (Messick, 1994, p. 122). The “learners’ natural, habitual, and preferred ways of absorbing, processing, and retaining new information and skills which persist regardless of teaching methods or content area” (Kinsella, 1995, p. 171). commit to user1, Spring 2012 • Page 13 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
The unique collection of individual skills and preferences that affect how a student perceives, gathers, and process learning materials (Johnson & Orwig, 1998). The “individual consistencies in perception, memory, thinking, and judgment across any stimulus condition” (Curry, 2000, p. 239). The “individual’s preferred ways of gathering, organizing, and thinking about information” (Fleming, 2001, p. 1).
Thus; The term ‘learning styles’ has no one definition – in much of the literature it is used loosely and often interchangeably with terms such as ‘thinking styles’, ‘cognitive styles’ and ‘learning modalities’. Learning style and culture So far, there have been only a comparatively small number of studies analyzing learning styles across cultures. Culture may be related to the development of learning styles. Hofstede (2001) defined Culture as “the collective programming of the mind which distinguishes the members of one human group from another’’. Irrespective of the discipline, the scholars have come to more or less a common ground with respect to defining culture. Culture can be conceptualized as “shared motives, values, beliefs, identities, and interpretations or meanings of significant events that result from common experiences of members of collectives that are transmitted across generations’’ (House, Hanges, Javidan, Dorfman, & Gupta, 2004, p. 15). Individuals are the product of their cultural background and experiences, several studies have assumed that an individual’s preferred learning style will depend on his or her cultural background. Hofstede (1997) argues that a country’s culture shapes its peoples’ preferred modes of learning through their socialization experiences. Hyland (1993) assures that learning style is affected by individual differences such as gender, academic and cultural background. Culture acts as a strong socialization agent (Barmeyer 2004; Hayes & Allinson, 1988) that influences information processing and cognition (Earley & Ang, 2003). Thus there is reason to believe that the differences in cultural socialization tend to influence learning preferences. Pratt (1992) argues that learning styles may vary from culture to culture. Hayes and Allinson (1988) suggest that the culture of a country may be one of the powerful socialization agents that have a great impact upon the development of learning styles. Research has identified cultural differences in the learning styles of various ethnic groups. Reid (1987) conducted a comparative study of college students learning English as a second language and reported that there were significant cultural differences in visual, auditory, kinesthetic, tactile, group, and individual learning styles among Korean, Chinese, Japanese, Malay, Arabic, and Spanish students. Park (1997) conducted a comparative study of Chinese, Filipino, Korean, Vietnamese, and Anglo commit to user1, Spring 2012 • Page 14 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
students in secondary schools and concluded that Korean, Chinese, and Filipino students were more visual than Anglos and that Korean, Chinese, and Anglo students showed negative preferences for group learning while Vietnamese showed a major preference and Filipino students showed a minor preference. Joy and Kolb (2007) concluded that culture has an impact on the learning style scales that is comparable to that of some of the demographic variables. Culture has a significant effect in deciding a person’s preference for Abstract Conceptualization vs. Concrete Experience. Thus, culture has the ability to shape the ways in which its members receive, process and act on information and experience, shaping the particular way they learn from experience. Methods Preparation of the Instrument For the Arab students, The Steinbach Learning Style Survey was translated into Arabic. This Arabic version was constructed in the same format as the English version, and was given to two language experts for back translation. A corrected final version of the survey was administered to a group of student teachers in Saudi Arabia and Egypt. The Saudi students group was selected from Jazan University, and the Egyptian group was selected from Suez Canal University. The Steinbach LS survey, consisting of (12) statements with forced choice items with two options (yes, no), was used to gather data. The participants were expected to select the appropriate choice for each statement. Researcher designed demographic information was used to examine two variables. Demographic data consisted of place (country) and gender (male and female). An estimate of Validity was established using a Q-sort Technique. When using this technique “An individual is given a set of items or statements, usually on cards, and asked to place then into specific categories so that each category contains some minimum of cards” (Gay, 1980, p. 121). A five person panel was established using a convenience sample of two doctoral level, one graduate student and two undergraduate level participants. Each participant was presented with an envelope containing three header cards labeled: Auditory, Visual and Kinesthetic, in keeping with the three domains the instrument purports to measure. The envelope also contained the instrument’s 12 questions on individual slips of paper. The panel members were requested to array the header cards in front of them commit to user1, Spring 2012 • Page 15 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
and place appropriate question with each header card. Upon completion responses were paper clipped to the header card and returned to the envelope. The resulting products were reviewed for a percent agreement with the instruments scoring standards. Results of the percent agreement are shown in Table 3 below. Table 1 Card Sort Results Scorer Q1 #1 X #2 X #3 X #4 X #5 X
Q2 X X X X X
Q3 X X X X X
Q4 X X X X X
Q5 X X X X X
Q6 X X X X X
Q7 X X X X X
Q8 X X X X X
Q9 X X X X X
Q10 X X X X X
Q11 X X X X X
Q12 X X X X X
Note: X= scorer agreement 0 = lack of agreement As a result of the Q-Sort Review, an estimate of validity for the What’s my Learning Style? Instrument was considered to be appropriate for research purposes. Participants The descriptive statistics shows out of the total 316 respondents, 118 (37.3%) were American students, 94 (29.7%) were Saudi students and 104 (32.9%) were Egyptian students. 208 (65.8%) of the total respondents were males and 108 (34.2%) were females. Table 2 Demographics Nationality American Saudi Egyptian Total
Male 35 94 39 208
Female 83 0 25 108
Total 118 94 104 316
Percent 37.3% 29.7% 32.9% 100%
commit to user1, Spring 2012 • Page 16 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
Results Auditory Learning ability The descriptive table shows the descriptive statistics including the mean, standard deviation for each separate group (Egyptian students, Saudi students and American students) as well as for the total respondents when all groups are combined (Total). Table 3 Descriptive Statistics (Auditory Learning Ability)
Egyptian student Saudi student American student Total
Respondents
Mean Score
SD
104 94 118 316
6.3942 6.9362 6.3814 6.5506
.96962 .81397 .96891 .95650
The Levene's F Statistic shows a significant value of 0.003 and, therefore, the assumption of homogeneity of variance is not met. Table 4 Homogeneity of Variance Test Levene’s Statistics 6.086
df1 2
df2 313
Sig .003
So, the Robust Tests of Equality of Means Table instead of the ANOVA Table was used to determine the group differences among the three different groups of respondents.
commit to user1, Spring 2012 • Page 17 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
Table 5 Robust Tests of Equality of Means
Welch aAsymptotically
Statistica
df1
df2
Sig
13.312
2
207.234
.000
F distributed
The robust tests of equality of means table shows, there was a statistically significant difference between groups as determined by one-way ANOVA Welch (2,207.234) = 13.312, p < 0.01). A Games-Howell post-hoc test revealed that the Saudi students have statistically significantly higher (6.93 ± .813, p <0.01) auditory learning ability compared to Egyptian students (6.39 ±.969) and American students (6.38 ± .956). There were no statistically significant differences in the auditory learning ability between the Egyptian and American students (p = .994). Visual Learning ability The descriptive table shows the descriptive statistics including the mean, standard deviation and 95% confidence intervals for the dependent variable (Time) for each separate group (Egyptian students, Saudi students and American students) as well as for the total respondents when all groups are combined (Total). Table 6 Descriptive Statistics (Visual Learning Ability)
Egyptian student Saudi student American student Total
Respondents
Mean Score
SD
104 94 118 316
6.6538 6.7766 6.8814 6.7753
.91130 .89388 .84524 .84524
The Levene's F Statistic shows a significant value of 0.008 and, therefore, the assumption of homogeneity of variance is not met.
commit to user1, Spring 2012 • Page 18 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
Table 7 Homogeneity of Variance Test Levene’s Statistics 4.875
df1 2
df2 313
Sig .008
So, the Robust Tests of Equality of Means Table instead of the ANOVA Table was used to determine the group differences among the three different groups of respondents. Table 8 Robust Tests of Equality of Means
Welch aAsymptotically
Statistica
df1
df2
Sig
2.086
2
197.373
.127
F distributed
The robust tests of equality of means table shows, there was no statistically significant difference in the visual learning abilities among the American, Egyptian and Saudi students as determined by one-way ANOVA Welch (2,197.373) = 2.086, p =.127). Kinesthetic Learning ability The descriptive table shows the descriptive statistics including the mean, standard deviation and 95% confidence intervals for the dependent variable (Time) for each separate group (Egyptian students, Saudi students and American students) as well as for the total respondents when all groups are combined (Total). Table 9 Descriptive Statistics (Kinesthetic Learning Ability) Respondents
Mean Score
SD
Egyptian student
104
6.8558
.94938
Saudi student American student Total
94 118 316
6.9468 6.0254 6.5728
.90835 1.2453 1.13714
Homogeneity of Variances Table
commit to user1, Spring 2012 • Page 19 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
The Levene's F Statistic shows a significant value of 0.001 and, therefore, the assumption of homogeneity of variance is not met. Table 10 Homogeneity of Variance Test Levene’s Statistics 7.055
df1 2
df2 313
Sig .001
So, the Robust Tests of Equality of Means Table instead of the ANOVA Table was used to determine the group differences among the three different groups of respondents. Table 11 Robust Tests of Equality of Means
Welch aAsymptotically
Statistica
df1
df2
Sig
22.114
2
208.273
.000
F distributed
The robust tests of equality of means table shows, there was a statistically significant difference between groups as determined by one-way ANOVA Welch (2,208.273) = 22.114, p < 0.01). A Games-Howell post-hoc test revealed that the American Students have statistically significantly lower (6.02 ± .1.24, p <0.01) Kinesthetic learning ability compared to Egyptian students (6.85 ±.949) and Saudi students (6.94 ± .908). There were no statistically significant differences in Kinesthetic learning ability between the Egyptian and Saudi students (p = .770). Conclusions / Recommendations Analysis of the data leads us to the following conclusions/recommendations: 1. With no statically differences found concerning the Visual Modality preference common classroom practice regarding visual aids to learning should be beneficial to all three nationalities. 2. Saudi students demonstrated a preference for the Aural Modality, therefore a higher level of lecture among Saudi students than the other nationalities would be appropriate to support their expressed learning preferences. commit to user1, Spring 2012 • Page 20 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
3. Lastly, the American students were significantly less inclined to select the Kinesthetic Modality than the students from the other nations. As a result the data indicate that less emphasis on the Kinesthetic Modality for American students than the other nationalities would be an appropriate classroom strategy. References Barmeyer, C. I. (2004). Learning styles and their impact on cross-cultural training: An international comparison in France, Germany and Quebec. International Journal of Intercultural Relations, 28, 577-594. Butler, K. A. (1986). Learning and teaching style in theory and practice. Melbourne: Hawker Brownlow Education. Canfield, A. (1988). Learning Styles Inventory Manual. Western Psychological Services, Los Angeles, CA. Coffield, F., Moseley, D., Hall, E. & Ecclestone, K. (Eds.). (2004). Learning styles and pedagogy in post-16 learning: A systematic and critical review. Wiltshire: Learning and Skills Research Centre. Curry, L. (2000). Review of learning style, studying approach, and instructional preference research in medical education. In R. J. Riding, & S. G. Rayner (Eds.), International perspectives on individual differences, 4. Stamford, CT: Ablex Publishing. DFES (2004). Pedagogy and practice: Teaching and learning in secondary schools: Unit 19: Learning styles. London: Department for Education and Skills. Dunn, R., & Griggs, S. A. (1990). Research on the learning style characteristics of selected racial and ethnic groups. Journal of Reading, Writing, and Learning Disabilities, 6(5), 261-280. Earley, C., & Ang, S. (2003). Cultural intelligence: Individual interactions across cultures. Stanford, Palo Alto, CA. Fleming, N. (2001). Teaching and learning styles: VARK strategies. Christchurch, New Zealand. Hayes, J., & Allinson, C. W. (1988). Cultural differences in the learning styles of managers. Management International Review, 28, 75-80. commit to user1, Spring 2012 • Page 21 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
Hofstede, G. (2001). Culture’s consequences (2nd ed.). Thousand Oaks, CA: Sage Publications, Inc. Hofstede, G. (1997). Culture and organization: Software of mind. New York, NY: McGrawHill. House, R. J., Hanges, P. J., Javidan, M., Dorfman, P. W., Gupta, V. (2004). Culture, Leadership and Organizations: The GLOBE Study of 62 Societies. Sage Publications, Inc. Hyland, K. (1993). Culture and learning: A study of the learning style preferences of Japanese students. RELC Journal, 24(2), 69-91. Gay, L. R. (1980). Educational evaluation and measurement. Columbus, OH: Merrill. Jacobs, R. L. (1987). An investigation of the learning style differences among AfroAmerican and Euro-American high, average, and low achievers. Unpublished doctoral dissertation, Peabody University, CA. Jalili, F. (1989). A cross-cultural comparative analysis of the learning styles and field dependence/independence characteristics of selected fourth-, fifth-, and sixthgrade students of Afro, Chinese, Greek, and Mexican heritage. Unpublished doctoral dissertation, St. John's University, Jamaica, NY. Johnson, C., & Orwig, C. (1998). What is learning style? Retrieved from http://www.sil.org/lingualinks/library/Llearning/CJ0625/CJ0676.html Joy, S., & Kolb, D. (2007). Are there cultural differences in learning style? International Journal of Intercultural Relations, 33(1), 69-85. Katz, N. (1988). Individual learning style, Israeli norms and cross- cultural equivalence of Kolb’s learning style inventory. Journal of Cross- Cultural Psychology 19, 361379. Keefe, J. W. (1979). Learning style: an overview. In J. W. Keefe (Ed.), Learner learning styles: Diagnosing and prescribing programs. Reston: NASSP. Kinsella, K. (1995). Understanding and empowering diverse learners in ESL classrooms. In J. M. Reid (Ed.), Learning styles in the ESL/EFL classroom, pp. 170194. Boston, MA: Heinle & Heinle.
commit to user1, Spring 2012 • Page 22 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
Kolb, D. A. (1985). Learning style inventory: self-scoring test and interpretation booklet. McBer and Company, Boston, MA Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. New Jersey: Prentice-Hall. Messick, S. (1994). The matter of style: Manifestations of personality in cognition, learning, and teaching. Educational Psychologist, 29, 121-136. Messick, S. (Ed.) (1976). Individuality in learning. San Francisco: Jossey-Bass. Palloff, R. M., & Pratt, K. (2003). The virtual student: A profile and guide to working with online learners. San Fransisco: Jossey-Bass. Park, C. C. (1997). Learning style preferences of Asian American (Chinese, Filipino, Korean, and Vietnamese) students in secondary schools. Equity & Excellence in Education, 30(2), 68–77. Pratt, D. D. (1992). Conceptions of teaching. Adult Education Quarterly, 42, 203-220. Reid, J. (1987). The learning style preferences of ESL students. TESOL, 21(1), 87-111. Reynolds, M. (1997). Learning styles: A critique. Management Learning, 28, 115–133. Riding R. (2005). Individual differences and educational performance. Educational Psychology, 25(6), 659–72. Rose, C. & Nicholl, M. J. (1997). Accelerated learning for the 21st Century: The six-step plan to unlock your master-mind. USA: Dell. Sadler-Smith, E. (1997). Learning style: Frameworks and instruments. International Journal of Experimental Educational Psychology, 17(1), 51-63. Schmeck, R. R. (1983). Learning styles of college students. Individual Differences in Cognition, 1, 233-279. Sims, J. (1988). Learning styles of Black-American, Mexican-American, and WhiteAmerican Third- and Fourth-Grade Students in traditional public schools. Doctoral dissertation, University of Santa Barbara, Santa Barbara, CA. Steinbach, R. (1993). The adult learner: Strategies for success. Menlo Park: Crisp Publications. commit to user1, Spring 2012 • Page 23 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
Williams, G. J. (1990). A study of the learning styles of urban black middle school learning disabled and non-learning disabled students (Doctoral dissertation, Southern Illinois University at Carbondale, 1989). Dissertation Abstracts International, 51, 1987A. Author’s Notes Dr. Mohamed Sywelem, Suez Canal University, Egypt Dr. Qassem Al-Harbi, Jazan University, Kingdom of Saudi Arabia Nafsaniath Fathema MBA, Auburn University, Alabama, USA Dr. James E. Witte, Auburn University, Alabama, USA
commit to user1, Spring 2012 • Page 24 Institute for Learning Styles Journal • Volume
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
APPLICATION OF INTERACTIVE MULTIMEDIA TOOLS IN TEACHING MATHEMATICS – EXAMPLES OF LESSONS FROM GEOMETRY Marina Milovanović, Ph.D., Faculty of entrepreneurail business, Union University, 62 Cara Dušana str., 11 000 Belgrade, Serbia,
[email protected] MsC Jasmina Obradović Institute Goša, 35 , Milana Rakića str., 11 000, Belgrade, Serbia
[email protected], Aleksandar Milajić, Ph.D. Faculty of management in civil engeneering,, Union University, 62 Cara Dušana str., 11 000 Belgrade, Serbia,
[email protected] ABSTRACT This article presents the benefits and importance of using multimedia in the math classes by the selected examples of multimedia lessons from geometry (isometric transformations and regular polyhedra). The research included two groups of 50 first year students of the Faculty of the Architecture and the Faculty of Civil Construction Management. Each group was divided into two groups of 25 students, one of which had the traditional lectures, while the other one had the interactive multimedia lessons. The main source of information in multimedia lectures were the softwares created in Macromedia Flash, with the same definitions, theorems, examples and tasks as well as in traditional lectures but with emphasized visualization possibilities, animations, illustrations, etc. Both groups were tested after the lectures. In the both multimedia groups students showed better theoretical, practical and visual knowledge. Besides that, survey carried out at the end of the research clearly showed that students from multimedia groups were highly interested in this way of learning. Keywords: multimedia learning; multimedia lessons; isometric transformations; regular polyhedra. INTRODUCTION Mathematics teachers show great interest in visualization of the mathematical terms and emphasize that visualized lectures are of the great help in developing abstract thinking in mathematics (Bishop, 1989). It is of the major importance to connect the existing pictures that students have on certain terms in order to develop them further and to enable students to accept the further knowledge (Tall, 1991). Therefore, in teaching mathematics it is necessary to combine the picture method and the definition method in order to improve the existing knowledge and to enlarge it with the new facts, which is one of the points of the cognitive theory of multimedia learning (Mayer, 2001, 2005). Recent researches on presentation methods in teaching mathematics are focused on testing different visualization methods, such as pictures, two- and three-dimensional animations in order to find the most appropriate and the most understandable ones (Rias, Zaman, 2011). Geometry is the branch of mathematics in which the visualization is one of the most essential elements for understanding presented definitions and theorems, as well as for solving the given tasks and problems. Experience in working with students showed that they find it difficult to ’imagine’ the picture of a given problem and that they will be more successful in solving the task if it is adequately presented both textually and visually. Furthermore, if we use the multimedia presentation of the problem instead of the picture in order to enable visualization with animated ’movements’ in three-dimensional space, solving of the problem will be much easier and more interesting. Numerous authors who have investigated the methodology of teaching geometry have emphasized that it is of essential importance for a teacher to understand students’ conceptions or misconceptions of important ideas (Glass, Deckert, 2001). It is also important for a teacher to consider various approaches to teaching, to offer activities that probe students’ understanding, and to analyse students' work (Hollebrands, 2004). Modern methods in multimedia learning include the whole range of different possibilities applicable in mathematics lectures for different levels of education and with various interactive levels (Hadjerrouit, 2011; Herceg, 2009; Milovanovic, 2005; Milovanović, Takaci, Milajic, 2011; Takači, Stojković, Radovanovic, 2008; Takači, Herceg, Stojković, 2006; Takači, Pešić, 2004). These authors suggested using different kinds of software in education. There are several investigations on using software tools in teaching geometry, such as GeoGebra commit to Mohamed, user (Bulut, 2011), Geometers’ Sketchpad (GSP), (Nordin, Zakaria, Embi, 2010) etc. Copyright © The Turkish Online Journal of Educational Technology 19
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
All the above-mentioned resulted in an idea of making applicative software which would be helpful in a modern and more interesting approach to the field of teaching mathematics. The purpose of the software was to raise the students’ knowledge in a field of isometric transformations and regular polyhedra to a higher level. So, the aim of this article is to recognize the importance of multimedia in the teaching process as well as to examine the students’ reaction to this way of learning and teaching. MULTIMEDIA PRESENTATION OF SEVERAL PROBLEMS FROM THE SCOPE OF ISOMETRIC TRANSFORMATIONS AND REGULAR POLYHEDRA Multimedia lessons presented in this work included isometric transformations (line and point reflection, translation and rotation) and regular polyhedra as the basic fields of the mathematical geometry. These topics are also important because they are being introduced very early in learning mathematics, in the primary school. They are also present throughout the higher levels of education both directly and indirectly, using numerous examples of their implementation. Therefore, studying isometric transformations and regular polyhedral throughout education is one of the most important segments of teaching mathematics. The emphasis was on using computers, i.e. multimedia software in learning, because animations enable students to see not only the final result of an isometric transformation but also the ‘movement’ that produced it. Besides that, student can rotate any polyhedron and see it from all sides in order to solve the given task. Assorted examples and problems from multimedia lectures on Isometric Transformations Our lectures on isometric transformations (start page shown on Figure 1), consist of four units: line and point reflection, translation and rotation (Milovanovic, 2005). Lesson about every transformation is presented by the following chapters: Basics, Examples, Some characteristics, Exercises, Problems and Examples from everyday life. In creating multimedia lessons, special attention was paid to enabling students to find out the solutions individually. Figure 1. Start page of multimedia lesson about the Isometric Transformations.
Example 1. Basic idea of this example is to help students to see, comprehend and implement the line reflection in different cases before giving them the exact definition. Students were asked to recognize the common characteristic of given figures [see, Figure 2a] and to find which two of them do not belong in the group. After that, the solution was offered for all the figures except the third and the last one [Figure 2b], in which it was shown that there is at least one line along which we can fold the paper and every point from one side would fall commit to user on corresponding point on the other side. Copyright © The Turkish Online Journal of Educational Technology 20
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
Figure 2. Problem (a) and solution (b) for introducing the idea of symmetry.
a)
b)
Example 2. In next step, students were asked to look at the figures shown on Figure 3a and to find out if there is an axis of symmetry for any given pair of figures. After that, multimedia animation led them to the correct answer, see [Figure 3b]. Figure 3. Problem (a) and solution (b) for introducing the axis of symmetry.
a)
b)
Examples 3 and 4. Following two examples [Figure 4 and 5] introduce definitions of rotation and translation of a given shape. Unlike the standard lectures, students were enabled to rotate the given figure by themselves [Figure 4], as well as to see the movement of any point of the figure [Figure 5]. Figure 4. Rotation.
a)
b)
Let S be shape given in plane α and vector v coplanar with α. If shape S′ is set of all points that were copied from the shape S by translation Tv (Tv,(A)=A′, Tv,(B)=B′, Tv,(C)=C′), then we say that shape S is translated into shape S′ using translation Tv, i.e. Tv,(S)=S′.
commit to user Copyright © The Turkish Online Journal of Educational Technology 21
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
a)
b)
Figure 5. Translation.
c)
Example 5.Two billiard balls, A and B, are on the rectangular table, as shown on Figure 6-a. How should we hit the ball A if we want it to strike all four rails before hitting the ball B? Solution. Let us mark the rectangle (billiard table) as XYUV, and A'=IXV(A), A''=IXY(A'), B'=IUV(B), B''=IUY(B'). (Multimedia presentation shows transformation step by step.) Figure 6a. Disposition of the billiard balls problem.
If we mark the intersection of lines A''B'' and XY as M, the intersection of lines A''B'' and UY as N, the intersection of lines A'M and XV as P, and the intersection of lines B'N and UV as Q, it can be noticed that the following angles are equal: APV=A'PV=XPM,PMX=XMA''=NMY, MNY=B''NU=UNQ, and NQU=B'QV=VQB. (Multimedia presentation shows drawing of every line and their intersections, i.e. above-mentioned points.) Figure 6b. Steps in finding the solution.
Therefore, ball in point A should be hit in such a way that would send it through points P,M, N and Q, and it will finally hit the ball in point B (Figure 7).
commit to user Copyright © The Turkish Online Journal of Educational Technology 22
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
Figure 7. Solution of a given task as given by the multimedia animation.
Chapter Exercises offers numerous tasks ordered by difficulty, from basic to more demanding ones, each containing explicit solution or instructions how to reach it. In great majority of them, lecturer leads a student to think and to find a conclusion before it is shown on the screen. Animations do not show the whole solution at once, but steb by step. Multimedia lessons about regular polyhedra Multimedia lessons in this segment consist of the following chapters: Basics, Paper models of regular polyhedra, Discussion on number of polyhedra, Conclusions, Exercises and Homework. Figure 8. Start page of multimedia lesson about the regular polyhedral.
Example 6. Students were given the opportunity to rotate any of five Platonic solids in order to find out how many surfaces, vertices, edges and angles it has (Figure 9). Multimedia lesson is created in such a way to lead a student to the correct answer using offered possible answers (Figure 10).
commit to user Copyright © The Turkish Online Journal of Educational Technology 23
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
Figure 9. Rotation of cube.
Figure 10. Solution of a given task.
Example of animated multimedia lesson which shows the problem and the step-by-step solution is given on Figure 11. Example 7. Cut given regular tetrahedron of edge lentgh a and regular four-sided pyramid of edge length a into pieces which can be assembled to form a cube. Remark: Described solids can be assembled to form a cube of edge length
a . Regular four-sided pyramid 2
should be cut into four equal parts which will be rested on the faces of regular tetrahedron. Explanation: If the cube has edge length a, length of its diagonal is d = a 2 . Therefore, four-sided pyramid should be cut into four pieces, i.e. three-sided pyramids whose bases are quarters of the base of original regular pyramid. Two edges of these pyramids will have the length a, and the other two edges will have the length equal one half of diagonal, i.e.
b=c=
a 2 a = . 2 2 Figure 11. Solution of a problem given step-by-step.
a)
b)
commit to user Copyright © The Turkish Online Journal of Educational Technology 24
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
c)
d)
e)
RESEARCH METHODOLOGY Aim and questions of the research On the basis of previous researches and results (Hadjerrouit, 2011; Herceg & Herceg, 2009; Takači, Stojković, Radovanovic, 2008), some of the questions during this research were as follows: 1) Are there any differences between results of the first group of students, who had traditional lectures (control group – traditional group) and the second group, who had multimedia lectures (experimental group – multimedia group)? 2) Where were these differences the most obvious? 3) What do students from the experimental group think about multimedia lectures? Do they prefer this or traditional way and why? Participants of the research The research included two groups of 50 first year students of the Faculty of the Architecture and the Faculty of Civil Construction Management (CCM) of the Union Nikola Tesla University, Belgrade, Serbia. Each group was divided into two groups of 25, one of which (Group I) had traditional lectures and the second one (Group II) had multimedia lectures. Groups were formed randomly, so the previous knowledge needed for the lectures about isometric transformations and regular polyhedra was practically the same, which was confirmed by pre-test. The pre-test included theoretical questions and tasks from geometry. Average score of this pre-test was statistically similar between these groups (I: 72.35, II: 71.25 out of 100). Methods and techniques of the research Lectures in both groups included exactly the same information on the isometric transformations and regular polyhedra, i.e. axioms, theorems, examples and tasks. It is important to emphasize that the lecturer and the number of classes were the same, too. The main information source for the multimedia group was software created in Macromedia Flash 10.0, which is proven to be very successful and illustrative for creating multimedia applications in mathematics lectures (Bakhoum, 2008). Our multimedia lecturing material was created in accordance with methodical approach, i.e. cognitive theory of multimedia learning (Mayer, 2001, 2005), as well as with principles of multimedia teaching and design based on researches in the field of teaching mathematics (Atkinson, 2005, Merill, 2003) and geometry (Lehrer, Chazan, 1998). The material includes a large number of dynamic and graphic presentations of definitions, theorems, characteristics, examples and tests based on step-bystep method with accent on visualization. An important quality of making one’s own multimedia lectures is the possibility of creating a combination of traditional lecture and multimedia support in those areas we have mentioned as the ‘weak links’ (three-dimensional problems, tasks in which it is important to see the movement, etc.). commit to user Copyright © The Turkish Online Journal of Educational Technology 25
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
After the lectures were finished, students had the same test of knowledge about the isometric transformations and regular polyhedra, solved without using the computers. Isometic transofrmations – Test 1 1. Which of the following shapes are axially and centrally symmetric: • Ray • Circle • Line • Parallelogram • Isosceles triangle • Isosceles trapezium • Deltoid 2. Translation which copies line a into line b is possible if the lines are: a) perpendicular b) parallel c) intersecting How many axes of symmetry does a circle have? d) 2 e) 4 f) infinite What does remain fixed in the point reflection? a) Point of reflection b) Points of the image c) Points of the pre-image Rotation is completely defined by: a) Centre of rotation b) Angle of rotation c) Centre of rotation and angle of rotation 3. How many axes of symmetry do the following letters have: E, O, N, H, Z, C, S? 4. Smaller rectangle is cut out of the greater rectangle. Draw a line p which will divide the remaining figure in two parts of equal area. 5. Two points, A and B, are given from the same side of the line p. Find the point P on the line pin which the ray of light starting in point A will reflect and pass through the point B. (Note: Use the fact that angle of incidence equals the angle of reflection.) Regular polyhedra – Test 2 1.
2. 3. 4.
5.
How many • edges • surfaces • angles • vertices has each of the Platonic solids? Prove that there are exactly five regular polyhedra. How many equilateral polygons are there and how many of them meets in each vertex of cube, tetrahedron, dodecahedron, octahedron and icosahedron? Cut the cube with a plane to create: a) Scalene triangle b) Equilateral triangle c) Isosceles triangle What is the volume of a regular tetrahedron of edge lentgh a?
Test score were within the interval from 0 to 100 (20 points per task). Results were analyzed with Student’s t-test for independent samples using SPSS (version 10.0) software. The difference between groups was considered statistically significant if the probability p was less than 0.05. RESULTS Average score of the Test 1 (isometric transformations) in the traditional group from the Faculty of Architecture commit to user was 76.56 with standard deviation 18.64, and in multimedia group, average score was 86.96 with standard Copyright © The Turkish Online Journal of Educational Technology 26
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
deviation 17.72. Results of the t-test for two independent samples showed that multimedia group had significantly higher scores in comparison with the traditional group, with statistical significance of p<0.05 (t = – 2.022, p = 0.049). Average score of the same test in the traditional group from the Faculty of Civil Construction Management was 76.64 with standard deviation 18.53, and in multimedia group, average score was 88.12 with standard deviation 18.11. Results of the t-test for two independent samples showed that multimedia group had significantly higher scores in comparison with the traditional group, with statistical significance of p<0.05 (t = 2.216, p = 0.031). Average score of the Test 2 (regular polyhedra) in the traditional group from the Faculty of Architecture was 72.64 with standard deviation 12.19, and in multimedia group, average score was 85.20 with standard deviation 13.11. Results of the t-test for two independent samples showed that multimedia group had significantly higher scores in comparison with the traditional group, with statistical significance of p<0.05(t = 3.508, p = 0.001). Average score of the same test in the traditional group from the Faculty of Civil Construction Management was 75.80 with standard deviation 15.59, and in multimedia group, average score was 86.80 with standard deviation 14.28. Results of the t-test for two independent samples showed that multimedia group had significantly higher scores in comparison with the traditional group, with statistical significance of p<0.05(t = – 2.601, p = 0.002). Average total test scores for both faculties are given in Figures 12, and average scores by tasks are given in Tables 1 and 2. Figure 12. Total average scores for a) Test 1 and b) Test 2.
Table 1: Total average scores by tasks for Test 1. Task
Faculty
Group
Architecture
Traditional (Control) Multimedia (Treatment)
Task 1
N 25 25
Traditional(Control) CCM
Architecture Task 2
Task 3
Multimedia (Treatment)
25 25
Traditional (Control) Multimedia (Treatment)
25
CCM
Traditional(Control) Multimedia (Treatment)
Architecture
Traditional (Control) Multimedia
Mean
17.4
Std. Deviation
2.84
18.2
2.45
18.2
-1.047
0.3
-0.837
0.41
-1.55
0.128
-2.43
0.02
-1.012
0.316
2.61 3.5
25
19.4
1.66
25
16.9
4.26
25
19
2.5
25
17.36
3.83
25
18.36
2.12
commit to user
Sig (2tailed)
2.55
18.2
18.8
T value
Copyright © The Turkish Online Journal of Educational Technology 27
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
(Treatment) CCM
Traditional(Control) Multimedia (Treatment)
Architecture
Traditional (Control) Multimedia (Treatment)
Task 4 CCM
Traditional(Control) Multimedia (Treatment)
Architecture
Traditional (Control) Multimedia (Treatment)
Task 5 CCM
Traditional(Control) Multimedia (Treatment)
25
17.96
3.8
25
18.36
3.12
25
13.2
3.79
25
17.8
3.84
25
13.6
3.68
25
17.76
3.82
25
12.8
4.58
25
16.4
2.71
25
12.68
4.33
25
17.4
2.55
-0.407
0.69
-4.265
0.000
-3.918
0.000
-3.38
0.001
-4.7
0.000
Table 2: Total average scores by tasks for Test 2. Task
Faculty
Group
Architecture
Traditional (Control) Multimedia (Treatment)
Task 1
Traditional(Control) CCM
Architecture Task 2 CCM
Architecture Task 3
Task 4
Multimedia (Treatment)
Mean
Std. Deviation
25
17.4
2.55
25
18
2.5
17
2.89
25 25
17.8
3.84
25
14.4
4.16
25
17
2.5
Traditional(Control)
25
16.8
2.45
Multimedia (Treatment)
25
17.8
2.53
Traditional (Control)
25
17.4
2.93
Multimedia (Treatment)
25
18.52
2.28
25
17.2
4.35
25
17.8
3.25
25
12.8
4.8
25
16.6
3.45
Traditional(Control) 25 commit
12.2 to user
4.1
Traditional (Control) Multimedia (Treatment)
CCM
Traditional(Control) Multimedia (Treatment)
Architecture
Traditional (Control) Multimedia (Treatment)
CCM
N
t value
Sig (2tailed)
-0.84
0.405
-0.833
0.410
-2.677
0.01
-1.42
0.162
-1.51
0.138
-0.552
0.583
-3.212
0.002
-4.023
0.000
Copyright © The Turkish Online Journal of Educational Technology 28
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
Multimedia (Treatment) Architecture Task 5 CCM
Traditional (Control) Multimedia (Treatment) Traditional(Control) Multimedia (Treatment)
25
17
4.33
25
11.04
5.14
25
15.08
4.25
25
12.6
5.79
25
16.2
2.99
-3.027
0.004
-2.761
0.009
When asked whether they prefer classical or multimedia way of learning, in group of Architecture students 12% (3 students) answered classical and 82% (22 students) answered multimedia, and in group Civil Construction Management students of 20 % (5 students) answered classical and 80 % (20 students) answered multimedia, explaining it with the following reasons: • ‘Picture is essential for understanding geometry, and it is even better with animation and movements in 3-D space’. • ‘It is much easier to see and understand some things, and much easier to comprehend with the help of step-by-step animation’. • ‘Much more interesting and easier to follow, in opposite to traditional monotonous lectures with formulas and static graphs’. • ‘More interesting and easier to see, understand and remember’. • ‘I understand it much better this way and I would like to have similar lectures in other subjects, too’. • ‘Quite interesting, although classical lectures can be interesting – depending on teacher’. When asked whether it was easier for them to learn, understand and solve problems after having lectures and individual work with multimedia approach, students answered the question as shown in Figure 13. Figure 13. Students’answers – a) Architecture, b) Civil Construction Management.
DISCUSSION AND CONCLUSIONS During past few years, multimedia learning has become very interesting and important topic in the field of teaching methodology. Mayer and Atkinson’s researches (Mayer, 2001; Atkinson, 2005) resulted in establishing the basic principles of multimedia learning and design, which were confirmed in our research too. Results of researches on teaching geometry (Lehrer, Chazan, 1998; Glass, Deckert, 2001), as well as researches of geometric transformations (Hollebrands, 2004), coincide with our findings and emphases the importance of visualization in the intuitive understanding of geometry. Multimedia lessons about the isometric transformations and regular polyhedra, created in accordance with these principles, proved to be successful. Numerous researches in different fields of science, as well as in mathematics and geometry, showed that using multimedia makes learning process easier (Hadjerrouit, 2011; Herceg & Herceg, 2009; Takači, Stojković, Radovanovic, 2008; Takači, Herceg, Stojković, 2006; Takači, Pešić, 2004; Takači, Pešić, Tatar, 2003). Our results show that students who have used multimedia learning achieved remarkably higher test scores. Average total scores for Test 1 (isometric transformations) show that students of the Faculty of Architecture who had multimedia lessons had 10.4 points higher average total score than students from the traditional group, while the students of the multimedia group at the Faculty of Civilto Construction Management had 11.48 points higher commit user Copyright © The Turkish Online Journal of Educational Technology 29
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
average total score than students from the traditional group. On Test 2 (regular polyhedra), students from the multimedia group at the Faculty of Architecture had average total score 12.56 points higher than students from traditional group, while at the Faculty of Civil Construction Management students from the multimedia group had 11 points higher average total score than the students from traditional group. Researches on learning geometry with software packages GeoGebra (Bulut, 2011) and Geometers’ Sketchpad (Nordin, Zakaria, Mohamed, Embi, 2010) have shown that students who had used computers in the learning process had higher scores on tests. These investigations were conducted using different multimedia teaching tools in learning geometry. Our results of higher tests scores after learning with Macromedia Flash animations have proven the general importance of using various multimedia in the process of teaching mathematics. According to Tables 1 and 2, which show average single tasks scores, we concluded that students from both multimedia groups were remarkably more successful in solving problems which demand visual comprehension (tasks 4 and 5), while the average scores in tasks 1, 2 and 3 were practically the same on the both groups. Solving tasks 4 and 5 demanded visual and spatial understanding of the problems, and according to students, it was essential to be able to see given bodies and intersections by using movements in three-dimensional space, from different angles, and to implement adopted knowledge in solving new problems. This approach, based on experience in work with students and awareness of their intuitive understanding of geometry and space, corresponds to the results of some other authors (Lehrer, Chazan, 1998; Glass, Deckert, 2001; Hollebrands, 2004). Numerous researches on multimedia learning include analyses of comments on how much multimedia approach affects teaching and individual learning processes (Wishart, 2000). Teachers emphasized that multimedia lectures have made their work easier and have proved to be motivating for students, while students said that multimedia lessons, in comparison with traditional methods, have offered better visual idea about the topic. As shown in Figure 13, a large number of them insisted that multimedia tools enabled easier understanding, learning and implementation of knowledge. One of this research’s conclusions can be one student’s answer to the question: what is multimedia learning? ‘Multimedia learning is use of multimedia as an addition to the traditional way of learning. Multimedia enables us to have better understanding of many mathematical problems and to experiment with them.’ According to the students’ reactions, animations used in the multimedia lessons are the best proof that a picture is worth a thousand words. It can be added that animation is worth even more. Students’ remark, and consequently one of this research’s on conclusions, was that there should be more multimedia lessons, i.e. that multimedia is an important aspect of teaching and learning process.
GUIDELINES FOR FURTHER RESEARCHES During our research, several new questions appeared that should be solved in the future: (a) In which scientific fields does the multimedia approach give the best results? b) For which areas of mathematics (geometry, analyses, etc.) would the multimedia approach be the most successful? (c) How much success of the multimedia approach depends on an individual student’s ability and how much on a teacher’s skills? (d) How can we improve the understanding of lectures by multimedia approach, because our aim is learning and understanding, not the multimedia per se. REFERENCES Atkinson, R., (2005). Multimedia Learning of Mathematics in Mayer, R., (2005). The Cambridge handbook of Multimedia Learning, Cambridge University Press, 393-408. Bakhoum, Е., (2008).Animating an equation: a guide to using FLASH in mathematics education. International Journal of Mathematical Education in Science and Technology, Vol.39, No. 5, 637–655, Taylor & Francis. Bishop, A., (1989). Review of research on visualization in mathematics education. Focus on Learning Problems in Mathematics, 11 (1), 7-16. Bulut, M., Bulut, N., Pre service teachers’ usage of dynamic mathematics software The Turkish Online Journal of Educational Technology– October 2011, volume 10 Issue 4. Glass, B., Deckert, W., (2001). Making Better Use of Computer Tools in Geometry, Мathematics teacher, Volume 94, Issue 3, Page 224. Hadjerrouit, S., (2011). Using the interactive learning environment Aplusix for teaching and learning school algebra: a research experiment in a middle school. The Turkish Online Journal of Educational Technology – October 2011, volume 10 Issue 4. commit to user Copyright © The Turkish Online Journal of Educational Technology 30
perpustakaan.uns.ac.id
digilib.uns.ac.id
TOJET: The Turkish Online Journal of Educational Technology – January 2013, volume 12 Issue 1
Herceg, D., & Herceg, Đ., (2009). The definite integral and computer. The teaching of mathematics, Vol. XII,1, pp.33-44. Hollebrands, K., (2004). High School Students' Intuitive Understandings of Geometric Transformations, Мathematics teacher, Volume 97, Issue 3, Page 207. Lehrer, R., Chazan, D., (1998). Designing Learning Environments for Developing Understanding of Geometry and Space, Lawrence Erlbaum Associates, Mahwah. Mayer, R., (2001). Multimedia Learning, Cambridge University Press. Mayer, R., (2005). The Cambridge handbook of Multimedia Learning, Cambridge University Press. Milovanovic, M. Application of Multimedia in Teaching Isometric Transformations, MSc thesis (in Serbian) Faculty of Mathematics, Belgrade University, 2005. Milovanović, M., Takaci, Đ., Milajic, A., (2011),Multimedia approach in teaching mathematics - examples of interactive lessons from mathematical analysis and geometry in Interactive Multimedia, InTech, Croatia, ISBN: 979-953-307-623-1. Milovanović, M., Takaci, Đ., Milajic, A., (2011), Multimedia Approach in Teaching Mathemathics – Example of Lesson about the Definite Integral Application for Determining an Area, International Journal of Mathematical Education in Science and Technology, Volume 42 Issue 2, 175-187., ISSN 0020-739X. Nordin, N, Zakaria, E, Mohamed, N, Embi, M., (2010), Pedagogical usability of the Geometers’ Sketchpad (GSP) digital module in the mathematics teaching The Turkish Online Journal of Educational Technology – October 2011, volume 9 Issue 4. Rias, M.R., Zaman B.H., (2011). Different visualization types in multimedia learning: a comparative study, Proceeding of the second international conference on Visual informatics: sustaining research and innovations – Volume Part II, Springer-Verlag Berlin, Heidelberg, 408-418, ISBN: 978-3-642-25199-.3 Tall, D., (1991). Advanced mathematical thinking, Springer. Takači, Dj, Stojković, R., Radovanovic, J., (2008). The influence of computer on examining trigonometric functions, Teaching Mathematics and Computer Science, 6/1, 111-123, Debrecen, Hungary. Takači, Đ., Herceg D., Stojković R., (2006). Possibilities and limitations of Scientific Workplace in studying trigonometric functions, The Teaching of Mathematics,VIII_2 / 2006, 61-72, Belgrade. Takači, Dj., Pešić, D., (2004). The Continuity of Functions in Mathematical Education-Visualization method, in Serbian, Nastava matematike (The Teaching of Mathematics), 49, 3-4, Beograd. Takači, Dj., Pešić, D., Tatar, J., (2003). An introduction to the Continuity of functions usingScientific Workplace, The Teaching of Mathematics, Vol. VI, 2, Belgrade, 105-112. Wishart, J., (2000). Students’ and Teachers’ Perceptions of Motivation and Learning Through the Use in Schools of Multimedia Encyclopedias on CD-ROM. Journal of Educational Multimedia and Hypermedia 9(4), 331-345.
commit to user Copyright © The Turkish Online Journal of Educational Technology 31
perpustakaan.uns.ac.id
digilib.uns.ac.id
BAHAN AJAR KESEBANGUNAN DAN SIMETRI BERBASIS CONTEXTUAL TEACHING AND LEARNING (CTL) MENGGUNAKAN MACROMEDIA FLASH DI KELAS 5 SEKOLAH DASAR Liya Nalurita1 Rusdy A Siroj2 dan Ratu Ilma Indra Putri3
Abstrak: Pembelajaran matematika disekolah pada umumnya belum banyak memanfaatkan media dalam proses pembelajaran. Selain itu media yang digunakan dalam pembelajaran matematika terkadang kurang mendukung proses pembelajaran tersebut. Oleh karena itu, untuk melengkapi komponen belajar dan pembelajaran di sekolah, sudah seharusnya guru memanfaatkan media atau alat bantu yang mampu merangsang pembelajaran secara efektif dan efesien. Pemanfaatan teknologi komputer tersebut tentu saja harus dibarengi dengan kesiapan bahan ajar yang ditampilkan pada media komputer tersebut. Untuk itulah guru diharapkan dapat membuat bahan ajar yang valid, praktis dan mempunyai efek potensial terhadap hasil belajar siswa. Kata kunci : Bahan ajar, Macromedia Flash, kontekstual
Pembelajaran matematika sekolah saat ini masih merupakan salah satu topik yang menjadi fokus perhatian para ahli pendidikan matematika. Hal ini dikarenakan masih banyak persoalanpersoalan dalam pembelajaran matematika di sekolah. Banyaknya permasalahan itu antara lain adalah metode pembelajaran yang digunakan dipandang belum sesuai untuk diterapkan pada proses pembelajaran. Selain itu media yang digunakan dalam pembelajaran kurang mendukung proses pembelajaran atau kurang sesuai dengan metode pembelajaran yang digunakan.
Oleh karena itu, untuk melengkapi komponen belajar dan pembelajaran di sekolah, sudah seharusnya guru memanfaatkan media atau alat bantu yang mampu merangsang pembelajaran secara efektif dan efesien. Ketersedian media saat ini seperti OHP, chart dan slide belum mampu mengantarkan materi pembelajaran dengan baik, karena itu diperlukan pemanfaatan media yang lebih menarik antara lain dengan menggunakan teknologi komputer.
Melalui media komputer, pembelajaran dapat disampaikan menjadi Beragam metode dan penemuanlebih menarik dan interaktif. Seperti yang penemuan dikembangkan guna mendukung diungkapkan oleh Suherman (2001:248) proses pembelajaran matematika tersebut. bahwa komputer memiliki potensi yang Munculnya beragam upaya dalam besar untuk meningkatkan kualitas pembelajaran matematika tidak lain pembelajaran, khususnya pembelajaran dikarenakan pembelajaran matematika Senada dengan apa yang commit matematika. to user banyak berisikan konsep-konsep yang disampaikan Suherman, Azhar (2007) juga abstrak dan dirasa sulit untuk dipahami. mengemukakan bahwa, komputer dapat
1
) Alumni, 2,3) Dosen Jurusan Magister Pendidikan Matematika PPs Unsri
Nalurita, Bahan Ajar Kesebangunan dan Simetri Berbasis Contextual perpustakaan.uns.ac.id
mengakomodasikan siswa yang lamban menerima pelajaran, karena ia dapat memberikan iklim yang lebih bersifat efektif dengan cara lebih individual, tidak pernah lupa, tidak pernah bosan, sangat sabar dalam menjalankan instruksi seperti yang diinginkan program yang digunakan. Selain itu komputer dapat merangsang siswa untuk mengerjakan latihan, melakukan kegiatan laboratorium atau simulasi karena tersedianya animasi grafik, warna dan musik yang dapat menambah realisme. Sehingga hal-hal abstrak atau imajinatif yang sulit dipikirkan siswa dapat dipresentasikan melalui simulasi komputer. Hal ini tentu saja akan lebih menyederhanakan jalan pikiran siswa dalam memahami matematika. Dengan demikian pengembangan proses pembelajaran matematika dapat dilakukan guru dengan memberdayakan komputer, serta program-program sederhana juga dapat digunakan dalam penanaman dan penguatan konsep, membuat pemodelan matematika dan menyusun strategi dalam memecahkan masalah.
digilib.uns.ac.id
pendidikan yang menarik dan interaktif sesuai dengan kurikulum pendidikan. Dalam PP nomor 19 tahun 2005 Pasal 20, diisyaratkan bahwa guru diharapkan mengembangkan materi pembelajaran, yang kemudian dipertegas melalui Peraturan Menteri Pendidikan Nasional (Permendiknas) nomor 41 tahun 2007 tentang Standar Proses, yang antara lain mengatur tentang perencanaan proses pembelajaran yang mensyaratkan bagi pendidik pada satuan pendidikan untuk mengembangkan Rencana Pelaksanaan Pembelajaran (RPP). Salah satu elemen dalam RPP adalah sumber belajar. Dengan demikian, guru diharapkan untuk mengembangkan bahan ajar sebagai salah satu sumber belajar dan acuan pembelajaran karena bahan ajar merupakan bagian penting dalam pelaksanaan pendidikan di sekolah. Melalui bahan ajar guru akan lebih mudah dalam melaksanakan pembelajaran dan siswa akan lebih terbantu dan mudah dalam belajar (Depdiknas, 2008). Dalam Kurikulum Satuan Tingkat Pendidikan dijelaskan juga bahwa salah satu kompetensi guru yang harus ditingkatkan adalah kemampuan menggunakan media pembelajaran. Guru dapat bekerjasama dengan berbagai pihak untuk menyediakan media pembelajaran ini.
Agar dapat mengembangkan media pembelajaran dengan menggunakan komputer tentunya guru harus memiliki kemampuan dibidang komputer. Sekarang ini bukanlah hal yang mustahil bagi seorang guru untuk dapat mempelajari bagaimana mengembangkan media Guru sendiri dapat mempelajari pembelajaran dengan menggunakan berbagai software untuk membuat media komputer tersebut. Maraknya pameranpembelajaran yang disesuaikan dengan pameran komputer di berbagai kota akhirkebutuhan para siswanya. Salah satu akhir ini, situs-situs internet yang bertema software yang dapat membuat berbagai IT (Information of Technology), serta media seperti video, animasi, gambar, merebaknya Lembaga Pendidikan suara, dan sebagainya dengan cara yang Komputer yang menawarkan programmudah adalah Macromedia Flash. Dengan program pendidikan yang menarik bagi alasan tersebut, maka peneliti tertarik berbagai kalangan usia merupakan menggunakan software Macromedia Flash kesempatan yang baik bagi guru untuk dalam pada pengembangan media mengembangkan ilmunya dan juga sebagai pembelajaran menggunakan komputer. peningkatan IPTEK dalam dunia Penelitian ini bertujuan untuk pendidikan. Hal ini juga merupakan suatu commit to user menghasilkan bahan ajar kesebangunan dan peluang sekaligus tantangan tersendiri bagi simetri berbasis pendekatan contextual guru untuk membuat program-program 46
perpustakaan.uns.ac.id
JURNAL PENDIDIKAN MATEMATIKA VOLUME 4.digilib.uns.ac.id NO.1 JUNI 2010
teaching and learning (CTL) dengan menggunakan macromedia flash di kelas 5 Sekolah Dasar yang valid, praktis, dan memiliki efek potensial terhadap hasil belajar siswa. Media Pembelajaran Media pembelajaran adalah segala sesuatu yang dapat menyalurkan pesan, dapat merangsang fikiran, perasaan, dan kemauan peserta didik sehingga dapat mendorong terciptanya proses belajar pada diri peserta didik (Sudrajat, 2008). Media pembelajaran yang digunakan dalam kegiatan pembelajaran dapat mempengaruhi efektivitas pembelajaran. Pada mulanya, media pembelajaran hanya berfungsi sebagai alat bantu guru untuk mengajar yang digunakan adalah alat bantu visual. Sekitar pertengahan abad ke-20 usaha pemanfaatan visual dilengkapi dengan digunakannya alat audio, sehingga lahirlah alat bantu audiovisual. Sejalan dengan perkembangan ilmu pengetahuan dan teknologi (IPTEK), khususnya dalam bidang pendidikan, saat ini penggunaan alat bantu atau media pembelajaran menjadi semakin luas dan interaktif, seperti adanya komputer dan internet. Media pembelajaran memiliki beberapa fungsi, diantaranya :
3.
4. 5.
6. 7.
8.
tinggi. Melalui penggunaan media yang tepat, maka semua obyek itu dapat disajikan kepada peserta didik. Media pembelajaran memungkinkan adanya interaksi langsung antara peserta didik dengan lingkungannya. Media pembelajaran menghasilkan keseragaman pengamatan. Media pembelajaran dapat menanamkan konsep dasar yang benar, konkrit, dan realistis. Media pembelajaran membangkitkan keinginan dan minat baru. Media pembelajaran membangkitkan motivasi dan merangsang anak untuk belajar. Media pembelajaran memberikan pengalaman yang integral/menyeluruh dari yang konkrit sampai dengan abstrak.
Sesuai dengan fungsinya di atas, maka terdapat berbagai jenis media pembelajaran, diantaranya: 1. Media Visual : grafik, diagram, chart, bagan, poster, kartun, komik. 2. Media Audial : radio, tape recorder, laboratorium bahasa, dan sejenisnya. 3. Projected still media : slide; over head projektor (OHP), in focus dan sejenisnya 4. Projected motion media : film, televisi, video (VCD, DVD, VTR), komputer dan sejenisnya.
1. Media pembelajaran dapat mengatasi Sejalan dengan perkembangan keterbatasan pengalaman yang dimiliki IPTEK, penggunaan media baik yang oleh para peserta didik. bersifat visual, audial, projected still media 2. Media pembelajaran dapat melampaui maupun projected motion media bisa batasan ruang kelas. Artinya, banyak dilakukan secara bersama dan serempak hal yang tidak mungkin dialami secara melalui satu alat saja yang disebut Multi langsung di dalam kelas oleh para Media. Contoh : dewasa ini penggunaan peserta didik tentang suatu obyek yang komputer tidak hanya bersifat projected disebabkan karena : (a) obyek terlalu motion media, namun dapat meramu semua besar; (b) obyek terlalu kecil; (c) obyek jenis media yang bersifat interaktif. yang bergerak terlalu lambat; (d) obyek yang bergerak terlalu cepat; (e) Macromedia Flash obyek yang terlalu kompleks; (f) obyek yang bunyinya terlalu halus; (g) obyek commit to userMacromedia falsh merupakan salah satu software animasi yang mempunyai mengandung berbahaya dan resiko
47
Nalurita, Bahan Ajar Kesebangunan dan Simetri Berbasis Contextual perpustakaan.uns.ac.id
banyak keunggulan, diantaranya adalah program yang berorientasi objek (OOP), mampu mendesain gambar berbasis vector, aplikasi internet, dan lain-lain. Dalam penggunaan software ini ada beberapa persyaratan sebelum diinstal ke komputer untuk menjamin bahwa program dapat berjalan secara optimum yaitu: a. Komputer dengan Processor Intel Pentium II 500 Mhz atau processor terbaru yang berjalan dalam sistem operasi windows 98, windows 200, windows NT 4.0, windows XP, windows VISTA, maupun windows 7. b. Memori (RAM) minimal 64MB atau lebih besar. c. Kapasitas Harddisk kosong minimal 50MB. d. Monitor warna minimal dengan resolusi 800 x 600. e. Dilengkapi dengan browser seperti Internet Explorer 5.0 atau versi terbaru. Mengapa menggunakan Macromedia Flash? Jawabannya adalah karena Macromedia Flash memiliki sejumlah kelebihan dalam desain multimedia. Edy (dalam Hidayat, 2007) menyebutkan beberapa kelebihan Macromedia Flash tersebut antara lain:
digilib.uns.ac.id
4. Mampu membuat website yang interaktif, karena pengguna (user) dapat menggunakan keyboard atau mouse untuk berpindah ke bagian lain dari halaman web atau movie, memindahkan objek, memasukkan informasi di form. 5. Mampu menganimasi grafis yang rumit dengan sangat cepat sehingga membuat animasi layar penuh bisa langsung disambungkan ke situs web. 6. Mampu secara otomatis mengerjakan sejumlah frame antara awal dan akhir sebuah urutan animasi, sehingga tidak membutuhkan waktu yang lama untuk membuat berbagai animasi. 7. Mudah diintegrasikan dengan program Macromedia yang lain, seperti Dreamweaver, Fireworks, dan Authorware, karena tampilan dan tool yang digunakan hampir sama. 8. Lingkup pemanfaatan luas. Selain tersebut di atas, dapat juga dipakai untuk membuat film pendek atau kartun, presentasi, iklan atau web banner, animasi logo, kontrol navigasi dan lainlain. Karena keunggulan dan penggunaannya lebih sederhana, maka dalam penelitian pengembangan media pembelajaran ini menggunakan software macromedia flash 8.0.
1. Animasi dan gambar konsisten dan Pengembangan Bahan Ajar fleksibel, karena tetap terlihat bagus Bahan ajar atau materi pembelajaran pada ukuran jendela dan resolusi layar (instructional materials) secara garis besar berapapun pada monitor pengguna. terdiri dari pengetahuan, keterampilan, dan 2. Kualitas gambar terjaga. Hal ini sikap yang harus dipelajari siswa dalam disebabkan karena Flash menggunakan rangka mencapai standar kompetensi yang teknologi Vector Graphics yang telah ditentukan (Sudrajat, 2008). Bahan mendeskripsikan gambar memakai ajar merupakan bagian penting dalam garis dan kurva, sehingga ukurannya pelaksanaan pendidikan di sekolah. Bahan dapat diubah sesuai dengan kebutuhan ajar dapat dibuat dalam berbagai bentuk tanpa mengurangi atau mempengaruhi sesuai dengan kebutuhan dan karakteristik kualitas gambar. materi ajar yang akan disajikan. Untuk itu 3. Waktu loading (kecepatan gambar atau bahan ajar hendaknya disusun agar siswa animasi muncul atau loading time) lebih cepat dibandingkan dengan commit lebih to useraktif dalam kegiatan pembelajaran. Bahan ajar merupakan informasi, alat dan pengolah animasi lainnya, seperti teks yang diperlukan guru/instruktor untuk animated gifs dan java applet. 48
perpustakaan.uns.ac.id
JURNAL PENDIDIKAN MATEMATIKA VOLUME 4. NO.1 JUNI 2010 digilib.uns.ac.id
perencanaan dan penelaahan implementasi pembelajaran. Bahan ajar adalah segala bentuk bahan yang digunakan untuk membantu guru/instruktor dalam melaksanakan kegiatan belajar mengajar di kelas. (Panduan Pengembangan Bahan Ajar, 2008). Dengan bahan ajar memungkinkan siswa dapat mempelajari suatu kompetensi atau KD secara runtut dan sistematis sehingga secara akumulatif mampu menguasai semua kompetensi secara utuh dan terpadu. Prinsip Pengembangan Bahan Ajar Pengembangan bahan ajar memperhatikan prinsisp-prinsip pembelajaran. Di antara prinsip pembelajaran tersebut adalah: a. Mulai dari yang mudah untuk memahami yang sulit, dari yang kongkret untuk memahami yang abstrak. Siswa akan lebih mudah memahami suatu konsep tertentu apabila penjelasan dimulai dari yang mudah atau sesuatu yang kongkret, sesuatu yang nyata ada di lingkungan mereka. b. Pengulangan akan memperkuat pemahaman. Dalam pembelajaran, pengulangan sangat diperlukan agar siswa lebih memahami suatu konsep.
dalam media komputer dengan menggunakan software macromedia flash. Indikator-indikator pada materi kesebangunan dan simetri adalah menentukan kesebangunan antar bangun datar, menggambar bangun datar yang sebangun dengan bangun lain, menentukan simetri lipat pada bangun datar, dan menentukan simetri putar pada bangun datar. Karena materi tersebut di atas memerlukan visualisasi dan konteks dalam kehidupan sehari-hari, maka peneliti mengambil materi tersebut dalam pengembangan bahan ajar menggunakan macromedia flash berbasis pendekatan contextual teaching and learning (CTL) Bahan Ajar Kesebangunan dan Simetri menggunakan Macromedia Flash Berbasis Pendekatan Contextual Teaching and Learning (CTL) di kelas 5 Sekolah Dasar. Bahan ajar kesebangunan dan simetri dikembangkan menggunakan tahaptahap penelitian pengembangan. Berikut beberapa contoh hasil pengembangan bahan ajar tersebut. a. Tampilan Awal
c. Umpan balik positif akan memberikan penguatan terhadap pemahaman siswa 1. Motivasi belajar yang tinggi merupakan salah satu faktor penentu keberhasilan belajar 2. Mencapai tujuan ibarat naik tangga, setahap demi setahap, akhirnya akan mencapai ketinggian tertentu. b. Tampilan Menu Dari uraian diatas, maka peneliti menyimpulkan bahwa bahan ajar adalah materi ajar/alat dan teks yang diperlukan guru untuk implementasi pembelajaran baik berupa buku siswa maupun media lainnya. Dalam penelitian ini bahan ajar dikemas commit to user
49
Nalurita, Bahan Ajar Kesebangunan dan Simetri Berbasis Contextual perpustakaan.uns.ac.id
c. Materi Kesebangunan
d. Materi Simetri Lipat
e. Materi simetri putar
Hasil Penelitian Menggunakan Bahan Ajar Kesebangunan dan Simetri menggunakan Macromedia Flash Berbasis Pendekatan CTL di kelas 5 Sekolah Dasar.
digilib.uns.ac.id
laboratorium komputer SD Islam AzZahrah dan pertemuan ke-4 yaitu pelaksanaan tes dilaksanakan di ruang kelas. Bentuk pembelajaran yang dilakukan adalah pembelajaran berbasis CTL, dimana guru bertindak sebagai fasilitator. Dalam pembelajaran ini, siswa dibentuk dalam beberapa kelompok dengan masing-masing anggota kelompok berjumlah 2 sampai 3 orang. Dalam pembelajaran ini masing-masing kelompok diberikan bahan ajar dengan menggunakan komputer dan juga diberikan lembar aktivitas untuk menjawab soal-soal yang berhubungan dengan materi yang terdapat dalam bahan ajar. Proses pengembangan bahan ajar disesuaikan dengan CTL dimana di dalam bahan ajar tersebut terdapat kegiatan kelompok yang sesuai dengan aspek masyarakat belajar, materi disusun untuk menggiring siswa dalam memahami konsep kesebangunan dan simetri sehingga siswa dapat mengerjakan soal-soal latihan dan dengan kegiatan kelompok dapat menyimpulkan hasil dari proses pembelajaran yang sesuai dengan ciri CTL yaitu konstruktivisme dan inkuiri. Pada bahan ajar ini sudah ada beberapa bangun atau gambar yang dapat dijadikan model, sedangkan untuk refleksi dan penilaian sebenarnya dapat kita lihat dengan adanya soal-soal latihan untuk mengukur ketercapaian tujuan pembelajaran. Setelah dianalisis, maka hasil belajar siswa kelas V Qiblatain mempunyai kategori baik sekali 61% dan kategori baik 39% seperti yang tampak pada grafik di bawah ini. 15
Uji coba dilaksanakan dari tanggal 10 27 April 2010 sampai dengan 1 Mei 2010 di kelas V Qiblatain SD Islam Az-Zahrah. Pembelajaran dilaksanakan dalam 4 kali 5 commit to user pertemuan, dimana pertemuan ke-1, ke-2 dan ke-3 dilaksanakan pembelajaran di 0
Baik Sekali
50
Baik
Cukup Kurang
Gagal
perpustakaan.uns.ac.id
JURNAL PENDIDIKAN MATEMATIKA VOLUME 4.digilib.uns.ac.id NO.1 JUNI 2010
Gambar 36. Diagram Batang Hasil Belajar Dari grafik di atas terlihat jelas bahwa hasil belajar siswa kelas V Qiblatain terdapat dalam kategori baik sekali dan kategori baik. Di mana siswa dengan kategori baik sekali sebanyak 14 orang dan siswa dalam kategori baik sebanyak 9 orang. Dilihat dari persentase hasil belajar siswa diperoleh 61% hasil belajar siswa berada dalam kategori baik sekali dan 39 % hasil belajar siswa berada dalam kategori baik. untuk lebih jelas dapat dilihat dalam diagram lingkaran sebagai berikut. Pada uji coba prototype 3 ini tidak terdapat siswa yang hasil belajarnya tergolong dalam kategori buruk. Jika persentase siswa dilihat dari ketuntasan hasil belajar yang ditetapkan oleh guru bidang studi matematika di SD Islam AzZahrah yaitu KKM sebesar 75, maka terdapat 83% siswa tuntas dalam memahami materi kesebangunan dan simetri yang pembelajarannya menggunakan bahan ajar menggunakan macromedia flash berbasis pendekatan CTL. Dengan demikian bahan ajar yang telah dikembangkan peneliti menurut Tessmer, memiliki efek potensial ketika digunakan dalam kegiatan pembelajaran pada siswa kelas V SD Islam Az-Zahrah Palembang, artinya bahan ajar dapat dijadikan alternatif dalam pembelajaran matematika di Sekolah Dasar. Kekurangan Hasil Penelitian Hasil penelitian ini memiliki beberapa kekurangan, mengingat terbatasnya waktu, kemampuan dan biaya. Berikut kekurangan-kekuarangan atau halhal yang belum dilakukan peneliti:
2.
3. 4. 5. 6.
7.
terbatas pada materi kesebangunan dan simetri. Padahal berdasarkan KTSP SD, masih terdapat beberapa materi lain. Interface masih bersifat tayangantayangan yang dikendalikan oleh tombol-tombol. Animasi-animasi masih sangat sederhana. Belum dilengkapi oleh video pembelajaran. Belum dilengkapi dengan soal-soal pilihan ganda, soal hanya berupa text. Game-game berisikan pelajaran yang disenangi oleh siswa SD sebaiknya diperbanyak lagi. Pada materi kesebangunan ada beberapa slide yang terlalu sederhana terutama ketika memasangkan bangunbangun yang sama bentuknya. Oleh karena itu untuk pengembangan bahan ajar lebih lanjut agar disesuaikan lagi 6 materinya untuk tingkat kemampuan siswa kelas 5 SD.
Penutup Dengan pengembangan bahan ajar menggunakan macromedia flash diharapkan pembelajaran dapat berlangsung dengan aktif, kreatif dan menyenangkan. Langkah-langkah pengembangan bahan ajar tersebut dapat disusun dengan menggunakan langkah-langkah penelitian pengembangan yaitu analisis, desain, dan evaluasi.
Daftar Pustaka Alami,
F. 2005. Pembuatan Media Pembelajaran dengan Macromedia Flash MX 2004. Jurusan Teknik Sipil Universitras Lampung. (www.unila.ac.id/~ftsipil/tutorial/manual%20flash%202 004.pdf. Diakses tanggal 24 Desember 2009)
1. Bahan ajar yang dikembangkan pada commit Arikunto, to user S. 2009. Dasar-Dasar Evaluasi Pendidikan, Jakarta : Bumi Aksara mata pelajaran matematika SD hanya
51
Nalurita, Bahan Ajar Kesebangunan dan Simetri Berbasis Contextual perpustakaan.uns.ac.id
digilib.uns.ac.id
Sudjana, N, A. Rivai. 2005. Media Azhar, A. 2007. Media Pembelajaran. Pengajaran: Penggunaannya dan Jakarta: PT. Raja Grafindo. Pembuatannya. Dale. 2007. CAI : Media Pembelajaran Bandung: Sinar Baru. Kontekstual Berbasis Informasi Teknologi. Sudrajat Akhmad. 2008. Media (Http://jchkumaat.wordpress.com/2 Pembelajaran, 007/02/18/cai-media-pembelajaran(http://akhmadsudrajat. kontekstual-berbasis-informasiteknologi, diakses tanggal 17 Maret wordpress.com/2008/01/12/media2008) pembelajaran/. Diakses tanggal 10 Januari 2010) Dalidjo. 2008. Komputer sebagai __________. 2001. Common Textbook: Alat Bantu Strategi Pembelajaran Matematika Pembelajaran. Kontemporer. (http://sumberbelajar.wordpress.co m/2008/01/07/komputer-sebagaiBandung : Jica- Universitas Dosen alat -bantu-pembelajaran/. Indonesia (UPI). Diakses tanggal 17 Maret 2008) Depdiknas. 2006. Kurikulum Tingkat Satuan Pendidikan. Jakarta : Balitbang Depdiknas. .2008. Panduan Pengembangan Bahan Ajar. Jakarta : Direktorat Pembinaan Sekolah Menengah Atas. Djaali. 2004. Evaluasi Pendidikan. Jakarta : Rineka Cipta Heinich, R. et.al. 1996. Intructional Media and Technologies for Learning. 5th edition. Meriill an imprint of Prentice Hall : Englewood Clifft. New Jersy. Columvus , Ohio Madcoms.2007. Makromedia Flash Pro 8: Mahir dalam 7 Hari. Yogyakarta : C. V. Andi Offset. Nasoetion, N. 2007. Evaluasi Pembelajaran Matematika. Jakarta : Universitas Terbuka. Rohani, A. 1997. Pengelolaan Pengajaran. Jakarta : Rineka Cipta. Ruseffendi. 1989. Dasar-Dasar Matematika Modern dan Komputer untuk Guru. Bandung: Tarsito Sadiman, Arif S, dkk. 2009. Media Pendidikan: Pengertian, Pengembangan, dan Pemanfaatannya. Jakarta : PT commit to user Rajagrafindo Persada.
52
Asian Journal of Education and e-Learning (ISSN: 2321 – 2454) digilib.uns.ac.id Volume 01– Issue 05, December 2013
perpustakaan.uns.ac.id
Experimentation Cooperative Learning Student Team Achievement Division (STAD) Type Viewed From Learning Motivation Idha Novianti Indonesia Open University Pondok Cabe, Pamulang, Tangerang Selatan
ABSTRACT — Need a way for students to love math, learning models have only focused upon the teacher to make students passive in understanding mathematics. Student Team Achievement Division (STAD) cooperative learning model is expected to provide better learning outcomes. This study is a quasi-experimental study. The study population was all students of class VIII SMP in Surakarta. Sampling was a stratified cluster random sampling. Sample size for this study was 186 students. Data collection method used is the method of documentation, questionnaire method, and the method of testing. There is a preliminary test with the balance test using the t test, and as a prerequisite t test is the test of normality with Lilliefor's test, and the test of homogeneity with Bartlett's test. Techniques of data analysis in this study using two-way Analysis of Variance with unequal cells, a prerequisite analysis using Lilliefor's test for normality test, homogeneity using Bartlett's test, with a significance level (α) = 5%. The result of Student Team Achievement Division (STAD) models provides better learning outcomes than conventional learning models on motivation high, medium or low. Keywords— mathematics achievement, Student Team Achievement Division (STAD), conventional, learning motivation
1. INTRODUCTION Mathematics is a field of study that studied by all students from elementary to high school and even in college. Learning mathematics in elementary - high school is meant to prepare students to use mathematics appropriately in daily life (Wardhani, 2008). In the ranking programme for International Student Assessment (PISA) stated that recent mathematical literacy Indonesian student was very low. Indonesia ranks 61 out of 65 participating countries ranking (Okezone, 2013). This is caused for serious concern, President of the Association of Mathematics Teachers of Indonesia (AGMI) Drs. Word of Shah Noor, M.Pd explained, based upon the results of the study Trends in International Mathematics and Science Study (TIMMS) conducted by Frederick KS Leung in 2003 is fewer well trained teacher in Indonesia is one of the main causes of students' mathematics literacy ratings are bottom (Okezone, 2013). This is proof, that math into something scary thing for our students in school. Need teachers who are creative and capable of be able to change the paradigm of the students during the school. Based on the above facts, it should be observed, aspects, which allegedly have links with the learning of mathematics. So that aspects of the alleged effect can be considered in optimal student learning, then the learning of mathematics teachers should be able to choose exactly the model appropriate teaching, so that learning can take place smoothly and the students benefit from the learning activities. Student success is influenced by many factors, can be derived from the students as well as teachers of teachers. Among other things, a teacher must have sufficient competence as managers of learning. A teacher who has the competencies expected to be better, and can create an atmosphere and an effective learning environment, so that student learning outcomes will be optimal. This is explained by Ruseffendi (1991:8), that in addition to the causes which partly depend on the students, there are also factors that come from teachers, among others, the ability (competence) teachers, the learning environment is created and the personality of the teacher as an educator. Learning model into something important that the material can be received well by the students. In the process of teaching and learning, teachers can select and use some models of teaching, of course each learning model has advantages and disadvantages, but the lack of a model of teaching that can be closed with the other teaching models. Selection of learning models need to consider several things such as that conveyed subject, learning objectives, time available, the number of students, as well as other matters relating to the teaching and learning process, so expect goals of commit to user learning can be achieved with either.
Asian Online Journals (www.ajouronline.com)
272
perpustakaan.uns.ac.id
Asian Journal of Education and e-Learning (ISSN: 2321 – 2454) digilib.uns.ac.id Volume 01– Issue 05, December 2013
One model of learning that puts students at the center is a cooperative learning model. Cooperative learning model is appropriate to make the students more active in understanding mathematics. Cooperative learning is a learning model where students learn together in small groups and help each other and work together to understand the subject of the lesson or task (Depdiknas, 2006: 5). In this case, learning is considered complete if every member of the group has mastered the lesson material. Zakaria and Iksan (2007:37) in his study entitled Promoting cooperative learning in science and mathematics education that the use of cooperative learning in math and science is very effective. Many types of cooperative learning models, such as: Student Team Achievement Division (STAD), Jigsaw, Group Investigation (GI), Think pair and share, and Make a match. Based on the dissemination of math teacher in junior high, there are still many students who have difficulty in understanding the subject of Two Variables Systems of Linear Equations, particularly in determining the completion of the set of Two Variables Systems of Linear Equations. This is consistent throughout the data of the Ministry of National Education Assessment Center in 2009 for rayon Surakarta, the percentage value of the lowest absorption of all the mathematical subject in National Final Exam - it is the subject to the completion of the set of Two Variables Systems of Linear Equations, amounting to 35.71 percent. According to Hudoyo (1998), a person is said to learn math if that person happens to a process activity that resulted in a change in behavior related to mathematics, where the behavior can be observed, which is obtained by a business person, it can also be said that a person said to learn if that person happens to change behavior related to mathematics, such as from not knowing to know about mathematics and be able to apply in daily life. Meanwhile, according to Pius and Dahlan (1994: 623) achievement is a result that has been achieved. Learning achievement is the acquisition of knowledge or skills developed by the subjects as indicated by the value of a teacher (Poerwadarminta, 1997: 787). So that mathematics achievement is the level of student mastery of knowledge or skills acquired after studying mathematics in the form of value. The purpose of learning mathematics in school is so that learners have the following capabilities: (1) Understanding mathematical concepts, explains the relationship between concepts and applies concepts or algorithms flexibly, accurately, efficiently, and appropriately, in solving the problem, (2) Using the reasoning in patterns and properties, perform mathematical manipulations in making generalizations, compile evidence, or explain mathematical ideas and statements; 3) Solve problems that include the ability to understand the problem, devised a mathematical model, solve the model and interpret the obtained solution, (4) Communicate ideas with symbols, tables, diagrams, or other media to clarify the situation or problem; (5) Have respect usefulness of mathematics in life, which is curious, attention, and interest in studying mathematics, as well as a tenacious attitude and confidence in solving problems (Depdiknas, 2006: 388). Mathematics achievement of students in order to work well, each student is expected to master the fifth goal of learning mathematics. Cooperative learning model developed to achieve three learning goals: 1) academic achievement, 2) receipt and 3) development of social skills (Arends, 1997: 111). Cooperative learning model Student Team Achievement Division (STAD) developed by Robert Slavin and his friends at the Johns Hopkins University (Slavin, 1995) is the simplest cooperative learning, and suitable for use by teachers who are just beginning to use cooperative learning. From several studies that have been conducted regarding the Student Team Achievement Division (STAD) cooperative learning models that use this learning to improve student achievement. Armstrong (1998:4), in his research through the use of the Student Learning Model Student Team Achievement Division (STAD) Level 12 in Mississippi Suburbs area, stating that the use of Student Team Achievement Division (STAD) model of learning becomes fun and learning materials to be easily understood. SUMARMO (2011) in his research through the use of the Problem Solving learning model designed Student Team Achievement Division (STAD) cooperative in class XI Science Hydrolysis of Salts on the subject, stating that the use of the Problem Solving learning model designed Student Team Achievement Division (STAD) cooperative learning outcomes better than students taught by the learning model of Problem Solving set up individually. Motivation to learn is needed during the study. Therefore, teachers should be able to raise students' motivation to learn. Winkel (1983: 270) defines that the overall motivation is the driving force in the rise in the student activities and gives direction on learning activities. While McClelland suggests that achievement motivation has contributed 64 percent of academic achievement (Triluqman: 2007) and according to Sardiman (2007) study, the result will be optimal if there is motivation. Based on some of these opinions can be concluded that the motivation was instrumental to the success students. Motivation to make students want to learn, so the learning achievements will be achieved. Furthermore, the motivation to make students focus more on learning so that the learning outcomes will be optimal. The purpose of this study is to determine which of the twotomodels, commit user namely learning Student Team Achievement Division (STAD) cooperative learning model and conventional learning models that produce mathematics learning achievement better if the review of students' motivation. Asian Online Journals (www.ajouronline.com)
273
Asian Journal of Education and e-Learning (ISSN: 2321 – 2454) digilib.uns.ac.id Volume 01– Issue 05, December 2013
perpustakaan.uns.ac.id
2. METHODOLOGY The sampling procedure in this study as follows. The population in this study were junior high-school students in the town of Surakarta, as many as 27 junior high school are sorted first by passing the national exam rank junior presentation Surakarta in 2009. Samples were taken with Cluster Stratified Random Sampling. This study is a quasi-experimental study. The design used in this study is two-way Analysis of Variance design different cells. The design used in Table 1 below.
Learning Model (A)
Table 1: Two-way Analysis of Variance design Motivation (B) Low (B1) Medium (B2) High (B3) Student Team Achievement AB11 AB12 AB13 Division / STAD (A1) Conventional (A2) AB21 AB22 AB23
The study used three methods to collect the data that the method of testing, questionnaires and documentation. Test methods used to collect students' mathematics achievement data. Questionnaire method to determine the students' motivation to learn mathematics. Documentation methods used to obtain the initial data in the form of name and value of math midterms the first half of the eighth grade. Techniques of data analysis in this study using the Two-Way Analysis of Variance with unequal cells. As for determining the normality of the data using Lilliefor test and to determine the homogeneity of the data using the Bartlett test, with a significance level (α) = 5%. 3.
RESULTS AND DISCUSSION
Before the samples used in this study, the ability of the samples tested beginning with the prerequisite and balance tests. Prerequisite test consists of tests of normality and homogeneity tests. The data is taken from the initial ability MidSemester grades during the first semester of eighth-grade math. Normality test of early knowledge applied to the experimental group and the control group. Normality test using Lilliefors test and the results is presented in the following table: Table 2: Normality test results of initial capabilities Normality Test Lobs L0,05;n Conclusion experimental group (Student Team Achievement Division 0,0773 Accept H0 / STAD) control group 0,0891 0,092878 Accept H0
Decision Normal Normal
Based on Table 2 above, in each of the samples obtained Lobs < L0,05; n so that H0 is accepted. This means that each sample would be treated and a control in this study comes from a normally distributed population. Homogeneity test used to determine whether the samples are to be treated and a control in this study have the same variance. Bartlett homogeneity test using the statistical method of Chi Square test. Homogeneity test results of initial and . With critical ability between the experimental and control groups obtained values of areas = ; critical areas so that H0 is accepted. This means that the samples will be subject to treatment and a control in this study had a homogeneous variance. Based on the test results, samples will be used during this study were normally distributed and had homogeneous variance. Then the balance test to determine whether the experimental group and the control group had the same initial ability. The result of the balance test between the experimental group and the control group, t value = 1.7 and t table = 1.96. So that the two groups of samples have the same initial ability or balanced. Prior to analysis of variance in the data of this study, there is the prerequisite test, the normality and homogeneity. Normality test is used to determine whether the sample comes from a normally distributed population or not. Normality Test using Lilliefors test. Normality test results in the experimental group, the control group and the motivation high, medium and low with a significance level () = 5% are as follows:
commit to user
Asian Online Journals (www.ajouronline.com)
274
Asian Journal of Education and e-Learning (ISSN: 2321 – 2454) digilib.uns.ac.id Volume 01– Issue 05, December 2013
perpustakaan.uns.ac.id
Normality Test Experimental Group (Student Team Achievement Division (STAD)) Control Group Low Learning Motivation Medium Learning Motivation High Learning Motivation
Table 3: Normality test results Lmaks L0,05;n Conclusion Accept H0 0,071 0,071 0,068 0,072 0,087
0,092372 0,099058
Decision Normal
Accept H0 Accept H0 Accept H0 Accept H0
Normal Normal Normal Normal
Based on the results of tests of normality in Table 3 above, we see that Lmaks in each experimental group and the learning motivation is less than L0,05;n. This means at the 0.05 significance level, the null hypothesis is accepted. It can be concluded that the data in each group are from populations that are normally distributed. Then the homogeneity test to determine whether the learning model and motivation levels have the same variance. Homogeneity test with Bartlett method using Chi-Square test statistics. The results of homogeneity test with a significance level (α) = 5% as follows: Table 4: Homogeneity Test Results Homogeneity Test
k
Learning Model group learning motivation level
2 3
1,668 0,922
3,841 5,991
Conclusion
Decision
Accept H0 Accept H0
homogeneous homogeneous
From Table 4 above, we see that learning model and learning motivation is smaller than test is accepted. It can be concluded that both groups learning models,
, thus making the H0
and the motivation level has the same variance (homogeneous). Hypothesis testing procedures for this study using Two-Way Analysis of Variance (ANOVA) with different cell. The results from the calculations are presented in Table 5 below. Table 5: The Summary of Two-Way Analysis of Variance (ANOVA) with the different cell Calc. F Source JK dK RK F table Decision value Learning Model Group (A) 8,760 1 8,759 4,182 3,84 Reject H0 Learning Motivation Level (B) 1,018 2 0,510 0,243 3 Accept H0 Interaction (A*B) 2,848 2 1,424 0,680 3 Accept H0 Error 387,487 185 2,10 Total 401,012 190 Based on Table 5 above for learning models Fa = 4.182> F = 3.84, the null hypothesis is rejected that learning model effect on students' mathematics achievement. As for the motivation to learn Fb = 0.243
CONCLUSION
Student Team Achievement Division (STAD) model in learning mathematics can improve student mathematics achievement compared to conventional learning models on motivation high, medium or low. Student Team Achievement Division (STAD) learning model can be an alternative learning model. However, the suitability of the material should be viewed with a learning model that will be used. The use of alternative models of teaching and learning need to be added to the students, so that students can more easily understand the material.
5.
REFERENCES
Amstrong, Scot, Student Teams Achievement Divisions (STAD) in a Twelfth Grade Classroom: Effect on Student Achievement and attitude. Journal and social research. Vol.2, no.7, 1998.
Arends, Richard, Classroom Instruction and Management. commit to Central user Conecticut State University:the McGrow-Hill Companies, 1997.
Depdiknas, Standar Isi Mata Pelajaran Matematika SMA/MA Kurikulum 2006. BSNP, Jakarta, 2006.
Asian Online Journals (www.ajouronline.com)
275
perpustakaan.uns.ac.id
Asian Journal of Education and e-Learning (ISSN: 2321 – 2454) digilib.uns.ac.id Volume 01– Issue 05, December 2013
Herman Hudoyo, Belajar Mengajar Matematika, Depdikbud: P2LPTK, Jakarta, 1998.
Okezone.com, http://international.okezone.com/read/2013/01/08/373/743021/penyebab-indeks-matematikasiswa-ri-terendah-di-dunia, 2013.
Pius A. Partanto dan M. Dahlan Al Barry, Kamus Ilmiah Populer, Arkola, Surabaya, 1994.
Poerwadarminta, W. J. S., Kamus Besar Bahasa Indonesia, Rajagrafindo, Jakarta, 1997.
Ruseffendi, Pengantar Kepada Membantu Guru Mengembangkan Kompetensinya dalam Pengajaran Matematika untuk Meningkatkan CBSA, Tarsito, Bandung, 1991.
Sardiman A.M., Interaksi dan Motivasi Belajar Mengajar, Raja Grafindo Persada, Jakarta, 2007.
Slavin, Cooperative Learning, Theory and Practise 4th edition. Allyn and Bacon Publishers, 1995.
Sumarmo, A., from http://elearning.unesa.ac.id/myblog/alim-sumarno/keefektifan-penerapan-paduan-modelpembelajaran-problem-solving-dan-kooperatif-tipe-stad-untuk-meningkatkan-hasil-belajar-dan-berpikir-kritis, 2011.
Triluqman, from Belajar dan Motivasinya: www.heritl.blogspot.com, 2007.
Wardhani, D. S., PAKET FASILITASI PEMBERDAYAAN KKG/MGMP MATEMATIKA, http://p4tkmatematika.org/fasilitasi/13-SI-SKLSMP-Optimalisasi-Tujuan-wardhani.pdf, 2008.
Winkel, W.S., Psikologi Pendidikan dan Evaluasi Belajar, PT. Gramedia, Jakarta, 1983.
Zakaria, E., dan Iksan, Z., Promoting Cooperative Learning in Science and Mathematics Education: A Malaysian Perspective. Eurasia Journal of Mathematics, Science & Technology Education, vol. 3, no.1,pp.3539, 2007.
commit to user
Asian Online Journals (www.ajouronline.com)
276
perpustakaan.uns.ac.id
digilib.uns.ac.id
International Journal of Mathematics Trends and Technology- Volume3 Issue1- 2012
Achievement in Cooperative versus Individualistic Goal-Structured Junior Secondary School Mathematics Classrooms in Nigeria Adeneye Olarewaju Adeleye Awofala#1, Alfred Olufemi Fatade*, Samuel Adejare Ola-Oluwa#3 #1
Department of Science and Technology Education Faculty of Education, University of Lagos, Lagos, Nigeria *
Department of Mathematics Tai Solarin University of Education, Ijagun, Ogun State, Nigeria #3 Department of Mathematics Emmanuel Alayande College of Education, Lanlate Campus, Oyo State, Nigeria
Abstract— This study investigated the comparative effect of cooperative variants of STAD/TGT and individualistic goal structure on the mathematics achievement of 80 junior secondary school Nigerian students. The study adopted a pretest, post-test control group quasi-experimental design and data collected for the study were analysed using the t-test statistic. The results showed that significant difference existed in the mathematics achievement of cooperative and individualistic goal structure groups in favour of cooperative group. The cooperative strategy also enhanced students’ mastery of mathematics content at both the comprehension and application levels than at the knowledge level of cognition. Based on the findings, the study recommended among others that STAD/TGT as variants of cooperative learning should be used by teachers to complement the teaching of mathematics at the secondary school level. Keywords—Cooperative learning, student teams and achievement division (STAD), teams-games-tournaments (TGT), individualistic goal structure, mathematics achievement, knowledge level of cognition, comprehension level of cognition, application level of cognition.
I. INTRODUCTION Reference [1] provided a theoretical framework for understanding the effect of different modes of instruction and further distinguished between three ways in which the motivations of different individuals can be interrelated: within (a) cooperative, (b) competitive, and (c) individualistic. These goal structures exist in the classrooms [7]. A goal structure is simply defined, as “how the teacher has students work together to achieve a learning goal” [12]. When students work against one another to achieve a learning goal, they are functioning within a competitive goal structure. When students are given individual goals and rewarded individually according to a ‘criterion-referenced’ evaluation system [18], the goal structure is individualistic, and when students work together to achieve a learning goal, the lesson structure is
cooperative. The pedagogical goal for the teacher should be to achieve an understanding of the workability of the different goal structures in ways that advantage all students. Relying on the theory of motivation, [22] proposed another model which attributes the success of group learning to the goal structure of cooperative learning. There are five components to successful cooperative learning and which differentiate it form group work [12]. Using the mnemonic GIPSS, these components can be readily recalled as: group process (a structure exists for how students will work together); individual accountability (each student is still assessed on what he/she knows) positive interdependence (students need to be able to work together); social skills (particular social skills are emphasized during group work); and specific tasks (students work together to achieve a particular goal). These components are essential to the instructional effectiveness of cooperative learning. Eight instructional variations of cooperative learning which teachers can use to enable students to effectively work together toward some defined group goal have been identified [12]. These are: numbered heads together; groups of four; think-pair-share; groups of three; jigsaw II; teams-games-tournaments (TGT); student teams and achievement divisions (STAD); and team assisted individualization (TAI). Reference [24] found that small-group cooperative structures having the elements of group study with group reward for individual learning were the most consistently effective in improving achievement. Two pedagogical strategies that fit this model are STAD and TGT [18]. Both TGT and STAD are extremely useful when teachers are requiring students to focus on skills and content material that are clearly defined and on dealing with questions that have relatively discrete answers (for example, mathematics) [12]. The TGT and STAD models both use fourmember groups in which each group reflects a cross section of the available academic ability within the classroom, that is,
commit to user
ISSN: 2231-5373
http://www.internationaljournalssrg.org
Page 7
perpustakaan.uns.ac.id
digilib.uns.ac.id
International Journal of Mathematics Trends and Technology- Volume3 Issue1- 2012 teams are all academically heterogeneous [18]. The inclusion of different racial/ethnic groups and both sexes is a way of maintaining heterogeneity in the teams. Teams function “to prepare members, through peer tutoring, for participation the next day in a learning-game-tournament by rehearsing subject matter presented earlier by the teacher” [17]. In both TGT and STAD, tournaments are held weekly and are made up of short-answer questions. Thus, in TGT, based on students’ previous performance, three academically similar students are assigned to each tournament table. Once the games are completed, the three students are ranked and given points that they take back to their teams. While the highest scoring student gets 6 points, the middle scorer gets 4 points, and the lowest scorer gets 2 points. The sum of the team points, to which each team member has contributed, determines which team wins the tournament, thus maintaining “reward interdependence” within each practice team. However, one distinguishing feature between the STAD and TGT is that the STAD does not use the TGT element of face-to-face competitive tournaments. Rather, in STAD, based on students’ previous performance, teachers assign students to one of several equal-status achievement divisions and weekly test results are compared only to each student assigned academically similar division. This should enhance motivation through increasing the tendency that each student may get comparably high scores on their weekly tests. Thus, the test scores are converted into points that each student brings back to his/her team and the team with the highest points is considered the weekly winner of the inter-group competition. While group winners in either the TGT or STAD model are rewarded on the basis of a group contingency reward system, they are also reported in a classroom newsletter [18]. Summarily, in STAD, students are grouped according to mixed ability, sex and ethnicity. The teacher presents materials in the same way he/she always does, and then students work within their groups to make sure all of them mastered the content. All students take individual quizzes and students earn team points based on how well they scored on the quiz compared to past performance. Unlike STAD, in TGT quizzes are replaced by tournaments and students compete at tournaments table against students from other teams who are equal to them in terms of past performance. Students earn team points based on how well they do at their tournament tables. Empirical studies on cooperative learning methods are abound in the literature. In a study regarding the effectiveness with regard to achievement gains of a cooperative as contrasted with an individualistic goal-structured unit of instruction in two secondary general mathematics classrooms, [18] found that although both groups obtained significant gains on their posttest scores as contrasted with their pre-test scores, the cooperatively goal-structured classroom demonstrated significantly higher achievement post-test scores than the individualistic group. Reference [29] found that cooperative learning methods improve students’ achievement in mathematics and attitude towards mathematics. Reference [10] developed and tested a two-level small group model of
cooperative learning with 50 in-service teachers. They concluded that the model was successful in raising the test scores of students and in reducing student reading time. Reference [2] found that the students of a community college had fewer misconceptions in chemistry following cooperative learning in comparison with those following traditional instructional methods. Many studies [8], [3], [6], [26], [5] show that cooperative learning can improve achievement, long-term memory and positive attitudes toward mathematics, self-concept and social skills. Despite the frequently reported positive findings on the effectiveness of cooperative learning methods in enhancing students’ learning outcomes in the literature some findings showed that cooperative learning might not be effective in promoting students’ achievement. Reference [1] investigated the comparative effect of lecture and cooperative learning strategies on achievements in general chemistry at the undergraduate level in a teacher preparation course. They found that the overall achievement scores were similar in the two classes following different learning strategies. Reference [28] compared the effect of cooperative and individual learning on the achievement of 178 grade 10-12 students in problem-solving and found no statistically significant differences. The inconsistency in research findings points to the fact that more investigations into the effectiveness of cooperative learning are needed. More importantly, the research on the effectiveness of cooperative learning in mathematics classrooms in Nigeria is rather scanty. Reference [5] investigated the effectiveness of cooperative learning with respect to mathematics in Nigeria; the dependent variable being attitude towards mathematics. Reference [11] found cooperative learning strategy to be more effective than competitive learning strategy on academic performance of Nigerian students in mathematics. Reference [14] found the cooperative group to be superior on Nigerian students’ achievement measure with no difference between the competitive and individualistic structures in biology. Based on the reviewed literature it can be said that cooperative learning is effective in enhancing students’ learning outcomes particularly achievement in mathematics. The dearth of literature on cooperative learning in Nigeria has uncovered the need for further study on the nature and effect of cooperative learning on students’ achievement in mathematics. Thus, the present study was designed to investigate the comparative effectiveness of cooperative learning variants of STAD/TGT and individualistic goal structure strategy on students’ achievement in junior secondary school mathematics in Nigeria. II. RESEARCH QUESTION This provided answers to the following questions: 1) Will there be any significant difference between the pretest achievement scores of students exposed to the cooperative and individualistic goal structured strategies?
commit to user
ISSN: 2231-5373
http://www.internationaljournalssrg.org
Page 8
perpustakaan.uns.ac.id
digilib.uns.ac.id
International Journal of Mathematics Trends and Technology- Volume3 Issue1- 2012 2) Will there be any significant difference between the posttest achievement scores of students exposed to the cooperative and individualistic goal structured strategies? 3) Will there be any significant difference between the students’ knowledge, comprehension and application levels of cognition after being exposed to the cooperative and individualistic goal structured strategies? III. METHODOLOGY A. Research Design The study adopted an untreated control group, pre-test, and post-test quasi-experimental design. B. Target Population The target population for this study consisted of all the second year students in public Junior Secondary Schools (JSS) in Calabar metropolis of Cross River State, Nigeria. There are 50 junior secondary schools in the metropolis. JSS year two students were chosen for the study because the researchers believed that: 1) The students have some level of maturity and confidence required to participate in the study having been previously taught mathematics at the JSS year one. 2) The students were not being prepared for any impending and immediate external examination that could distract them from full participation in the study. 3) The plane shape and Angle topics used as intervention in the study are contained in the JSS year two mathematics curriculum. C. Sampling Procedure and Sample Considering the underlisted criteria, the judgmental sampling technique was used to select the schools that took part in the study: 1) The school must be a public co-educational secondary school; 2) The JSS year two students in the school should not have received instruction on any of the topics under consideration; 3) The school has at least holders of the Nigeria Certificate in Education (NCE) mathematics teacher(s) teaching JSS year two students. 4) The school intends to register candidates for 2010 June/July Junior School Certificate Mathematics Examination. 5) The school must have JSS year two students offering mathematics and other science subjects. From the eight secondary schools contacted and met the criteria stated above, two schools were purposively selected to participate in the study. The two schools chosen were those that have equal number of students (40 each) in their JSS year two classes. Thus, a sample of eighty (80) JSS year two students (48 boys and 32 girls) participated in the study. The two classes were then assigned randomly into an experimental class and a control class. In the case of school with more than
one arm or class for JSS year two students, one arm or class was randomly selected. The median age of participants was 13 years. D. Course Content Selection The topics under the plane shape and angle aspect of JSS year two mathematics curriculum covered in this study were limited to parallelogram, rhombus, kite, angles between lines, angles in a triangle, angles in a quadrilateral and polygons. The choice of these topics was not only premised on the fact that students perceived them as difficult and thus perform poorly in them but that each topic can be taught at knowledge, comprehension and application levels of Bloom’s cognitive taxonomy [15]. E. Instrumentation One research instrument named Mathematics Achievement Test (MAT) was developed and used in this study. The MAT is a 20-item multiple-choice objective test items with one key and three distractors. The MAT was constructed by the researchers and face validated by a panel of secondary school mathematics teachers to measure students’ achievement in mathematics covering the selected topics for the study. The MAT was based on lower level of cognitive domain (knowledge, comprehension and application). The first 7 items of the validated instrument covered knowledge skills, the next 7 items covered comprehension skills while the last 6 items covered application skills. To test the reliability of the instrument, the 20-item MAT was administered on a sample of 30 students (16 boys and 14 girls) in a school not chosen as part of the study schools but whose students’ demographics such as age and class level are similar to the students involved in the study. From the students’ responses, a reliability coefficient of 0.78, using the Kuder-Richardson method (formula 21) was obtained. The test items showed discrimination power of more than 0.40 and difficulty index of 0.40-0.60. F. Procedure The two mathematics teachers in the selected schools were the instructors for the students that took part in the study. They were trained for one week on how to execute the intervention and control treatments. Before instruction, the MAT was administered as pre-test to both experimental and control classes. Thereafter, each classroom was differentially taught a 20-day unit of instruction concerned with the plane shapes and angles. In the classroom taught by the cooperative structure (n = 40), students were divided into ten small, fourmember groups that were heterogeneous with regard to academic ability as well as sex. Students’ academic ability was ascertained using their performance in the promotional end of session results in junior secondary year one. The majority of instructional time was spent using the STAD structure four times and the TGT tournament structure once
commit to user
ISSN: 2231-5373
http://www.internationaljournalssrg.org
Page 9
perpustakaan.uns.ac.id
digilib.uns.ac.id
International Journal of Mathematics Trends and Technology- Volume3 Issue1- 2012 throughout the 20-day/three-week period of instruction. Teacher lecturing and drill exercises using peer tutoring in the small groups as required by STAD/TGT model were accomplished in class. In the individualistic goal structured classroom (n = 40), the teacher made use of individual drill and homework exercises as well as lectures and textbook assignments. Students in the cooperative structure formed the experimental group while those in the individualistic goal structured classroom were tagged the control group. Both experimental and control classes were not aware that they were being involved in a study. At the end of the 20-day unit of instruction, the rearranged items in the pre-test instrument were re-administered to the students to measure the learning that had taken place. The MAT items were rearranged in order to prevent hallo-effect that could result from familiarity of pre-test and post-test instruments. The three-week period between the two tests provided necessary time to reduce threats to validity due to repeated testing of participants on similar test items [16]. G. Data Analysis The independent-samples t-test at the 0.05 confidence level was used to compare means of the two classes on the pre-test, post-test and on the knowledge, comprehension and application components of the test for possible test of significance difference. IV.
their counterparts in the control group (exposed to individualistic goal structure). Research Question 3: Will there be any significant difference between the students’ knowledge, comprehension and application levels of cognition after being exposed to the experimental and control strategies? Table 3 shows the means and standard deviations of the students’ post-test scores in the knowledge, comprehension and application levels of cognition of the two groups. The results revealed an insignificant difference in the students’ scores at knowledge level (t = 0.77, p>0.05) but significant differences in their scores at comprehension level (t = 6.58, p<0.05) and application level (t = 7.23, p<0.05). These results showed that while there seem to be no significant difference between the mean scores of the two groups of students at their knowledge level of cognition, the students exposed to the experimental intervention significantly achieved better than their counterparts in the control group at their comprehension and application levels of cognition. TABLE 1 COMPARISON OF THE STUDENTS’ PRE-TEST ACHIEVEMENT SCORES
Group Experimtal Control
x
N 40 40
10.13 10.23
SD 1.84 1.33
Df
t
Sig.
78
0.28
1.41
Remks ns (p>0.05)
TABLE 2 COMPARISON OF THE STUDENTS’ POST-TEST ACHIEVEMENT SCORES
RESULTS
The results of this study are presented in accordance with the stated research questions: Research Question 1: Will there be any significant difference between the pre-test achievement scores of students exposed to the experimental and control strategies? Table 1 shows the means and standard deviations of the pretest scores of the two classes. The result showed an insignificant difference (t = 0.28, p>0.05). This indicated that the mean pre-test score of the students in the experimental group is not significantly different from the mean pre-test score of the students in the control group at the 0.05 confidence level.
Group Experimtal Control
Table 2 reveals the means and standard deviations of the posttest scores of the two groups under investigation. Comparison of the difference between the mean post-test scores of the two groups showed a significant difference (t = 5.94, p<0.05) in favour of the experimental group. Thus, students in the experimental group (exposed to cooperative structure) obtained significantly better post-test achievement scores than
17.43 13.84
SD 2.69 2.72
Df
t
Sig.
78
5.94
0.00
Remks Signi. (p<0.05)
TABLE 3 COMPARISON OF THE STUDENTS’ POST-TEST KNOWLEDGE, COMPREHENSION AND APPLICATION SCORES
Cognitive Level Knowledge Comprehension
Group
N
x
SD
Experim. Control Experim. Control
40 40 40 40
5.32 5.12 5.48 3.42
1.03 1.28 1.38 1.42
Experim. Control
40 40
4.82 2.63
1.32 1.39
df
t
78
0.77
78
6.58
* Application
Research Question 2: Will there be any significant difference between the post-test achievement scores of students exposed to the experimental and control strategies?
x
N 40 40
78
7.23
* * Significant at p<0.05.
V. DISCUSSIONS AND CONCLUSIONS The results of the present study revealed that the mean pre-test score of the students in the experimental group was not statistically significantly different from that of the students in the control group. This outcome is an attestation that the
commit to user
ISSN: 2231-5373
http://www.internationaljournalssrg.org
Page 10
perpustakaan.uns.ac.id
digilib.uns.ac.id
International Journal of Mathematics Trends and Technology- Volume3 Issue1- 2012 two groups of students entered the instruction/experiment on equal strength since their pre-test scores showed no significant difference regardless of the higher mean score obtained by the control group. However, in as much as both groups were not significantly different on their pre-test scores, they at least started the unit of instruction equally, thus probably ruling out the influence of instrumentation. This finding is important in order to show that if any significant difference is seen in the mean pre-test scores then such disparity would not be attributed to chance but the influence of the intervention. However, the mean pre-test score of the students in the experimental group was found to be statistically significantly different from that of their counterparts in the control group. Although, this finding runs contrary to the findings of [28], [1], it strongly support the efficacy of the use of cooperative strategy especially STAD/TGT in enhancing students’ achievement in mathematics. This finding corroborates the position of [20], [22], [23], [18] regarding the effectiveness of the incentive and task structure associated with STAD/TGT, both requiring group study and group reward for individual learning. Other researchers such as [29], [27], [13] have equally demonstrated the efficacy of cooperative learning in increasing students’ achievement in mathematics. To them cooperative learning gives more space and opportunities for students to discuss, solve problems, create solutions, provide ideas and help each other. Both STAD/TGT models require that participants are heterogeneously grouped and actively engaged in conversation in mathematics classroom. They also require cooperation within competing groups. This element of inter-group competition according to [18] provides the peer pressure as well as incentive structure hypothesized as the primary motivating force behind the efficacy of the STAD/TGT models in improving academic achievement. An interesting but surprising finding in this study is the obtained significant differences between the experimental group and the control group at the comprehension and application levels of cognition but a non-significant difference between the two groups at the knowledge level of cognition. The interesting thing about this finding is that when STAD/TGT cooperative learning variants are used in mathematics instruction, there is that high possibility that the students would perform better at both the comprehension and application levels of cognition than at the knowledge level of cognition. The finding is surprising because it is a contrasting outcome against the strongly held position and general expectation that mastery of content is easier to achieve at the knowledge level than at the comprehension and application levels of cognition. One probable explanation regarding this outcome is that because the students in the experimental group were given the opportunity to compete and rehearse previously learnt subject matter through peer tutoring, the students’ attention were actually directed to the most vital aspects of the lesson which involve what they were able to pick from the lesson in terms of understanding and applying the main concepts than the mere ability to regurgitate facts, definitions and formulae, which knowledge skill is more concerned with.
In conclusion, this study investigated the comparative effectiveness of cooperative and individualistic goal structured strategies on students’ achievement in mathematics at the junior secondary school level. While neither group significantly differed from the other on a pre-test the cooperative group demonstrated significantly higher achievement on the post-test than the individualistic group. This shows the more facilitative effect of cooperative strategy in teaching and learning mathematics at the junior secondary school level. The strategy is also capable of improving learners’ mastery of content at the comprehension and application levels than at the knowledge level of cognition. Based on the findings of this study, it is hereby recommended that cooperative learning variants of STAD/TGT should be used by teachers of mathematics and other allied subjects in teaching their students at the secondary school level. It is equally recommended that teachers of mathematics need to be aware of the benefits and importance of cooperative learning and thus change the practice of teacher-centered teaching methods to student-centered inquiry-based teaching methods that emphasize meaningful learning. The conclusion in this study has been drawn based on scores on achievement test. Affective surveys (e.g. attitude, motivation self-efficacy etc.) to assess other learning outcomes than achievement on cognitive test, were not used. Moderator variables (e.g. gender, locus of control, cognitive style etc.) were also not considered. All these point to the limitations of this study which may be considered in future studies.
REFERENCES [1]
A. C. Banerjee, and T. J. Vidyapate, Effect of Lecture and Cooperative Learning Strategies on Achievement in Chemistry in undergraduate Classes. International Journal of Science Education, vol. 19, pp.903-910. 1997.
[2]
P. A. Basili, Science Teaching: a matter of changing minds. Journal of College Science Teaching, vol. 18, pp. 324-326. 1989.
[3]
T. Brush, The effects on student achievement and attitudes when using integrated learning system with cooperative pairs. Educational Technology Research and Development, vol. 45, pp. 51-64. 1997.
[4]
M. Deutsch, An Experimental Study of the Effect of Cooperation and competition upon group process. Human Relations, vol.2, pp. 199-231. 1949.
[5]
S. A. Ifamuyiwa, and M. K. Akinsola, Improving senior secondary school students’ attitude towards mathematics through self and cooperative instructional strategies. International Journal of Mathematical Education in Science and Technology, vol. 39, pp. 569-585. 2008.
[6]
D. Isik, and K. Tarim, The effects of the cooperative learning method supported by multiple intelligence theory on Turkish elementary students mathematics achievement. Asia Pacific Education Review, vol.10, pp. 465-474. 2009.
[7]
D. W. Johnson, and R. T. Johnson, Learning Together and Alone. Englewood Cliffs, NJ: Prentice-Hall. 1987.
commit to user
ISSN: 2231-5373
http://www.internationaljournalssrg.org
Page 11
perpustakaan.uns.ac.id
digilib.uns.ac.id
International Journal of Mathematics Trends and Technology- Volume3 Issue1- 2012 [8]
D. W. Johnson, and R. T. Johnson, Social Skills for Successful Group Work. Educational Leadership, vol.47, pp. 29-33. 1989/1990.
[9]
D.W. Johnson, and R. T. Johnson, Using Cooperative Learning in Math. In Cooperative Learning in Mathematics, Davidson. N. Ed.. Addison-Wesley, pp.122. 1990.
[10]
R. M. Jones, and J. E Steinbrink, Using Cooperative Groups in Science Teaching. School Science and Mathematics, vol. 89, pp. 541-551.1989.
[11]
E. B. Kolawole, Effects of competitive and cooperative learning strategies on academic performance of Nigerian students in mathematics. Educational Research and Review, vol. 3, pp. 33-37. 2008
[12]
T. J. Lasley II, and T. J. Matczynki, Strategies for Teaching in a Diverse Society. Instructional Model.Wadsworth Pub. co 1997.
[13]
J. D. Nichols, and R. B. Miller, Cooperative learning and student motivation. Contemporary Educational Psychology, vol.19, pp. 167-178, 1994.
[14]
P. A. Okebukola, and M. B. Ogunniyi, Cooperative, competitive and individualistic science laboratory interaction patterns: effect on students’ achievement and acquisition of practical skills. Journal of Research in Science Technology, vol. 21, pp. 875-884. 1984.
[15]
P. N. Okpala, C. O. Onocha and O. A. Oyedeji. Measurement and Evaluation in Education. Ibadan: Stirling Horden Publishers (Nig.) Ltd. 1993.
[16]
R. D. Parsons, and K. S. Brown, Teacher as reflective practitioner and action researcher. Belmont, CA: Wadsworth.2002.
[17]
S. Sharon, Cooperative Learning in Small Groups: Recent Methods and Effects on Achievement, Attitudes, and Ethnic Relations. Review of Educational Research, vol. 50, pp. 241-271. 1980
[18]
L. W. Sherman, and M. Thomas, Mathematics Achievement in Cooperative versus Individualistic Goal-Structured High School Classrooms. The Journal of Educational Research, vol. 79, pp. 169-172. 1986
[19]
J. Shimazoe, and H. Aldrich, Group work can be gratifying: Understanding and overcoming resistance to cooperative learning, College Teaching, vol. 58, pp. 52-57, 2010.
[20]
R. E. Slavin, Using Student Team Learning. Baltimore, MD: John Hopkins University. 1980.
[21]
R. E. Slavin, Cooperative Learning: Student Teams. Washington, DC: National Education Association. 1982
[22]
R. E. Slavin, When Does Cooperative Learning Increase Student Achievement? Psychological Bulletin, vol. 93, pp. 429-445. 1983a.
[23]
R. E. Slavin, Learning to Cooperate, Cooperating to Learn: Basic Concepts. In R. Slavin; S., Sharan; S., Kagan; R., Lazarowitz; C., Webb and R. Schmuck Eds, Learning to Cooperate, Cooperating to Learn. New York: Plenum. 1984.
[24]
R. E. Slavin,. Cooperative Learning New York: Longman. 1983b.
[25]
R. E. Slavin, Cooperative Learning: Theory, Research and Practice. Allyn and Bacon, 1995.
[26]
K. Tarim, The effects of cooperative learning on preschoolers’ mathematics problem solving ability. Educational Studies in Mathematics, vol. 72, pp. 325-340. 2009.
[27]
K. Tarim, and F. Akdeniz, The effects of cooperative learning on Turkish elementary students’ mathematics achievement and
attitude towards mathematics using TAI and STAD methods, Education Studies in Mathematics, vol. 67, pp. 77-91. 2008. [28]
J. B. Tingle, Effect of Cooperative Grouping for Stoichiometric Problem-solving in High School Chemistry, Doctoral Dissertation, The Louisiana State University, 1988. Dissertation Abstracts International, 49, 2097A.1989.
[29]
E. Zakaria, L. U. Chin, and M. Daud, The effects of cooperative learning on students’ mathematics achievement and attitude towards mathematics. Journal of Social Sciences, vol. 6, pp. 272275, 2010.
commit to user
ISSN: 2231-5373
http://www.internationaljournalssrg.org
Page 12
perpustakaan.uns.ac.id
digilib.uns.ac.id
EKSPERIMENTASI MODEL PEMBELAJARAN KOOPERATIF TIPESTUDENT TEAMS ACHIEVEMENT DIVISION (STAD) DAN TEAMS GAMES TOURNAMENT (TGT) PADA MATERI POKOK DIMENSI TIGA DITINJAU DARI AKTIVITAS BELAJAR SISWA SMA KELAS X DI KABUPATEN MAGETAN TAHUN PELAJARAN 2011/2012 Estu Hari Prabawanti1, Imam Sujadi2, Suyono3 Email : estuharip @ yahoo.co.id 1
SMA Negeri 2 Magetan Prodi Magister Pendidikan Matematika, PPs Universitas Sebelas Maret Surakarta 3 Prodi Magister Pendidikan Matematika, PPs Universitas Sebelas Maret Surakarta 2
Abstract : The aims of this research were to know: (1) which one has a better learning achievement between cooperative learning STAD, TGT, and conventional learning, (2) which one has a better learning achievement; the students having high, medium, or low learning activity, (3) which one gives a better learning achievement based on their high, medium, and low learning activity between cooperative learning STAD, TGT and conventional learning. The population of the research was the whole students of tenth grade of senior high school in Magetan. The sampling technique was done withstratified cluster random sampling. Based on the result of data analysis, it can be concluded: (1) The cooperative learning STAD gave a better learning achievement than TGT, TGT gave a better achievement than conventional learning, and STAD gave a better learning than conventional learning. (2) The students with higher learning activity had a better learning achievement than the students with lower learning activity. (3) For studentshaving high learning activity, cooperative learning STAD had a better learning achievement than TGT and conventional learning, and cooperative learning TGT and conventional learning had the same learning achievement.For students having medium learning activity, cooperative learning STAD and TGT had the samelearning achievement and so didTGTand conventional learning, however, cooperative learning STAD had a better learning achievement than conventional learning. For students havinglow learning activity, cooperative learning STAD, TGT, and conventional learning had the same learning achievement. Keywords: Student Teams Achievement Division, Team Games Tournament,conventional , activity.
PENDAHULUAN Matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan mengembangkan daya pikir manusia. Untuk itu matematika diberikan mulai sekolah dasar untuk membekali siswa dengan kemampuan berpikir logis, analitis, sistematis, kritis, kreatif dan kemampuan bekerja sama (KTSP 2006). Namun, memasuki abad ke-21 kemampuan matematika siswa di Indonesia belum memuaskan.
commit to user
34
perpustakaan.uns.ac.id
digilib.uns.ac.id
Kesulitan siswa dalam belajar matematika bukan merupakan masalah yang baru. Masalah klasik dalam pembelajaran matematika di Indonesia adalah rendahnya prestasi belajar siswa.
Keadaan prestasi belajar matematika yang masih rendah tersebut, juga
ditemukan di SMA Kabupaten Magetan. Pada Ujian Nasional tahun pelajaran 2009/2010 nilai rata-rata matematika pada materi pokok dimensi tiga adalah 28,38 dan pada Ujian Nasional tahun pelajaran 2010/ 2011 yaitu 65,45. Salah satu penyebab kesulitan belajar siswa dalam belajar matematika adalah karena belum semua guru mampu memilih pendekatan atau model pembelajaran yang tepat dan sesuai dengan tujuan pembelajaran untuk suatu kompetensi tertentu. Kadang guru sendiri belum menguasai berbagai jenis model pembelajaran yang tepat untuk masing-masing kompetensi. Akibatnya, terdapat kecenderungan penggunaan model pembelajaran yang bersifat monoton, yaitu guru menggunakan model yang sama hampir pada setiap kompetensi yang diajarkan. Salah satu model pembelajaran dalam penelitian ini adalah model pembelajaran kooperatif STAD adalah suatu model pembelajaran yang melibatkan siswa secara aktif dalam memecahkan masalah dan berusaha menyelesaikannya sehingga mendapatkan pengalaman yang baru dan dapat mengembangkan kemampuannya. Menurut Isjoni (2009: 20) pembelajaran kooperatif mengkondisikan siswa untuk aktif dan saling memberi dukungan dalam kerja kelompok untuk menuntaskan materi masalah dalam belajar.Lingkup penyelesaian tugas bukan saja dalam hal menjawab pertanyaan-pertanyaan, tetapi lebih dari itu siswa bernalar berdasarkan pengetahuan yang dimilikinya dalam pemahaman atas materi yang dipelajarinya.Berarti pembelajaran kooperatif merupakan pembelajaran yang didasarkan pada paham konstruktivisme. Model lain yang dikenakan pada penelitian ini adalah model pembelajaran TGT. Model pembelajaran TGT merupakan suatu model pembelajaran yang melibatkan siswa secara aktif dalam memecahkan masalah dengan pemberian game yang terdiri dari pertanyaan-pertanyaan yang kontennya relevan yang di rancang untuk menguji pengetahuan siswa dan siswa dapat mengerjakan soal-soal dalam turnamen dengan baik. Gillies (2002) menyatakan “the assumption of behavioral learning theory is that students will work hard on tasks that provide a reward and that students will fail to work on tasks that provide no reward or punishment. Cooperative learning is one strategy that rewards individuals for participation in the group’s effort” yang artinya menurut teori pembelajaran behavior (tingkah laku) bahwa siswa akan mengerjakan dengan sungguh-sungguh tugas yang ada
commit to user
35
perpustakaan.uns.ac.id
digilib.uns.ac.id
hadiah atau penghargaannya, dan siswa akan gagal dalam mengerjakan tugas yang tidak ada hadiah atau penghargaan. Pembelajaran kooperatif adalah salah satu strategi dengan memberikan hadiah atau penghargaan pada individu atas partisipasinya dalam kelompok. Disisi lain, pada penelitian ini digunakan pembelajaran konvensional. Pembelajaran konvensional yang digunakan saat proses pembelajaran pada dasarnya menitikberatkan pada keaktifan guru, sedang siswa cenderung pasif sehingga metode konvensional dianggap efektif jika ditinjau dari sisi guru. Pembelajaran konvensional adalah pembelajaran yang masih menggunakan system yang biasa dilakukan oleh guru yaitu ceramah atau ekspositori. Salah satu faktor yang mungkin mempengaruhi pada prestasi belajar adalah aktivitas belajar siswa. Aktivitas belajar siswa adalah kegiatan siswa dalam belajar matematika , baik di sekolah maupun di rumah. Rousseau dalam Sardiman A.M (2004:96) memberikan penjelasan bahwa dalam kegiatan belajar segala pengetahuan harus diperoleh dengan pengamatan sendiri, pengalaman sendiri, penyelidikan sendiri, dengan bekerja sendiri, dengan fasilitas yang diciptakan sendiri, baik secara rohani maupun teknis. Tujuan dari penelitian ini adalah untuk mengetahui: (1) Prestasi belajar matematika yang lebih baik antara siswa yang mengikuti pembelajaran dengan model pembelajaran kooperatif STAD, model pembelajaran kooperatif TGT, dan pembelajaran konvensional pada materi pokok dimensi tiga, (2) Prestasi belajar matematika yang lebih baik siswa yang mempunyai aktivitas belajar tinggi, aktivitas belajar sedang dan aktivitas belajar rendah, (3) di antara model pembelajaran kooperatif STAD, TGT atau pembelajaran konvensional yang menghasilkan prestasi belajar yang lebih baik jika ditinjau dari tingkat aktivitas belajar tinggi, sedang, maupun rendah. Hipotesis yang diajukan dalam penelitian ini adalah : (1) Prestasi belajar siswa yang diberi pembelajaran dengan model pembelajaran kooperatif STAD lebih baik daripadasiswa yang diberi pembelajarandengan menggunakan model pembelajaran kooperatif TGTatau pembelajaran konvensional, (2) Siswa yang mempunyai aktivitas belajar lebih tinggi mempunyai prestasi belajar yang lebih baik daripada siswa yang mempunyai aktivitas lebih rendah. (3) Pada masing-masing tingkat aktivitas belajar, prestasi belajar dengan model pembelajaran kooperatif STAD lebih baik daripada prestasi belajar dengan model pembelajaran kooperatif TGT atau pembelajaran konvensional dan TGT lebih baik daripada pembelajaran konvensional.
commit to user
36
perpustakaan.uns.ac.id
digilib.uns.ac.id
METODE PENELITIAN Jenis penelitian ini adalah penelitian eksperimental semu dengan desain factorial 3x3.Variabel terikat adalah prestasi belajar matematika dan variabel bebas adalah model pembelajaran dan aktivitas belajar siswa. Populasi penelitian ini adalah seluruh siswa SMA Negeri/ Swasta Se-Kabupaten Magetan. Pengambilan sampel dilakukan dengan teknik stratified cluster random sampling. Sampel dalam penelitian ini berjumlah 279 siswa terdiri dari 92 siswa pada kelas eksperimen satu, 94 siswa pada kelas eksperimen dua dan 93 siswa pada kelas kontrol.Penelitian dilakukan di SMA Negeri 2 Magetan, SMA Negeri 1 Sukomoro dan SMA Negeri 1 Parang.Dari tiap-tiap sekolah, terdapat dua kelas sebagai kelas eksperimen dan satu kelas sebagai kelas kontrol.Siswa kelas X.5 SMA Negeri 2 Magetan, kelas X.3 SMA Negeri 1 Sukomoro dan kelas X.1 SMA Negeri 1 Parang sebagai kelas eksperimen 1; kelas X.6 SMA Negeri 2 Magetan, kelas X.4 SMA Negeri 1 Sukomoro dan kelas X.2 SMA Negeri 1 Parang sebagai kelas eksperimen 2; kelas X.7 SMA Negeri 2 Magetan, kelas X.5 SMA Negeri 1 Sukomoro dan kelas X.3 SMA Negeri 1 Parang sebagai kelas kontrol. Teknik pengumpulan data dalam penelitian ini adalah dengan menggunakan teknik tes, teknik angket, dan teknik dokumentasi. Teknik tes digunakan untuk mengumpulkan data prestasi belajar. Teknik angket digunakan untuk mengumpulkan data aktivitas belajar siswa, dan teknik dokumentasi digunakan untuk mengumpulkan data kemampuan awal siswa. Instrumen yang digunakan dalam penelitan ini berupa tes objektif bentuk pilihan ganda pada materi pokok dimensi tiga dan angket aktivitas belajar untuk memperoleh data kategori aktivitas belajar siswa. Sebelum eksperimen dilakukan uji keseimbangan kemampuan awal menggunakan uji F. Supaya bisa menggunakan uji F maka perlu diuji normalitas dan uji homogenitas. Setelah eksperimen untuk menguji hipotesis satu, hipotesis dua, dan hipotesis tiga menggunakan anava dua jalan dengan sel tidak sama. Bila diperlukan digunakan uji komparasi ganda dengan metode Scheffe’. Sebelum anava dilakukan uji prasyarat yaitu uji normalitas dan uji homogenitas. Uji normalitas menggunakan metode Lilliefors,uji homogenitas menggunakan uji Bartlett.
commit to user
37
perpustakaan.uns.ac.id
digilib.uns.ac.id
HASIL PENELITIAN DAN PEMBAHASAN Rerata antar sel dan rerata marginal dapat dilihat pada Tabel 1, sedangkan rangkuman hasil uji anava dapat dilihat pada tabel 2. Tabel 1. Rerata Antar Sel dan Rerata Marginal Aktivitas Belajar Siswa Tinggi Sedang Rendah 83,5152 73,9355 67 73,6 68,9333 65,2414 64,8235 63,7241 62,4 73,9796 68,8643 64,8805
Model Pembelajaran STAD TGT Konvensional Rerata Marginal
Rerata Marginal 74,8169 69,2582 63,6492
Tabel 2. Rangkuman Hasil Uji Analisis Variansi Dua Jalan Dengan Sel Tak Sama Sumber
JK
dK
RK
Fobs
F
Keputusan Uji
Model Pembelajaran (A)
5768,2541
2
2884,1271
32,2080
3
H0A ditolak
Aktivitas Belajar (B)
3863,0768
2
1931,5384
21,5702
3
H0B ditolak
Interaksi (AB)
1550,6013
4
387,6503
4,3290
2,37
H0AB ditolak
Galat (G)
24177,6247
270
89,5468
-
-
-
Total
35359,5569
278
-
-
-
-
Berdasarkan hasil uji anava dua jalan 3x3 dengan sel tak sama, dengan taraf signifikan 0,05 diperoleh bahwa : a. Pada efek utama baris, yaitu model pembelajaran (A)nilai statistik uji Fobs = 32,2080dan Fkritik = 3,00, maka Fobs> Fkritiksehingga disimpulkan H0A ditolak. Hal ini berarti,pada model pembelajaran STAD, TGT dan pembelajaran konvensional menghasilkan prestasi belajaryang berbeda. b. Pada efek utama kolom, yaitu aktivitas belajar siswa(B)nilai statistik uji Fobs = 21,5702 dan Fkritik = 3,00, maka Fobs> Fkritiksehingga disimpulkan H0B ditolak. Hal ini berarti pada tingkatan aktivitas menghasilkan prestasi belajaryang berbeda. c. Pada efek interaksi, yaitu interaksi antara model pembelajaran dengan aktivitas belajar matematika siswa(AB)nilai statistik uji Fobs = 4,3290 dan Fkritik = 2,37, maka Fobs> Fkritik sehingga disimpulkan H0AB ditolak. Hal ini berartiada interaksi antara model
commit to user
pembelajaran dengan aktivitas belajar siswaterhadap prestasi belajar. Berdasarkan
38
perpustakaan.uns.ac.id
digilib.uns.ac.id
hasil perhitungan anava dua jalan 3x3 dengan sel tak sama, semua hipotesis nol ditolak, maka perlu dilakukan uji komparasi ganda untuk melakukan pelacakan terhadap perbedaan rerata dari setiap baris, kolom dan antar sel. Dari komparasi ganda antar baris diperoleh hasil sebagai berikut : a. Untuk komparasi STAD dan TGT diperoleh dengan DK = {F/F>6 }. Dengan demikian
= 15,98 dan
) = 6
DK dan keputusan ujinya adalah
ditolak. Berdasarkan keputusan uji tersebut, STAD berbeda prestasi belajarnya dengan TGT. Rerata STAD sebesar 74,8169 lebih tinggi daripada rerata TGTsebesar 69,2582. Maka diperoleh kesimpulan bahwa STAD menghasilkan prestasi belajar yang lebih baik daripada TGT. b. Untuk komparasi TGT dan pembelajaran konvensional diperoleh ) = 6 dengan DK = {F/F>6}. Dengan demikian ujinya adalah
= 16,42 dan DK dan keputusan
ditolak. Berdasarkan keputusan uji tersebut, TGT berbeda prestasi
belajarnya dengan pembelajaran konvensional. Rerata TGT sebesar 69,2582 lebih tinggi daripada rerata pembelajaran konvensional sebesar 63,6492. Maka diperoleh kesimpulan bahwa TGT menghasilkan prestasi belajar yang lebih baik daripada pembelajaran konvensional. c. Untuk komparasi STAD dan pembelajaran konvensional diperoleh ) = 6 dengan DK = {F/F>6}. Dengan demikian ujinya adalah
= 64,18 dan DK dan keputusan
ditolak. Berdasarkan keputusan uji tersebut, STAD berbeda prestasi
belajarnya dengan pembelajaran konvensional. Rerata STADsebesar74,8169lebih tinggi daripada rerata pembelajaran konvensional sebesar63,6492. Maka diperoleh kesimpulan bahwa STAD menghasilkan prestasi belajar yang lebih baik daripada pembelajaran konvensional. Dari uji komparasi ganda antar baris diperoleh bahwa STADmenghasilkan prestasi belajar yang lebih baik daripadaTGT, TGTmenghasilkan prestasi belajar yang lebih baik daripada pembelajaran konvensional, dan STADmenghasilkan prestasi belajar yang lebih baik daripada pembelajaran konvensional.Hasil tersebut sesuai dengan hipotesis pertama. Dari komparasi ganda antar kolom diperoleh hasil sebagai berikut : a. Untuk aktivitas belajar tinggi dan sedang diperoleh dengan DK = {F/F>6}. Dengan demikian
= 13,98 dan
)=6
DK dan keputusan ujinya adalah
to usersiswa dengan aktivitas belajar tinggi ditolak. Berdasarkan keputusan commit uji tersebut,
39
perpustakaan.uns.ac.id
digilib.uns.ac.id
berbeda prestasi belajarnya dengan siswa yang mempunyai aktivitas belajar sedang. Rerata aktivitas tinggi sebesar73,9796lebih tinggi daripada rerata aktivitas sedang sebesar68,8643. Maka diperoleh kesimpulan bahwa siswa dengan aktivitas belajar tinggi mempunyai prestasi belajar yang lebih baik daripada siswa dengan aktivitas belajar sedang. b. Untuk aktivitas belajar sedang dan rendah diperoleh dengan DK = {F/F>6}. Dengan demikian
= 7,84 dan
)=6
DK dan keputusan ujinya adalah
ditolak. Berdasarkan keputusan uji tersebut, siswa dengan aktivitas belajar sedang berbeda prestasi belajarnya dengan siswa yang mempunyai aktivitas belajar rendah. Rerata aktivitas sedang sebesar 68,8643lebih tinggi daripada rerata aktivitas rendah sebesar 64,8805. Maka diperoleh kesimpulan bahwa siswa dengan aktivitas belajar sedang mempunyai prestasi belajar yang lebih baik daripada siswa dengan aktivitas belajar rendah. c. Untuk aktivitas belajar tinggi dan rendah diperoleh dengan DK = {F/F>6}. Dengan demikian
= 43,41 dan
)=6
DK dan keputusan ujinya adalah
ditolak. Berdasarkan keputusan uji tersebut, siswa dengan aktivitas belajar tinggi berbeda prestasi belajarnya dengan siswa yang mempunyai aktivitas belajar rendah. Rerata aktivitas tinggi sebesar 73,9796lebih tinggi daripada rerata aktivitas rendah sebesar 64,8805. Maka diperoleh kesimpulan bahwa siswa dengan aktivitas belajar lebih tinggi mempunyai prestasi belajar yang lebih baik daripada siswadengan aktivitas belajar lebih rendah. Hasil tersebut sesuai dengan hipotesis kedua. Berdasarkan hasil uji anava, keputusan uji H0AB ditolak sehingga dilakukan komparasi ganda antar sel. Dari rangkuman komparasi ganda antar sel pada kolom yang sama diperoleh hasil sebagai berikut : a. Untuk aktivitas belajar tinggi pada STAD dan TGT diperoleh Fobs= 18,64, pada STAD dan konvensional diperoleh Fobs= 65,36 dan 8 F(0,05;8;270) = 15,52 dengan DK = {F | F > 15,52}. Dengan demikian
DK dan keputusan ujinya adalah
TGT dan konvensional diperoleh Fobs= 14,83sehingga Fobs
ditolak. Pada
DK, maka H0 diterima.
Sehingga model pembelajaran STAD dan TGT, STAD dan konvensional menghasilkan prestasi belajar yang berbeda. Rerata STAD sebesar 83,5152; rerata TGT sebesar 73,6 dan rerata konvensional sebesar 64,8235. Maka diperoleh kesimpulan bahwa pada siswa dengan aktivitas belajar tinggi pembelajaran dengan model pembelajaran STAD menghasilkan
prestasi
belajar
yang commitlebih to userbaik
40
daripada
TGT
dan
perpustakaan.uns.ac.id
digilib.uns.ac.id
STADmenghasilkanprestasi belajar yang lebih baik daripada konvensional, sedangkan TGT dan konvensional menghasilkan prestasi belajar yang sama. b. Untuk aktivitas belajar sedang pada STAD dan TGT diperoleh Fobs = 4,46, pada TGT dan konvensional diperoleh Fobs = 4,47 dan 8 F(0,05;8;270) = 15,52 dengan DK = {F | F > 15,52}. Sehingga Fobs
DK, maka H0 diterima. Pada STAD dan konvensional diperoleh
Fobs = 14,83sehingga
DK dan maka
ditolak.Sehingga model pembelajaran
STAD dan TGT, TGT dan konvensional menghasilkan prestasi belajar yang sama. Pada STAD dan konvensional menghasilkan prestasi belajar yang berbeda. Rerata STAD sebesar 83,5152 dan rerata konvensional sebesar 64,8235. Maka diperoleh kesimpulan bahwa pada siswa dengan aktivitas belajar sedang pembelajaran dengan model pembelajaran STAD dan TGT, TGT dan konvensional menghasilkan prestasi belajar yang sama, sedangkan STAD menghasilkan prestasi belajar yang lebih baik daripada konvensional. c. Untuk aktivitas belajar rendah pada STAD dan TGT diperoleh Fobs = 0,49; pada TGT dan konvensional diperoleh Fobs = 1,33; pada STAD dan konvensional diperoleh Fobs = 3,42 dan 8 F(0,05;8;270) = 15,52 dengan DK = {F | F > 15,52}. Sehingga Fobs
DK, maka H0
diterima. Maka diperoleh kesimpulan bahwa pada siswa dengan aktivitas belajar rendah pembelajaran dengan model pembelajaran STAD, TGT dan konvensional menghasilkan prestasi belajar yang sama. Hipotesis yang pertama mengatakan bahwa: prestasi belajar siswa yang diberi pembelajaran
dengan STAD lebih baik daripadasiswa yang diberi pembelajarandengan
menggunakan TGT atau pembelajaran konvensional, Berdasarkan hasil penelitian menunjukkan bahwa pembelajaran dengan STAD menghasilkan prestasi belajar yang lebih baik daripada TGT maupun pembelajaran konvensional dan pembelajaran dengan STAD menghasilkan prestasi belajar yang lebih baik daripada pembelajaran konvensional. Slavin (2009:143) mengemukakan bahwa STAD terdiri dari suatu komponen yang tetap dalam kegiatan pembelajaran, yaitu: mengajar, kegiatan kelompok, tes/kuis dan penghargaan kelompok.Pada saat kegiatan kelompok melibatkan siswa secara aktif dalam memecahkan masalah dan berusaha menyelesaikannya sehingga mendapatkan pengalaman yang baru dan dapat mengembangkan kemampuannya. Hipotesis yang kedua mengatakan bahwa: siswa yang mempunyai aktivitas belajar lebih tinggi mempunyai prestasi belajar yang lebih baik daripada siswa yang mempunyai
commit to user aktivitas lebih rendah. Berdasarkan hasil penelitian diperoleh bahwa siswa dengan aktivitas
41
perpustakaan.uns.ac.id
digilib.uns.ac.id
belajar lebih tinggi mempunyai prestasi belajar lebih baik daripada siswa yang mempunyai aktivitas belajar lebih rendah.Pendapat yang dikemukakan oleh Montessori dalam SardimanA.M (2001:96) menegaskan bahwa anak-anak memiliki tenaga untuk berkembang sendiri, membentuk sendiri. Pendidik akan berperan sebagai pembimbing dan mengamati bagaimana perkembangan anak didiknya. Pernyataan Montessori tersebut memberikan petunjuk bahwa dalam proses pembelajaran yang lebih banyak melakukan aktivitas proses pembentukan diri siswa adalah siswa sendiri, sedangkan guru hanya memberikan bimbingan, merencanakan kegiatan, dan menyiapkan fasilitas yang berhubungan dengan proses pembelajaran. Keaktifan siswa dalam proses pembelajaran akan menyebabkan interaksi yang tinggi antara guru dengan siswa ataupun dengan siswa itu sendiri. Aktivitas yang timbul dari siswa akan mengakibatkan pula terbentuknya pengetahuan dan ketrampilan yang akan mengarah pada peningkatan prestasi. Siswa yang memiliki aktivitas belajar tinggi berarti mempunyai keinginan yang tinggi dalam belajar. Siswa akan terlihat lebih aktif dalam mengikuti pembelajaran. Sebaliknya, siswa yang memiliki aktivitas rendah akan terlihat pasif dalam mengikuti pelajaran. Hipotesis yang ketiga mengatakan bahwa: pada masing-masing tingkat aktivitas belajar, prestasi belajar matematika dengan STAD lebih baik daripadaTGT atau pembelajaran konvensional dan TGT lebih baik daripada pembelajaran konvensional. Berdasarkan hasil penelitian diperoleh bahwapada siswa dengan aktivitas belajar tinggi pembelajaran dengan model pembelajaran STAD menghasilkan prestasi belajar yang lebih baik daripada TGT dan STADmenghasilkan prestasi belajar yang lebih baik daripada konvensional, sedangkan TGT dan konvensional menghasilkan prestasi belajar yang sama; pada siswa dengan aktivitas belajar sedang pembelajaran dengan model pembelajaran STAD dan TGT, TGT dan konvensional menghasilkan prestasi belajar yang sama sedangkan STAD menghasilkan prestasi belajar yang lebih baik daripada konvensional; pada siswa dengan aktivitas belajar rendah pembelajaran dengan model pembelajaran STAD, TGT dan konvensional menghasilkan prestasi belajar yang sama. Rousseau dalam Sardiman A.M (2001:96) mengemukakan bahwa dalam kegiatan belajar segala pengetahuan harus diperoleh dengan pengamatan sendiri, pengalaman sendiri, penyelidikan sendiri, dengan bekerja sendiri, dengan fasilitas yang diciptakan sendiri, baik secara rohani maupun teknis. Aktivitas siswa merupakan kegiatan atau perilaku yang terjadi selama proses belajar mengajar. Kegiatankegiatan tersebut adalah kegiatan yang mengarah pada proses belajar seperti bertanya, mengeluarkan pendapat, mengajukan pendapat, mengerjakan tugas-tugas, dapat menjawab
commit to user
42
perpustakaan.uns.ac.id
digilib.uns.ac.id
pertanyaan guru, dapat bekerja sama dengan siswa lain dan tanggung jawab terhadap tugas yang diberikan. Siswa yang mempunyai aktivitas belajar tinggi berarti mempunyai keinginan yang tinggi untuk belajar sehingga membuat siswa akan menjadi mandiri dalam belajar. Berkenaan dengan keinginan belajar yang tinggi pembelajaran dengan STAD dan TGT siswa akan bersemangat dan menaruh minat. Adapun faktor yang menyebabkan pada STAD dan TGT memberikan prestasi belajar yang sama pada siswa dengan aktivitas belajar sedang adalah karakteristik dari kedua model pembelajaran tersebut yang hampir sama. Adapun faktor yang menyebabkan pada TGT dan pembelajaran konvensional memberikan prestasi belajar yang sama pada siswa dengan aktivitas belajar sedang adalah pada presentasi kelas TGT yang disampaikan hanya pokok-pokok materi. Siswa dengan aktivitas belajar sedang masih bergantung pada guru dan siswa yang lain untuk membantu dalam belajar. Sedangkan dalam pembelajaran konvensional yang cenderung menggunakan metode ceramah dan tanya jawab, siswa dengan aktivitas belajar sedang tidak akan berkembang karena tidak ada kegiatan-kegiatan yang mampu merangsang siswa untuk menunjukkan kemampuannya. Adapun faktor yang menyebabkan pada STADmenghasilkan prestasi belajar yang lebih baik daripada pembelajaran konvensional adalah pada STAD siswa dituntut untuk saling bekerja sama dan berani mengemukakan pendapat. Siswa dengan aktivitas sedang akan lebih termotivasi dan bersemangat dalam diskusi, sehingga dapat membantu memahami materi pelajaran. Sedangkan dalam pembelajaran konvensional yang cenderung menggunakan metode ceramah dan tanya jawab, siswa dengan aktivitas belajar sedang tidak akan berkembang karena tidak ada kegiatan-kegiatan yang mampu merangsang siswa untuk menunjukkan kemampuannya. Faktor yang menyebabkan STAD, TGT dan pembelajaran konvensional menghasilkan prestasi belajar yang sama dikarenakan siswa belum terbiasa menggunakan berbagai model pembelajaran. Pada saat pembelajaran dengan STAD dan TGT siswa yang mempunyai aktivitas rendah tidak berdiskusi dengan baik. Mereka hanya menyerahkan semuanya kepada teman kelompoknya yang lebih pandai. Karena itulah, siswa yang mempunyai aktivitas belajar rendah jika diberikan STAD dan TGT akan memberikan hasil yang sama dengan siswa yang diberikan pembelajaran konvensional. Hasil penelitian ini sesuai dengan hasil penelitian Adi Waluyo (2010)yaitu pembelajaran kooperatif tipe STAD memberikan hasil belajar yang lebih baik dibandingkan dengan model konvensional. Hasil penelitian ini juga sesuai dengan hasil penelitian Tri Sartono (2011) yaitu siswa dengan aktivitas belajar lebih tinggi mempunyai prestasi belajar yang lebih baik daripada siswa dengan aktivitas lebih rendah.
commit to user
43
perpustakaan.uns.ac.id
digilib.uns.ac.id
SIMPULAN DAN SARAN Berdasarkan hasil penelitian dan pembahasan, disimpulkan bahwa pada siswa kelas X Sekolah Menengah Atas Negeri/Swasta di Kabupaten Magetan pada materi pokok dimensi tiga sebagai berikut : 1. Pembelajaran dengan model pembelajaran STAD memberikan prestasi belajar yang lebih baik daripada TGTmaupun pembelajaran konvensional dan pembelajaran dengan model pembelajaran STAD memberikan prestasi belajar yang lebih baik daripada pembelajaran konvensional. 2. Siswa dengan aktivitas belajar lebih tinggi mempunyai prestasi belajar lebih baik daripada siswa yang mempunyai aktivitas belajar lebih rendah. 3. Pada siswa dengan aktivitas belajar tinggi, pembelajaran dengan model pembelajaran STAD menghasilkan prestasi belajar yang lebih baik daripada TGT dan STAD menghasilkan prestasi belajar yang lebih baik daripada konvensional, sedangkan TGT dan konvensional menghasilkan prestasi belajar yang sama.Pada siswa dengan aktivitas belajar sedang, pembelajaran dengan model pembelajaran STAD dan TGT, TGT dan konvensional menghasilkan prestasi belajar yang sama, sedangkan STAD menghasilkan prestasi belajar yang lebih baik daripada konvensional. Pada siswa dengan aktivitas belajar rendah, pembelajaran dengan model pembelajaran STAD, TGT dan konvensional menghasilkan prestasi belajar yang sama. Hendaknya guru lebih memahami karakteristik siswa sebelum menerapkan suatu model pembelajaran.Dalam hal ini guru harus dapat memilih model pembelajaran yang sesuai dengan karakteristik siswa. Tidak selamanya pembelajaran konvensional memberikan hasil yang jelek dibandingkan dengan model pembelajaran yang lain. Pada tingkat aktivitas rendah siswa cenderung lebih menyukai pembelajaran konvensional.Sehingga untuk siswa dengan aktivitas rendah guru dapat menerapkan pembelajaran konvensional.
DAFTAR PUSTAKA Adi Waluyo. 2010. Eksperimentasi model pembelajaran Kooperatif Tipe STAD Pada Materi Pokok Persamaan Dan Fungsi Kuadrat Ditinjau dari Kemampuan Awal Siswa Kelas X SMA Negeri di Kabupaten Tulungagung. Tesis S2. Tidak dipublikasikan. Program Pasca Sarjana UNS. Surakarta. Budiyono.2009 Statistika Untuk Penelitian. Surakarta: UNS Press.
commit to user
44
perpustakaan.uns.ac.id
digilib.uns.ac.id
Depdiknas. 2006. Kurikulum Tingkat Satuan Pendidikan (KTSP). Jakarta: Departemen Pendidikan Nasional Gillies, R. 2002. The residual effects of cooperative learning experiences a two year followup. The Journal of Educational Research, 96,1,15-20. Isjoni. 2009. Pembelajaran Kooperatif. Meningkatkan Kecerdasan Komunikasi Antara Peserta Didik. Yogyakarta : Pustaka Pelajar. Sardiman A.M. 2001. Interaksi dan Motivasi Belajar Mengajar. Jakarta: Raja Grafindo Persada. Slavin, R. 2009. Cooperative Learning. Teori, Riset dan Praktek. Bandung: Nusa Media. Tri Sartono. 2011. Eksperimentasi
Pembelajaran Matematika Model Student Teams
Achievement Divisions (STAD) Dan Team Assisted Individualization (TAI) Pada Materi Turunan Fungsi Ditinjau Dari Aktivitas Belajar Peserta Didik SMA Negeri Kota Surakarta Tahun Pelajaran 2010/2011.Tesis S2. Tidak dipublikasikan. Program Pasca Sarjana UNS. Surakarta.
commit to user
45
perpustakaan.uns.ac.id
digilib.uns.ac.id
Edumatica Volume 02 Nomor 01 , April 2012
ISSN: 2088-2157
PEMBELAJARAN MATERI BANGUN RUANG SISI LENGKUNG MELALUI PENDEKATAN PENDIDIKAN MATEMATIKA REALISTIK DI SMP Rohati Program Studi Pendidikan Matematika FPMIPA FKIP univ. Jambi Jl. Raya Jambi-Ma. Bulian Km 14 Mendalo Darat Jambi
email :
[email protected] Abstrak Pendekatan Matematika Realistik Indonesia (PMRI) merupakan salah satu pendekatan dalam pembelajaran matematika mampu mengaitkan pengalaman kehidupan nyata dengan materi matematika. Matematika sebagai suatu bentuk aktivitas manusia, bukan hanya sekedar objek yang harus ditranfer dari guru ke siswa. Tujuan dari penelitian ini adalah memaparkan bagaimana gambaran pelaksanaan pembelajaran materi bangun ruang dengan pendekatan materi realistik dan respon siswa terhadap pembelajaran materi bangun ruang sisi lengkung di SMP Negeri 22 Palembang. Dari hasil penelitian pada saat proses pembelajaran dan ketika siswa menjawab LKS diperoleh gambaran siswa mampu mengerjakan LKS dengan baik dengan rata-rata nilai baik. Hasil tes akhir menunjukkan siswa yang memperoleh skor 60 sebanyak ≥ 77% dari jumlah siswa. Dapat disimpulkan bahwa pembelajaran menjadi lebih menyenangkan. Disini siswa terlibat secara aktif didalam menemukan volume kerucut dengan melakukan percobaan penakaran beras menggunakan media tabung dan kerucut. Interaksi antara siswa dengan siswa, siswa dengan guru juga muncul pada saat proses pembelajaran. Kata Kunci: Bangun Ruang sisi Lengkung, Pendidikan Matematika Realistik A. PENDAHULUAN Pendidikan memegang peranan penting dalam mempersiapkan sumber daya manusia yang berkualitas dan mampu berkompetisi dalam perkembangan ilmu pengetahuan dan teknologi, sehingga pendidikan harus dilaksanakan dengan sebaikbaiknya untuk memperoleh hasil maksimal. Soejadi (1994:1) mengemukakan bahwa satu-satunya wadah kegiatan yang dapat dipandang dan seyogyanya berfungsi sebagai sumber daya manusia yang bermutu tinggi adalah pendidikan, baik pendidikan jalur sekolah maupun jalur luar sekolah. Pendidikan hendaknya dikelola, baik secara kualitas maupun kuantitas. Hal tersebut dapat dicapai dengan terlaksananya pendidikan yang tepat waktu dan tepat guna untuk mencapai tujuan pembelajaran. Sejalan dengan upaya pengembangan ilmu pengetahuan dan teknologi, sekolah merupakan lembaga formal penyelenggara pendidikan yang akan mencetak generasi-generasi commit to usermuda penerus estafet perjuangan bangsa. Pembelajaran Materi ………………………………………………… …………………..Page | 58
perpustakaan.uns.ac.id Edumatica Volume 02 Nomor 01 , April 2012
digilib.uns.ac.id ISSN: 2088-2157
Untuk mencetak generasi penerus yang akan memimpin bangsa ke depan di perlukan sebuah proses pendidikan yang baik yang mampu mengakomodir dan meningkatkan kemampuan peserta didik secara maksimal. Hal ini bisa dilihat dari proses belajar mengajar yang ada di kelas. Penyelenggaraan proses belajar mengajar (PBM) menuntut guru untuk menguasai isi atau materi bidang studi yang akan diajarkan serta wawasan yang berhubungan dengan materi tersebut. Selain itu guru juga harus memiliki kompetensi pedagogik, sehingga guru dapat memainkan perannya sebagai fasilitator bagi pembelajaran siswanya. Sebagai penyelenggara PBM guru juga harus dapat mengembangkan sikap positif siswa dan dapat merespon ide-ide mereka. Guru harus dapat menerapkan inovasi-inovasi baru dalam pendidikan khususnya inovasi pembelajaran di kelas sebagaimana yang telah direkomendasikan para pakar pendidikan agar dapat memenuhi tuntutan kurikulum. Salah satu hal yang bisa dilakukan oleh guru dalam menciptakan inovasi pembelajaran di kelas adalah dengan menggunakan pendekatan pembelajaran yang dapat membuat siswa tertarik dalam belajar. Salah satu pendekatan pembelajaran yang popular dikembangkan saat ini adalah PMRI (Pendidikan Matematika Realistik Indonesia). Pendekatan PMRI ini dikembangkan khusus untuk pelajaran Matematika. PMRI ini mampu menjawab keluhan sebagian siswa bahwa matematika itu susah, sulit untuk dipahami dan menjadi momok yang menakutkan. Dengan menggunakan PMRI aktivitas pembelajaran menjadi lebih menyenangkan. Menurut Hans Freudental, pencetus ide pendidikan matematika realistik, bahwa matematika sebagai suatu bentuk aktivitas manusia, bukan sekedar objek yang harus ditranfer dari guru ke siswa (Gravemeijer, 1994). Salah satu materi yang dipelajari di sekolah menengah pertama adalah materi bangun ruang sisi lengkung yang membutuhkan pendekatan pembelajaran yang sesuai agar konsep yang dipelajari bisa dipahami dengan baik oleh siswa. Salah satu pendekatan yang coba diterapkan peneliti dalam hal ini adalah pendekatan matematika realistik. Berdasarkan latar belakang yang dikemukakan di atas, maka tujuan dari penelitian ini adalah memaparkan bagaimana gambaran pelaksanaan pembelajaran materi bangun ruang dengan pendekatan materi realistik dan respon siswa terhadap pembelajaran materi bangun ruang sisi lengkung di SMP Negeri 22 Palembang. Bagi peneliti dan guru bidang studi matematika sangat berguna untuk bisa mengetahui hasil dan respon siswa terhadap desain lembar kerja siswa yang sudah dibuat. B. METODE PENELITIAN Rancangan penelitian yang sesuai dengan tujuan penelitian ini adalah penelitian tindakan (action research). Adapun jenis penelitian tindakan yang dipilih adalah penelitian tindakan partisipan, di mana peneliti terlibat secara langsung mulai dari awal penelitian sampai berakhirnya penelitian. Adapun pendekatan yang digunakan dalam penelitian ini adalah pendekatan kualitatif karena memenuhi beberapa karakteristik (Moleong, 2002:2). Sumber data dalam penelitian ini adalah siswa kelas VIII SMP Negeri 22 Palembang yang berjumlah siswa yang langsung dijadikan subjek penelitian. Sedangkan siswa yang diambil sebagai subjek wawancara adalah 4 siswa dengan commit to user pertimbangan agar memudahkan fokus perhatian dan pengamatan sehingga mencapai Pembelajaran Materi ………………………………………………… …………………..Page | 59
perpustakaan.uns.ac.id Edumatica Volume 02 Nomor 01 , April 2012
digilib.uns.ac.id ISSN: 2088-2157
refleksi mendalam. Prosedur yang digunakan untuk mengumpulkan data adalah (1) tes, (2) observasi selama kegiatan pembelajaran, (3) wawancara terhadap subjek wawancara, (4) pencatatan lapangan, (5) perekaman, dan (6) angket siswa. Teknik analisa data yang digunakan adalah model alir yang dikemukakan oleh Miles & Huberman (1992:18) yang meliputi kegiatan (1) mereduksi data, (2) menyajikan data, dan (3) menarik kesimpulan serta verifikasi. Untuk menjamin keabsahan data dalam penelitian ini digunakan teknik kriteria derajat kepercayaan (Moleong, 2002:175). Derajat kepercayaan yang digunakan adalah 3 cara dari 7 cara yang dikembangkannya meliputi: (1) ketekunan pengamatan, (2) triangulasi, (3) pemeriksaan sejawat. Pelaksanaan penelitian ini dibagi ke dalam dua tindakan, yaitu tindakan I dan tindakan II. Tindakan I adalah melaksanakan pembelajaran Volume tabung. Tindakan II adalah melaksanakan pembelajaran volume kerucut. Pelaksanaan masing-masing tindakan dilakukan sesuai dengan model yang dikembangkan oleh Kemmis' (dalam Hopkins, 1985:34). Model ini meliputi tahap (l) merencanakan (plan), (2) melaksanakan (act), (3) mengamati (observe), dan (4) merefleksi (reflect) yang membentuk suatu siklus. Siklus dalam suatu tindakan akan diulang sampai kriteria yang ditetapkan dalam setiap tindakan tercapai. Kriteria untuk masing-masing tindakan terdiri dari kriteria proses dan kriteria hasil. Kriteria proses adalah jika hasil observasi telah mencapai skor 75%. Sedangkan kriteria hasil adalah jika 75% siswa mendapat skor 60 pada tes akhir tindakan. C. HASIL DAN PEMBAHASAN Berdasarkan hasil pengamatan dan catatan lapangan peneliti dan 2 orang pengamat selama kegiatan pembelajaran pada tindakan I, maka dapat diperoleh beberapa informasi berikut. Temuan penelitian ini berupa temuan pada guru dan temuan pada siswa yang diperoleh pada pelaksanaan tindakan I dan tindakan I. Disini siswa menemukan kembali rumus dari volume kerucut dengan menggunakan rumus volume tabung. Kemudian menyelesaikan soal-soal yang berkaitan dengan kehidupan seharihari yang berhubungan dengan volume kerucut. Pada waktu pelaksanaan pembelajaran siswa kelas VIII baru selesai mengikuti pelajaran olahraga. Jadi mereka masih memakai baju olahraga pada saat pembelajaran. Awalnya para siswa masih belum berkonsentrasi mengikuti pelajaran. Tetapi setelah peneliti memberikan motivasi dan akan memberikan reward bagi siswa yang bisa menjawab soal-soal dengan baik, para siswa menjadi antusias mendengarkan penjelasan awal dari peneliti. Pada tahap awal peneliti membagi siswa di kelas tersebut menjadi 6 kelompok dengan tiap-tiap kelompok terdiri dari 6 atau 7 orang. Setelah siswa membagi kelompok kemudian peneliti memberikan penjelasan awal dan membagikan LKS dan meminta setiap anggota kelompok memahami apa yang harus dikerjakan dalam LKS tersebut selama 2 menit. Setelah siswa memahami apa yang harus dikerjakan dalam LKS tersebut , siswa diminta mengerjakan soal nomor 1 sampai soal nomor 5. untuk soal nomor 2 setiap kelompok tidak mengalami kesulitan menidentifikasi nama dari masing-masing gambar yang diberikan. Ada beberapa kelompok yang langsung memberikan nama sesuai dengan bentuknya. Selama proses pembelajaran, peneliti commit dengan to user dibantu oleh dua orang observer, memantau proses interaksi siswa di dalam kelompoknya masing-masing. Masih ada Pembelajaran Materi ………………………………………………… …………………..Page | 60
perpustakaan.uns.ac.id Edumatica Volume 02 Nomor 01 , April 2012
digilib.uns.ac.id ISSN: 2088-2157
siswa yang belum bisa bekerja sama dengan sesama anggota kelompoknya atau cenderung bekerja sendiri. Disini peneliti mencoba mengarahkan siswa agar bekerja bersama-sama membahas LKS. Selanjutnya inti dari pelaksanaan uji coba penerapan PMRI ini adalah siswa memiliki kemampuan utuk bisa menemukan rumus volume kerucut dengan menggunakan bangun ruang yang lain yaitu tabung. Perumusan volume kerucut dapat ditunjukkan melalui peragaan penakaran beras atau kacang hijau dengan menggunakan sebuah kerucut beserta tabung pasangannya. Adapun tabung pasangan adalah tabung yang mempunyai ukuran alas yang sama dengan alas kerucut dan tinggi yang juga sama dengan tinggi kerucut. Bangun kerucut yang peneliti buat cukup sederhana. Dengan menggunakan kertas yang agak tebal peneliti membuat alat peraga kerucut yang alasnya sama dengan media tabung yang peneliti disiapkan. Alat peraga tabung nya merupakan wadah dari tempat permen yang banyak ditemukan di warung-warung atau toko. Beberapa kelompok sangat antusias mengisi beras ke dalam kerucut kemudian memindahkannya kedalam tabung. Hal ini mereka lakukan berkali-kali sehingga mereka bisa menemukan hubungan antara volume kerucut dengan volume tabung. Langkah selanjutnya mereka mengisi lembar kerja siswa. Peneliti kemudian memperhatikan masing-masing jawaban kelompok siswa tentang hubungan antara volume kerucut dengan volume tabung. Setelah diperiksa ratarata bisa menjawab bahwa 3 volume kerucut sama dengan volume tabung atau dapat dikatakan bahwa volume kerucut sama dengan 1/3 dari volume tabung, walaupun masih ada kelompok yang kurang tepat dalam menjawabnya. Kelompok V menemukan hubungan bahwa volume kerucut tidak jauh berbeda dengan volume tabung. Hal ini disebabkan karena mereka kurang memahami percobaan yang mereka lakukan untuk menemukan hubungan antara volume kerucut dengan volume tabung. Setelah siswa mampu menemukan volume kerucut dengan percobaan yang telah dilakukan, langkah selanjutnya siswa menjawab pertanyaan soal soal yang berhubungan dengan mencari volume kerucut. Masih ada kekeliruan siswa dalam menjawab seperti terlihat pada gambar 1. Disini siswa belum memahami soal dengan baik, masih terpaku kepada rumus.
Gambar 1. Siswa belum memahami soal dengan baik
Peneliti tetap memandu siswa agar bisa menyelesaikan soal-soal dengan benar. Untuk soal-soal nun rutin siswa masih susah mencerna. Selama ini soal-soal yang mereka kerjakan adalah soal-soal yang biasa saja. Mereka mencari volume ketika sudah diketahui jari-jari dan tingginya. Pada saat diberikan soal-soal open ended yang hanya diketahui volumenya, sementara mereka diminta mencari jari-jari dan tingginya, siswa commit to user langsung bingung. Peneliti mencoba memberikan penjelasan kepada siswa bagaimana Pembelajaran Materi ………………………………………………… …………………..Page | 61
perpustakaan.uns.ac.id
digilib.uns.ac.id
Edumatica Volume 02 Nomor 01 , April 2012
ISSN: 2088-2157
menyelesaikan soal-sola non rutin tersebut. Akhirnya ada beberapa kelompok yang bisa menjawab dan memberikan solusi yang kreatif (gambar 2).
Gambar 2. Jawaban siswa yang kreatif
Soal terakhir yang peneliti berikan adalah melengkapi tabel. Nilai yang diketahui hanya volume kerucut. Yang ditanyakan adalah jari-jari dan tingginya. Pada awalnya siswa bingung mengisi titik-titik pada tabel tersebut. Selama ini mereka diberikan soal yang sudah diketahui jari-jari dan volumenya. Ketika peneliti sudah mengarahkan siswa bagaimana cara menjawabnya, ada beberapa kelompok yang berhasil menjawab soal –soal tersebut. Pada gambar 2 kelompok IV memisalkan jarijari kerucutnya 5 cm. Kemudian dengan menggunakan rumus volume kerucut didapatkan tingginya 3.2 cm. Selama proses pembelajaran interaksi antara siswa dengan siswa dalam kelompok lebih terasa, demikian juga interaksi antara siswa dengan guru. Siswa merasakan bahwa pembelajaran dengan menggunakan konteks dunia nyata lebih mudah dan menyenangkan. Di akhir pembelajaran guru memberikan reward kepada kelompok yang mengerjakan LKS dengan baik dan kelompok yang bisa bekerja sama dengan dibantu oleh 2 observer. Hasil tes akhir menunjukkan siswa yang memperoleh skor 60 sebanyak ≥ 77% dari jumlah siswa. Di akhir pembelajaran guru mewawancarai 4 orang siswa yang mewakili teman sekelas mereka dan meminta siswa memberikan kesan-kesannya terhadap pelajaran matematika hari itu. Mereka ternyata memberikan komentar bahwa pembelajaran hari itu menyenangkan para siswa juga berharap setiap pelajaran matematika diberikan alat peraga yang bisa memudahkan mereka memahami materi pelajaran matematika yang diberikan. Berdasarkan hasil wawancara terhadap subjek wawancara baik pada tindakan I maupun tindakan II, serta hasil angket respon siswa terhadap pembelajaran sangat positif dan tingkat pemahaman siswa terhadap materi juga sangat baik. Keempat subjek wawancara menyatakan senang dengan pembelajaran yang dilakukan oleh guru. Mereka merasa tugas yang diberikan menantang pemikiran. Pembentukan kelompok belajar membuat pekerjaan mereka terselesaikan dengan baik. Pelaksanaan diskusi kelas melatih siswa untuk mengemukakan pendapatnya dan saling menghargai pendapat orang lain. Siswa merasa pembelajaran ini dapat memahamkan mereka terhadap materi yang diberikan. commit to user Pembelajaran Materi ………………………………………………… …………………..Page | 62
perpustakaan.uns.ac.id
digilib.uns.ac.id
Edumatica Volume 02 Nomor 01 , April 2012
ISSN: 2088-2157
D. SIMPULAN DAN SARAN 1. Kesimpulan Dari hasil penelitian ini pembelajaran matematika dengan pendekatan matematika realistik pada pokok bahasan volume tabung dan kerucut diatas dapat disimpulkan bahwa pembelajaran menjadi lebih menyenangkan. Disini siswa terlibat secara aktif didalam menemukan volume kerucut dengan melakukan percobaan penakaran beras menggunakan media tabung dan kerucut. Interaksi antara siswa dengan siswa, siswa dengan guru juga muncul pada saat proses pembelajaran. 2.
Saran Dalam pembelajaran matematika dibutuhkan proses yang baik dan menyenangkan agar siswa bisa menikmati belajar. Hal ini bisa tercapai jika guru-guru bisa kreatif dalam menciptakan suasana belajar yang menyenangkan dan media yang menarik dalam proses pembelajaran. Di samping itu juga guru harus mampu memilih pendekatan pembelajaran yang tepat agar diperoleh hasil yang memuaskan. Salah satu pendekatan yang bisa dicobakan oleh guru adalah dengan menerapkan pendekatan PMRI yang bisa menjadi salah satu solusi umembuat pelajaran matematika menjadi menyenangkan. DAFTAR PUSTAKA Gravemeijer. 1994. Developing Realistic Mathematics Education. Utrecht: CD-β Press/ Freudenthal Institute. Miles, M.B., & Huberman, A.M. 1992. Analisis Data Kualitatif. Terjemahan oleh Tjetjep Rohendi Rohidi. Jakarta: UI Press. Moleong, L.J. 2002. Metode Penelitian Kualitatif. Bandung: Remaja Rosda Karya. Soedjadi, R. 1994. Memantapkan Matematika Sekolah sebagai Wahana Pendidikan dan Pembudayaan Penalaran. Media Pendidikan Nasional No. 4 Th. 3. Surabaya: PPS IKIP Surabaya. Zulkardi. 2002. Developing A Learning Environment On Realistc Mathematics Education For IndonesianUniversity of Twente, Enschede. The Nederlands. Student Teachers. Disertation. ISBN.
commit to user Pembelajaran Materi ………………………………………………… …………………..Page | 63
perpustakaan.uns.ac.id
digilib.uns.ac.id
Pengaruh Gaya Belajar Siswa Terhadap Prestasi Belajar Matematika Siswa
Nuniek Pradita Sari Fakultas Psikologi Universitas Ahmad Dahlan Jalan Kapas No. 9 Yogyakarta
[email protected]
Abstact This study aimed to determine the effect of students' learning styles toward mathematics achievement. The Subjects of this research were 61 students at SMA N 5 Yogyakarta in eleventh grade. The data collection tools of this research used a learning styles scale. Analysis of the statistical method used anova one way technique. Overall computational data were processed with SPSS 16.0 for windows. Data analysis showed F = 1.993 and p = 0.146 with a significance level (p <0.05) suggesting that there is no influence students' learning styles to learning mathematics achievement. This means that the hypothesis is rejected. categorization, including low academic achievement. the categorization of students' learning styles at SMA N 5 Yogyakarta are auditory and kinesthetic.
Keyword: Student’s Learning Style, Mathematic Achievement
Abstrak Penelitian ini bertujuan untuk mengetahui pengaruh gaya belajar siswa terhadap prestasi belajar matematika. Subjek dalam penelitian ini adalah siswa siswi SMA Negeri 5 Yogyakarta dengan jumlah subjek 61 siswa. Alat ukur yang digunakan dalam penelitian ini adalah skala gaya belajar siswa. Metode analisis data yang digunakan dalam penelitian ini adalah metode statistik dengan anava satu jalur. Keseluruhan komputasi data diolah dengan SPSS 16.0. for windows. Hasil analisis data menunjukkan Fcommit = 1,993todan userp = 0,146 dengan taraf signifikansi (p < 0,05) sehingga dapat disimpulkan bahwa tidak ada pengaruh gaya belajar
perpustakaan.uns.ac.id
digilib.uns.ac.id
siswa yang signifikan terhadap prestasi belajar matematika. Hal ini berarti hipotesis ditolak. Kategorisasi prestasi belajar siswa termasuk rendah. Kategorisasi gaya belajar yang tinggi pada siswa SMA Negeri 5 Yogyakarta adalah auditori dan kinestetik
Kata kunci: gaya belajar, prestasi belajar matematika
Pendahuluan Sejak manusia menghendaki kemajuan dalam kehidupan, sejak itulah timbul gagasan untuk melakukan pengalihan, pelestarian dan mengembangkan kebudayaan melalui pendidikan. Oleh karena itu, dalam sejarah pertumbuhan masyarakat, pendidikan senantiasa menjadi perhatian utama dalam rangka memajukan kehidupan generasi sejalan dengan tuntunan masyarakat. Menurut keyakinan kita, sejarah pembentukan masyarakat dimulai dari keluarga Adam dan Hawa sebagai unit terkecil dari masyakat dimuka bumi ini. Dalam keluarga tersebut telah dimulai proses kependidikan umat manusia, meskipun dalam ruang lingkup terbatas sesuai dengan kebutuhan hidupnya. Masalah belajar adalah masalah yang selalu aktual dan dihadapi oleh setiap orang. Maka dari itu banyak ahli-ahli membahasa dan menghasilkan berbagai teori tentang belajar. Dalam hal ini tidak dipertentangkan kebanaran setiap teori yang dihasilkan, tetapi yang lebih penting adalah pemakaian teori- teori itu dalam praktek kehidupan yang paling cocok dengan situasi kebudayaan kita. Dalam keseluruhan proses pendidikan disekolah, kegiatan belajar merupakan kegiatan yang paling pokok. Ini berarti bahwa berhasil tidaknya pencapaian tujuan pendidikan banyak bergatung kepada bagaimana proses belajar yang dialami oleh siswa sebagai anak didik. Belajar merupakan suatu aktivitas perubahan manusia untuk menjadi suatu yang lebih dari sebelumnya. Belajar merupakan perubahan pola pikir, pola rasa, dan pola tingkah laku. Manusia haus belajar untuk bisa mempertahankan hidupnya di dunia ini. Belajar juga merupakan sarana manusia untuk memahami ilmu. Di dalam dunia pendidikan, prestasi belajar merupakan bagian yang tidak dapat dipisahkan karena dari bagian ini lah semua orang dapat melihat apakah pencapaian individu yang telah melalui berbagai macam proses belajar. Prestasi merupakan sebuah hasil yang dicapai dari proses aktivitas belajar mengajar dimana aktivitas tersebut dapat ditemukan dimana saja, salah satunya yaitu sebuah lembaga pendidikan yang disebut sekolah. Di dalam sekolah ini terdapat beberapa figur yang sangat penting dalam proses belajar mengajar. Siswa dan guru merupakan bagian dari beberapa figure yang penting tersebut dalam konteks belajar dan mengajar dikelas. Belajar menurut Slameto (dalam Djamarah, 2002) adalah proses usaha yang dilakukan individu untuk memperoleh suatu perubahan tingkah laku yang baru secara keseluruhan sebagaicommit hasil pengalaman individu itu sendiri dalam to user interaksinya dengan lingkungan. Winkel (2007) mengemukakan bahwa prestasi
perpustakaan.uns.ac.id
digilib.uns.ac.id
belajar merupakan bukti keberhasilan yang telah dicapai oleh seseorang, maka prestasi belajar merupakan hasil maksimum yang dicapai oleh seseorang setelah melaksanakan usaha- usaha belajar. Prestasi belajar menurut Suryabrata (2008) adalah merupakan suatu hasil dari tindakan mengadakan penilaian yang dinyatakan dengan angka atau lambang- lambang, dimana semua itu mengenai kemajuan atau hasil belajar siswa selama masa tertentu. Pencapaian prestasi belajar ini tentunya tidak lepas dari ranah dunia pendidikan sehingga pendidikan memiliki peranan penting dalam mewujudkan sumber daya manusia yang berkualitas. Salah satu tempat yang sangat berkenaan dengan pendidikan disini adalah sekolah sehingga kontribusi terhadap pengoptimalan prestasi belajar siswa di tempat tersebut sangat besar. Pada pelaksanaannya para siswa diwajibkan untuk mengikuti seluruh mata pelajaran tidak terkecuali mata pelajaran matematika. Matematika merupakan salah satu mata pelajaran yang dapat ditemukan pada setiap jenjang pendidkan terutama dikalangan siswa- siswi Sekolah Menengah Atas. Tidak dipungkiri bahwa mata pelajaran yang satu ini membuat beberapa kalangan siswa menemukan kesulitan bahkan cenderung menghindarinya. Jika ditelaah dari beberapa pendapat ahli mengenai matematika dapat ditarik garis besarnya adalah ilmu tentang logika yang mempelajari materi berupa perhitungan, pengkajian sehingga bersifat penalaran, artinya siswa tersebut mempelajari sesuatu yang sifatnya nyata dan pasti. Gaya belajar adalah salah satu aspek yang perlu mendapat perhatian. Gaya belajar merupakan cara termudah yang dimiliki oleh individu dalam menyerap, mengatur dan mengolah informasi yang diterima. Gaya belajar yang sesuai adalah kunci keberhasilan seseorang dalam belajar. Oleh karena itu, dalam kegiatan belajar, siswa sangat perlu dibantu dan diarahkan untuk mengenali gaya belajar yang sesuai dengan dirinya sehingga tujuan pembelajaran dapat dicapai secara efektif. Kemampuan seseorang untuk memahami dan menyerap pelajaran sudah pasti berbeda tingkatnya. Ada yang cepat, sedang dan ada pula yang sangat lambat. Karenanya, mereka seringkali harus menempuh cara berbeda untuk bisa memahami sebuah informasi atau pelajaran yang sama. Sebagian siswa lebih suka guru mereka mengajar dengan cara menuliskan segalanya di papan tulis. Dengan begitu mereka bisa membaca untuk kemudian mencoba memahaminya. Tapi, sebagian siswa lain lebih suka guru mereka mengajar dengan cara menyampaikannya secara lisan dan mereka mendengarkan untuk bisa memahaminya. Sementara itu, ada siswa yang lebih suka membentuk kelompok kecil untuk mendiskusikan pertanyaan yang menyangkut pelajaran tersebut. Cara lain yang juga kerap disukai banyak siswa adalah model belajar yang menempatkan guru tak ubahnya seorang penceramah. Guru diharapkan bercerita panjang lebar tentang beragam teori dengan segudang ilustrasinya, sementara para siswa mendengarkan sambil menggambarkan isi ceramah itu dalam bentuk yang hanya mereka pahami sendiri. Ada beberapa permasalahan di Indonesia yang sampai saat ini belum terselesaikan secara tuntas. Antara lain : masalah pemerataan pendidikan, mutu pendidikan, efisiensi pendidikan dan masalah relevansi pendidikan. Memang kita perlu akui bahwa secara umum commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
manusiaIndonesia kurang dapat menggunakan kemampuan dan bakat yang dimilikinya. Gaya belajar seseorang menentukan bagaimana dia bisa menyerap sesuatu melaui inderanya diantara panca inderanya, indera mana yang lebih berkembang pada saat prose belajar tersebut berlangsung. Kaitannya dengan mata pelajaran matematika siswa di tuntut memiliki keterampilan menggunakan rumus dan keterampilan tertentu adalah unsur yang berperan dalam menentukan kemampuan siswa dalam menyelesaikan dan manyerap materi pelajaran tersebut. Matematika merupakan salah satu mata pelajaran yang dikenal para siswa semenjak sekolah dasar, dimana pengajarannya bersifat bertahap mulai dari mengenal angka, menghafal rumus sampai langkah- langkah yang digunakan untuk menyelesaikan soal yang diberikan. Pada jenjang SMP dan SMA pun mata pelajaran ini tetap diberikan dan cenderung lebih kompleks sehingga beberapa siswa tetap mengalami kesulitan dalam menyerap mata pelajaran tersebut. Setiap individu mengharapkan bahwa setiap kegiatan yang dilakukan dapat menghasilkan suatu prestasi. Menurut Purwanto (2010), prestasi merupakan suatu penilaian terhadap sesuatu yang digunakan untuk menilai hasil- hasil pengajaran yang diberikan guru kepada siswanya dalam waktu tertentu. Prestasi juga merupakan hasil dari suatu kegiatan yang telah dikerjakan, diciptakan, baik secara inividual maupun kelompok (Djamarah, 2002). Pendapat lain mengatakan prestasi adalah suatu pencapaian atau hasil yang telah dicapai dan merupakan satu tingkat tertentu dari kecakapan/ keahlian dalam tugas- tugas sekolah atau akademis (Chaplin, 2006). Belajar sendiri merupakan suatu usaha atau kegiatan yang bertujuan mengadakan perubahan di dalam diri seseorang, mencakup perubahan tingkah laku, sikap, kebiasaan, ilmu penegtahuan, keterampilan dan sebagainya (Dalyono, 2001). Menurut Syah (2010) belajar adalah proses untuk membuat perubahan dalam diri seseorang dengan cara berinteraksi dengan lingkungan untuk mendapatkan perubahan dalam aspek kognitif , afektif dan psikomotorik. Belajar juga merupakan suatu proses usaha yang dilakukan oleh seseorang untuk memperoleh suatu perubahan tingkah laku yang baru secara keseluruhan, sebagai hasil dari pengalamannya sendiri dalam interaksi dengan lingkungannya (Slameto,2003). Prestasi belajar adalah suatu bukti keberhasilan belajar atau kemapuan soerang siswa dalam melakukan kegiatan belajarnya sesuai dengan bobot yang dicapainya, bobot yang dimaksud dalam hal ini adalah nilai siswa yang dapat dilihat atau dinyatakan dalam bentuk raport, indeks prestasi studi, angka kelulusan dan predikat keberhasilan (Winkel, 2007). Sundari (1992) mendefinisikan prestasi belajar adalah hasil yang dicapai selama mengikuti pelajaran pada periode tertentu dalam suatu lembaga pendidikan yang hasilnya dinyatakan dalam kurun waktu tertentu dalam suatu program pengajaran dan hasilnya dinyatakan dalam bentuk raport, indeks prestasi studi, angka kelulusan dan predikat keberhasilan. Menurut Suryabrata (2008) prestasi belajar adalah suatu hasil dari tindakan mengadakan penilaian yang dinyatakan dengan angka atau lambang- lambang, dimana semua itu mengenai kemajuan atau hasil belajar siswa selama masa tertentu. Prestasi commit to user belajar juga merupakan suatu masalah yang bersifat terus menerus dalam sejarah
perpustakaan.uns.ac.id
digilib.uns.ac.id
kehidupan manusia, karena sepanjang rentang kehidupannya manusia selalu mengejar prestasi menurut bidang dan kemampuan masing- masing (Arifin, 2009). Suryabrata (2008) menyatakan bahwa faktor- faktor yang mempengaruhi proses dan prestasi belajar dapat digolongkan menjadi dua yaitu faktor dari dalam (internal) dan faktor dari luar (eksternal). a. Faktor dari dalam diri siswa yang meliputi faktor fisiologis seperti kondisi fisiologis umum, kondisi kesehatan, kondisi panca indera, serta faktor psikologis seperti minat, kecerdasan, bakat, motivasi, kemampuan kognitif, kecedasan emosi dan kecerdasan spiritual b. Faktor yang berasal dari luar diri siswa meliputi faktor lingkungan alami (nonsosial), faktor lingkungan sosial (interaksi manusia) serta faktor instrumental yang berwujud perangkat keras dan perangkat lunak. Purwanto (2010) menyebutkan faktor yang mempengaruhi prestasi belajar adalah: a. Faktor individual yang terdiri dari kematangan, kecerdasan, latihan, motivasi berpretasi, kemampuan manajemen waktu dan sifat- sifat pribadi seseorang. b. Faktor sosial yang terdiri dari keadaan keluarga, motivasi sosial, alat- alat pengajaran, lingkungan, kesempatan, guru dan cara mengajar Menurut Soedjadi (2000), matematika berasal dari bahasa latin manthanein atau mathema yang berarti ’belajar atau hal yang dipelajari’, sedang dalam bahasa belanda disebut wiskunde atau ilmu pasti, yang kesemuanya berkaitan dengan penalaran. Secara universal matematika menurut Suherman dkk (1992) memiliki beberapa pengertian, yaitu: a. Matematika adalah ilmu deduktif, sebab dalam matematika tidak berdasarkan generalisasi yang merupakan hasil observasi, eksperimen, coba- coba (induktif), seperti halnya ilmu pengetahuan alam dan ilmu pengetahuan umumnya. b. Matematika adalah bahasa, sebab matematika merupakan bahasa simbol yang berlaku secara universal (internasional), sangat padat makna dan pengertian. c. Matematika dalah seni, sebab dalam matematika terlihat adanya unsur keteraturan, keterurutan dan ketetapan (konsistensi) sehingga matematika indah dipandang da diresapi secara seni. d. Matematika disebut ratunya ilmu, karena matematika adalah bahasa, ilmu deduktif, ilmu tentang pola keteraturan, ilmu tentang struktur yang diorganisasikan dengan baik dan merupakan alat serta pelayan ilmu lainnya. e. Matematika adalah ilmu tentang pola dan hubungan, sebab dalam matematika sering dicari sekumpulan konsep- konsep atau model- model tertentu yang merupakan representasinya sehingga dapat dibuat generalisasinya untuk dibuktikannya kebenaran secara deduktif. Matematika berfungsi untuk mengembangkan kemampuan menghitung, commit to user mengukur, menurunkan dan mengungkapkan rumus matematika yang diperlukan
perpustakaan.uns.ac.id
digilib.uns.ac.id
dalam kehidupan sehari- hari menggunakan matematika pengukuran dan geometri, aljabar dan trigonometri. Mata pelajaran ini menjadi bagian yang wajib ada pada kurikulum di sekolah. Tujuan pembelajaran matematika adalah: a. Melatih cara berpikir dan bernalar dalam menarik kesimpulan, misalnya melaui kegiatan penyelidikan, eksplorasi, eksperimen, menunjukkan kesamaan, perbedaan, konsistensi dan inkonsistensi. b. Mengembangkan aktivitas kreatif yang melibatkan imajinasi, retuisi dan penemuan dengan mengembangkan pemikiran divergen, orisinil, rasa ingin tahu, membuat prediksi dan dugaan secara mencoba- coba. c. Mengembangkan kemampuan memecahkan masalah. d. Menyampaikan, mengembangkan kemampuan informasi atau mengkomunikasikan gagasan antara lain melaui pembicaraan lisan, catatan, grafik, peta, diagram dalam menjelaskan gagasan. Berdasarkan beberapa uraian diatas dapat ditarik kesimpulan bahwa matematika adalah ilmu pasti atau ilmu deduktif yang dipelajari untuk mengembangkan kemampuan menghitung, mengukur, serta melatih cara berpikir dan bernalar dalam menarik kesimpulan dan menjadi mata pelajaran wajib yang di ikuti siswa disekolah . Prestasi belajar matematika yang dicapai merupakan hasil interaksi antara berbagai faktor yang mempengaruhinya baik dari dalam diri individu atau dari luar individu. Purwanto (2010) menyatakan bahwa ada dua faktor yang dapat mempengaruhi hasil belajar (prestasi belajar matematika) yaitu faktor internal individu dan faktor eksternal individu. Faktor internal individuna berupa raw input siswa baik secara psikologis maupun fisiologis. Sedangkan faktor eksternal individu berasal dari environmental input yang terdiri dari lingkungan alam dan lingkungan sosial serta instrumental input yang terbagi dalam kurikulum atau bahan ajar, guru atau staf pengajar, sarana dan fasilitas serta administrasi dan manajemen. Beberapa ahli juga menjelaskan beberapa faktor yang mempengaruhi prestasi belajar matematika, diantaranya yaitu: a. Faktor Siswa Kegagalan atau keberhasilan belajar siswa sangat tergantung pada siswa itu sendiri. Faktor psikologis seperti intelegensi atau intelektual yaitu bagaimana kemampuan dan kesiapan siswa untuk mengikuti pelajaran matematika, serta faktor non intelektual seperti gaya belajar, minat belajar, sikap kebiasaan, minta terhadap matematika, perhatian, kecemasan dan bakat. Sedangkan faktor fisiologis yaitu kondisi fisik siswa juga berpengaruh terhadap kegiatan belajar siswa, seperti kondisi fisik yang segar akan berpengaruh terhadap jasmaninya daripada dalam keadaan lelah (Suryabrata, 2008). b. Faktor Guru atau Pengajar Guru sebagai pelaksana dalam kegiatan belajar mengajar dengan kompetensi yang dimilikinya dapat menunjang keberlangsungannya proses belajar mengajar yang efektif, kompetensi profesional yang dimilikinya commitkognitif to userseperti penguasaan bahan, bidang yaitu kemampuan dasar dibidang
perpustakaan.uns.ac.id
digilib.uns.ac.id
sikap seperti mencintai profesinya dan bidang perilaku seperti kemampuan mengajar dan menilai hasil belajar siswa sangat berpengaruh terhadap pretasi belajar siswa. c. Faktor Sarana dan Prasarana Prasarana yang baik seperti ruangan yang sejuk dan bersih dengan tempat duduk yang nyaman akan lebih memperlancar proses belajar mengajar. Demikian juga denga saran yang lengkap seperti buku, media pendidikan pun menjadi fasilitas belajar yang penting (Djamarah & Zein, 1997). Dalam hal ini mungkin pengadaan buku- buku matematika. d. Faktor Penilaian Penilaian adalah memberi pertimbangan atau angka terhadap sesuatu berdasarkan kriteria tertentu. Penilaian yang dilakukan secara objektif akan mempengaruhi prestasi belajar siswa, karena denga penilaian yang kurang objektif, siswa tidak akan dapat mengetahui letak kekurangan yang sebenarnya sehigga langkah- langkah berpikir siswa dalam menyelesaikan masalah belajar menjadi salah (Djamarah & Zein, 1997). Gaya belajar mengacu pada cara belajar yang lebih disukai pembelajar. Umumnya, dianggap bahwa gaya belajar seseorang berasal dari variabel kepribadian, termasuk susunan kognitif dan psikologis latarbelakang sosio cultural, dan pengalaman pendidikan. Keanekaragaman gaya belajar siswa perlu diketahui pada awal permulaannya diterima pada suatu lembaga pendidikan yang akan ia jalani. Hal ini akan memudahkan bagi siswa untuk belajar maupun guru untuk mengajar dalam proses pembelajaran. Pebelajar akan dapat belajar dengan baik dan hasil belajarnya baik, apabila ia mengerti gaya belajarnya. Hal tersebut memudahkan pembelajar dapat menerapkan pembelajaran dengan mudah dan tepat. Gaya belajar anak satu dengan anak yang lainnya akan berbeda- beda. Hal ini dikarenakan masing- masing anak memiliki cara pandang tersendiri terhadap setiap peristiwa yang dilihat dan dialami anak- anak tersebut. Gaya belajar adalah cara yang konsisten yang dilakukan seorang murid dalam menangkap stimulus atau informasi, cara mengingat, berpikir, dan memecahkan soal (Nasution, 2006: dalam July Syawaladi). Gaya belajar adalah cara-cara setiap murid belajar yang berbeda dengan rekan sebayanya. (Dunn & Dunn, 1978: dalam July Syawaladi). Menurut Dunn And Dunn ada beberapa faktor yang mendukung gaya belajar seseorang, yaitu: lingkungan, emosional, sosiologis, fisiologis dan psikologis. Menurut DePorter dan Hernacki (2002), gaya belajar adalah kombinasi dari menyerap, mengatur, dan mengolah informasi. Terdapat 3 jenis belajar berdasarkan modalitas yang digunakan individu dalam memperoleh informasi, yaitu: a. Gaya belajar visual (visual learners) yaitu gaya belajar yang menitikberatkan pada ketajaman penglihatan. Ada beberapa karakteristik yang khas bagi orangorang yang menyukai gaya belajar visual ini: kebutuhan melihat sesuatu secara visual untuk mengetahui atau memahaminya, memilki kepekaan yang kuat terhadap warna, memiliki pemahaman yang cukup terhadap masalah artistik. Ciri- cirinya adalah bukan pendengar yang baik saat berkomunikasi; commit user guru yang sedang mengajar; saat cenderung melihat sikap, gerakan, dantobibir
perpustakaan.uns.ac.id
digilib.uns.ac.id
mendapat petunjuk untuk melakukan sesuatu, biasanya akan melihat temanteman lainnya baru kemudian dia sendiri yang bertindak. Secara sederhana, terdapat beberapa metode pengajaran yang dapat disesuaikan dengan gaya belajar siswa, di antaranya: 1. Gunakan simbol- simbol dalam memberikan konsep pada siswa. 2. Dorong siswa untuk menguatkan konsepnya dengan menggunakan symbol/ warna. 3. Gunakan salinan kunci yang dibagikan kepada siswa, selanjutnya siswa mendefinisikan dengan bahasanya sendiri. 4. Gunakan gambar berwarna, grafik, table sebagai media pembelajaran b. Gaya belajar Auditori (auditory learners), mengandalkan pada pendengaran untuk bisa memahami dan mengingatnya. Dengan proses harus mendengar terlebih dahulu baru kemudian bisa memahami dan mengingat informasi tersebut. Karakter orang auditori, sedikit kesulitan menyerap info berupa tulisan atau bacaan. Ciri- cirinya adalah mampu mengingat dengan baik penjelasan guru didepan kelas atau materi yang didiskusikan dalam kelompok atau kelas; cenderung suka berbicara, kurang cakap dalam mengerjakan tugas mengarang/ menulis. Terdapat beberapa metode pengajaran oleh guru yang dapat disesuaikan dengan gaya belajar siswa auditory, di antaranya: 1) Variasikan vokal saat memberikan penjelesan, seperti intonasi, volume suara ataupun kecepatannya. 2) Gunakan pengulangan- pengulangan konsep yang sudah diberikan. 3) Ubahlah konsep ke dalam bentuk irama atau lagu 4) Selingi dengan musik c. Gaya belajar Kinestetik (kinesthetic learners) mengharuskan individu yang bersangkutan menyentuh sesuatu yang memberikan informasi tertentu agar ia bisa mengingatnya. Karakter orang kinestetik biasanya menempatkan tangan sebagai alat penerima informasi utama agar bisa terus mengingat informasi yang diserap. Ciri- cirinya adalah sulit untuk berdiam diri, mengerjakan sesuatu yang memungkinkan tangannya selalu bergerak aktif, suka membuat note- note kecil, menyukai praktek atau percobaan. Terdapat beberapa cara mengajar yang dapat dilakukan oleh guru untuk menyesuaikan gaya belajar siswa kinestetik, yaitu: 1) Gunakan alat bantu saat mengajar agar timbul rasa ingin tahu siswa 2) Saat membimbing perorangan biasakan berdiri atau duduk di samping siswa 3) Buat aturan main agar siswa boleh melakukan banyak gerak didalam kelas. 4) Peragakan konsep, sambil siswa memahaminya secara bertahap. 5) Biasakan berbicara kepada setiap siswa secara pribadi saat di dalam kelas Prestasi belajar adalah suatu bukti keberhasilan belajar atau kemapuan soerang siswa dalam melakukan kegiatan belajarnya sesuai dengan bobot yang dicapainya (Winkel, 2007). Prestasi belajar ini dipengaruhi oleh dua faktor yaitu faktor individual yang terdiri dari kematangan, kecerdasan, latihan, motivasi commit to user berpretasi, kemampuan manajemen waktu dan sifat- sifat pribadi seseorang.
perpustakaan.uns.ac.id
digilib.uns.ac.id
Kemudian Faktor sosial yang terdiri dari keadaan keluarga, motivasi sosial, alatalat pengajaran, lingkungan, kesempatan, guru dan cara mengajar. Setiap individu memiliki kekhasan sejak lahir dan diperkaya melalui pengalaman hidup yang pasti semua orang belajar melalui alat inderawi, baik penglihatan, pendengaran, dan kinestetik. Setiap orang memiliki kekuatan belajar atau gaya belajar. Semakin kita mengenal baik gaya belajar kita maka akan semakin mudah dan lebih percaya diri di dalam menguasai suatu keterampilan dan konsep-konsep dalam hidup. Gaya belajar ini merupakan salah satu faktor individual atau faktor internal yang mempengaruhi prestasi belajar siswa dijadikan salah satu modalitas siswa untuk mencapai prestasi belajar yang baik dan tentunya tidak terlepas dari ranah dunia pendidikan, dimana sekolah merupakan bagian dari pencapain prestasi belajar yang dilakukan oleh siswa. Jika gaya belajar ini sifatnya lemah dalam diri siswa tidak menutup kemungkinan siswa yang bersangkutan tidak mampu menyerap materi ajar yang diberikan. Siswa tersebut dapat menangkap pelajaran dengan baik melalui beberapa metode yang sesuai dengan kemampuan penyerapan alat indera berupa penglihatan, pendengaran dan kinestetik yang di kenal dengan gaya belajar visual, auditory dan kinestetik. Pada siswa terdapat salah satu yang terlihat menonjol dari ketiga karakter tersebut. Perbedaaan gaya belajar itu menunjukkan cara tercepat dan terbaik bagi setiap individu bisa menyerap sebuah informasi dari luar dirinya. Oleh karena itu, sebagai seorang guru bisa memahami bagaimana perbedaan gaya belajar pada siswanya, dan mencoba menyadarkan siswanya akan perbedaan tersebut, mungkin akan lebih mudah bagi guru untuk menyampaikan informasi secara lebih efektif dan efisien.
Metode Penelitian Subjek penelitian dalam penelitian ini adalah siswa siswi SMA Negeri 5 Yogyakarta dengan jumlah siswa yang digunakan dalam penelitian ini adalah 61 orang. Alat pengumpulan data yang digunakan dalam penelitian ini adalah skala Gaya Belajar Siswa yang terdiri dari 44 pernyataan dan dokumentasi dari sekolah untuk memperoleh nilai matematika dari guru yang bersangkutan. Metode analisis yang digunakan dalam penelitian ini adalah teknik analisis varian satu jalur atau anava satu jalur, dengan menggunakan bantuan program komputer SPSS 16.0 for Windows.
Hasil dan Pembahasan Deskripsi data adalah dugaan tentang nilai suatu variabel mandiri, tidak membuat perbandingan atau hubungan. Data yang terkumpul dari proses commit to user penelitian dapat dianalisis lebih lanjut. Berdasarkan hasil deskripsi data penelitian
perpustakaan.uns.ac.id
digilib.uns.ac.id
dapat diuraikan mengenai nilai mean, nilai minimum, nilai maksimum dan standar deviasi. Berdasarkan hasil analisis data, diperoleh data empirik dan penghitungan skor hipotetik dari kedua skala. Pada skor hipotetik, skor minimal diperoleh dari perkalian jumlah butir skala dengan nilai terendah dari pembobotan pilihan jawaban, sedangkan skor maksimal diperoleh dari perkalian jumlah butir skala dengan nilai tertinggi dari pembobotan pilihan jawaban. Empirik no 1.
2.
Variabel Gaya belajar
Hipotetik
Min
Maks
Mean
SD
Min
Maks
Mean
SD
Visual
68
83
73.35
3.499
10
40
25
5
Auditori
70
86
74.59
4.116
17
68
42,5
8,5
kinestetik
70
94
76.47
6.063
17
68
42,5
8,5
68
94
74,77
4,670
68
94
81
4
Prestasi Belajar Matematika
Keterangan: Min : Skor Minimal Maks: Skor Maksimal
Mean : Rerata SD :Standard Deviation(Deviasi Standar)
Uji normalitas terlebih dahulu dilakukan untuk mengetahui apakah variabel penelitian mempunyai skor yang berdistribusi normal atau tidak. Kaidah yang digunakan dalam uji normalitas yaitu jika p > 0,05 maka sebaran data tersebut normal, sedangkan jika p < 0,05 maka sebaran data tersebut adalah tidak normal.
Variabel
Skor Ks-Z
Prestasi belajar matematika
1,216
Asymp.sig (2-tailed) 0,104
Keterangan Normal
Pengujian homogenitas berfungsi untuk mengetahui varians data bersifat homogen atau heterogen berdasarkan faktor tertentu. Uji homogen data dapat dilakukan melalui uji Bartlet dan Lavine. No.
Variabel
Levene Statistic
sig
1
Prestasi belajar matematika* Gaya belajar
1.609
.209
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
Berdasarkan tabel diatas terlihat bahwa hasil uji menunjukkan varian ketiga kelompok itu sama (P-value = 0,209) sehingga membuktikan bahwa uji anava valid untuk uji pengaruh dalam penelitian ini. Setelah dilakukan uji normalitas dan uji homogenitas maka selanjutnya dilakukan analisis uji hipotesis. Hipotesis yang diajukan oleh peneliti adalah adanya pengaruh gaya belajar siswa terhadap prestasi belajar matematika. Berdasarkan analisis varian satu arah, pengaruh gaya belajar siswa terhadap prestasi belajar matematika diperoleh nilai F hitung sebesar 1,993 dengan taraf signifikansi sebesar 0,146 (p < 0,05). Hal tersebut menunjukkan bahwa tidak ada pengaruh gaya belajar siswa yang signifikan terhadap prestasi belajar matematika sehingga hipotesis yang diajukan dalam penelitian ini ditolak. Berdasarkan interpretasi data deskriptif pengaruh gaya belajar siswa terhadap prestasi belajar matematika, diperoleh rata- rata prestasi belajar matematika untuk gaya belajar visual adalah 73,35, kemudian rata- rata prestasi belajar matematika untuk gaya belajar auditori adalah 74,59 dan yang terakhir rata- rata prestasi belajar matematika untuk aya belajar kinestetik adalah 76,47. Kemudian pencapaian nilai maksimal dan minimal siswa pada prestasi belajar matematika dengan gaya belajar visual minimal nilai yang di peroleh adalah 68 dan maksimalnya 83, sedangkan pada siswa dengan gaya belajar auditori dan kinestetik memperoleh nilai minimal 70. Pada siswa dengan gaya belajar auditori nilai prestasi belajar matematika maksimal yang diperoleh adalah 86, sedangkan pada siswa dengan gaya belajar kinestetik nilai maksimal yang diperoleh adalah 94. Menurut pengamatan dari peneliti prestasi belajar matematika siswa SMA Negeri 5 Yogyakarta yang tergolong rendah ini dikarenakan beberapa faktor yang mempengaruhi. Menurut Suryabrata (2011) faktor- faktor yang mempengaruhi proses dan prestasi belajar dapat digolongkan menjadi dua yaitu faktor dari dalam (internal) dan faktor dari luar (eksternal). Faktor dari dalam diri siswa (internal) yang meliputi faktor fisiologis seperti kondisi fisiologis umum, kondisi kesehatan, kondisi panca indera, serta faktor psikologis seperti minat, kecerdasan, bakat, motivasi, kemampuan kognitif, kecedasan emosi dan kecerdasan spiritual. Sedangkan faktor yang berasal dari luar diri siswa (eksternal) meliputi faktor lingkungan alami (nonsosial), faktor lingkungan sosial (interaksi manusia) serta faktor instrumental yang berwujud perangkat keras dan perangkat lunak. Ditolaknya hipotesis ini kemungkinan disebabkan oleh beberapa faktor diantaranya penelitian dilakukan pada saat jam pelajaran terakhir selesai sehingga menyita perhatian para siswa untuk sekedar memenuhi kewajiban mengisi skala dan segera pulang, sehingga subjek terburu- buru saat mengisi skala. Penyebab lain skala yang dibuat kemungkinan kurang dipahami oleh responden sehingga jawaban yang diberikan tidak berdasarkan kenyataan.
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
Kesimpulan Hasil pengujian hipotesis dan pembahasan terhadap hasil- hasil penelitian yang telah diuraikan dapat disimpulkan bahwa tidak ada pengaruh gaya belajar yang signifikan terhadap prestasi belajar matematika. Sehingga hipotesis yang diajukan peneliti ditolak berdasarkan hasil analsis yang telah dilakukan. Dalam penelitian ini kategorisasi bahwa gaya belajar siswa SMA Negeri 5 Yogyalarta tergolong kinestetik. Namun prestasi belajar matematika pada siswa dalam penelitian ini tergolong kurang memuaskan atau berada dalam kategori rendah.
Saran Peneliti- peneliti lain yang tertarik pada masalah prestasi belajar dapat mengembangkan atau meneliti lebih lanjut dengan memperhatikan faktor lain yang mungkin memberikan pengaruh pada prestasi belajar siswa- siswi SMA Negeri 5 Yogyakarta, serta memperhatikan faktor waktu penelitian dan keadaan atau kesiapan subjek dalam memberikan keterangan.
Daftar Pustaka Arifin , Z. 2009. Evaluasi Pembelajaran. Bandung: PT. Remaja Rosdakarya Azwar, S. 1999. Dasar- Dasar Psikometri. Yogyakarta: Pustaka Pelajar Azwar, S. 2000. . Reliabilitas dan Validitas. Edisi III. Cetakan II. Yogyakarta : Pustaka Pelajar. Azwar, S. 2010. Penyusunan Skala Psikologi. Yogyakarta: Pustaka Pelajar. Dahar, Ratna Willis. 1991. Teori- Teori Belajar. Bandung: Erlangga. Dalyono, M. 2001. Psikologi Pendidikan. Jakarta: PT. Rineka Cipta.
Djamarah, S.B, & Zein, A. 1997. Atrategi Belajar Mengajar. Jakarta: PT. Rineka Cipta commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
Djamarah, S.B. 2000. Guru dan Anak Didik dalam Interaksi Edukatif. Jakarta: PT. Rineka Cipta. Djamarah, S.B. 2002. Psikologi Belajar. Jakarta: PT. Rineka Cipta. Porter, Bobbi De- Mike Hernacki. 2002. Quantum Learning. Bandung: Kaifa Purwanto, M.N 2010. Psikologi Pendidikan. Bandung: PT. Remaja Rosdakarya Slameto. 2003. Belajar dan Faktor-Faktor yang Mempengaruhinya. Jakarta: PT. Asmadi Mahasatya. Soedjadi, R. 2000. Kiat Pendidikan Matematika di Indonesia. Jakarta. Departemen Pendidikan Nasional. Sundari, S. 1992. Dasar- Dasar Psikologi Pendidikan. Yogyakarta: Swadaya. Suherman. E, Winataputra dan Udin, S.1992. Strategi Belajar Mengajar Matematika. Jakarta. Departemen Pendidikan dan Kebudayaan. Slameto. 2003. Belajar dan Faktor-Faktor yang Mempengaruhinya. Jakarta: PT. Asmadi Mahasatya Sunaryo, 2002. MacamMacam Gaya Belajar. http://belajarpsikologi.com/macam-macam-gaya-belajar/. 20 Desember 2011. Suryabrata, S. 2005. Metodologi Penelitian. Jakarta : PT. RajaGrafindo Persada. Suryabrata, S. 2008. Psikologi Pendidikan. Jakarta: PT RajaGrafindo Persada. Syah, M. 2010. Psikologi Pendidikan dengan Pendekatan Baru. Bandung: PT. Remaja Rosdakrya Offset commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
Syawaladi, Julie. 2010. FaktorFaktor dan Gaya Belajar. http://julysyawaladi.blogspot.com/2010/06/faktor2-belajar-dan-gayabelajar.html. Diakses pada tanggal 15 juni 2012. Winkel, W. S. 2007. Psikologi Pengajaran. Jakarta: PT. Grasindo Persada..
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
Journal of Social Sciences 6 (2): 272-275, 2010 ISSN 1549-3652 © 2010 Science Publications
The Effects of Cooperative Learning on Students’ Mathematics Achievement and Attitude towards Mathematics Effandi Zakaria, Lu Chung Chin and Md. Yusoff Daud Department of Methodology and Educational Practice, Faculty of Education, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia Abstract: Problem statement: The purpose of this study was to determine the effect of cooperative learning on mathematics achievement and attitude towards mathematics. Approach: This quasiexperimental study was carried out on two form one classes in Miri, Sarawak. One class (n = 44) was assigned as an experimental group and the other (n = 38) was assigned as a control group. The two groups were pre-tested prior the implementation. At the end of the study, post test was given, while daily quiz was used as a tool for formative testing. Teaching and learning process was carried out for two weeks. Data were analyzed using the t-test to determine performance by comparing the mean of the post test for treatment and control group. Results: The results of this study showed that cooperative learning methods improve students’ achievement in mathematics and attitude towards mathematics. Conclusion: The researchers concluded that cooperative learning is an effective approach, which mathematics teachers need to incorporate in their teaching. Key words: Cooperative learning, motivation, achievement INTRODUCTION At present mathematics is widely use in various fields and covering a wide range of activities. However, the decline in mathematics achievement is of concern. Among the reasons of the decline in mathematics achievement in schools is because students consider mathematics as a difficult and boring subject According to Keefe (1997), the phenomenon of frustration among teachers and students need to be overcome in order to achieve excellence in mathematics. Therefore, teachers should take note of the needs of individual students. According to him, the individual needs of students should be treated accordingly so that the teaching and learning is effective. Mathematics achievement is often discussed by educators in our country. The highlight of their discussion focused on the differences and variations in student achievement based on their PMR (Lower Secondary Assessment), SPM (Malaysia Certificate of Education) and STPM (Malaysian Higher School Certificate) examinations each year. According to Malaysian Examination Board, student achievements are not stable and vary from year to year. Students who are weak in Mathematics may feel less confident and did not want to choose science as an option to further their education.
Clearly, student achievement in mathematics has not been good enough. According to Sabri (2006), mathematics achievement level of PMR (Lower Secondary Assessment) showed small fluctuation in percentage from year to year. However, the increase in the percentage who pass will increase students in the Science stream at the SPM (Malaysia Certificate of Education) level. In the Malaysian education system, achieving the rank of D means the student can only achieve a minimum mastery level while achieving the rank of E means the student does not achieve the minimum mastery level. This decision became one of the indicators that reflect the level of the students who are weak in mathematics. Therefore, efforts should be undertaken to immediately to improve the situation. The teaching of mathematics is not about dispensing rules, definitions and procedures for students to memorize, but engaging students as active participants through discussion and collaboration among students (Posamentier et al., 2006). Learning will be more successful if they are given the opportunity to explain or clarify ideas (Burns, 1990). Lau et al. (2009) explains that “the mathematics skills required for youth of today’s and adults of tomorrow to function in the workplace are different from that for youth and adults of yesterday”. In terms of pedagogy, the development
Corresponding Author: Effandi Zakaria, Department of Methodology and Educational Practice, Faculty of Education, University Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
commit 272 to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
J. Social Sci., 6 (2): 272-275, 2010 of education now requires teaching strategies that emphasize student involvement. According to Johnson and Johnson (1990) to achieve success in learning mathematics, students should be given the opportunity to communicate mathematically, reasoning mathematically, develop self-confidence to solve mathematics problems. One of the ways this can be done is through cooperative learning. In cooperative learning, students study in small groups to achieve the same goals using social skills. Many studies show that cooperative learning can improve performance, long-term memory and positive attitudes towards mathematics, self concept and social skills. More opportunities should be given to discussion, problem solving, creating solutions and working with peers. Several educators in the field of mathematics education conducted studies using cooperative learning and found increase in students’ mathematics achievement (Brush, 1997; Isik and Tarim, 2009; Nichols and Miller, 1994; Tarim, 2009; Tarim and Akdeniz, 2008). Shimazoe and Aldrich (2010) provides several benefits on the use of cooperative learning approach for students. First, cooperative learning promotes deep learning of materials. Second, students achieve better grades in cooperative learning compared to competitive or individual learning. Third, students learn social skills and civic values. Fourth, students learn higher-order, critical thinking skills. Fifth, cooperative learning promotes personal growth. Finally, students develop positive attitudes toward autonomous learning. Apart from mathematics achievement, attitude is also a major focus in cooperative learning study. A study conducted by Ifamuyiwa and Akinsola (2008) found that students in the experimental group showed a positive attitude towards mathematics. Similarly, Brush (1997), also found that students in the experimental group showed positive attitudes towards mathematics. However, a study by Tarim and Akdeniz (2008) found no significant difference was observed regarding students’ attitude towards mathematics. Based on the literature it can be said that cooperative learning is effective in enhancing the achievement and produce inconsistent results regarding attitude of students. Therefore, the researchers want to conduct this research in the hope that teachers can used the cooperative learning methods especially Student TeamsAchievement Divisions (STAD) in their teaching. Thus, researchers want to study the effects of the use of STAD on mathematics achievement and student attitudes towards mathematics. Specifically, the objectives of the study were to determine:
• •
Whether there are differences in achievement in mathematics between the experimental group and the control group Whether there are differences in students’ attitude towards mathematics between the experimental group and the control group MATERIALS AND METHODS
Since the classes existed as intact groups, the study used a quasi-experimental non-equivalent control group design. To control for teachers’ training and experience as sources of internal invalidity, only teachers of equivalent training and experience were chosen. Convenience sampling technique was used to select the schools that formed the study sample. The participants were 82 Form One students from one of the school in Miri, Sarawak. Of these respondents, 44 were in the experimental class, while 38 others were in the control class. Students in Form One in Malaysian secondary schools are of an average of 13 years old. The study was carried out for two weeks. Student TeamsAchievement Divisions (STAD) developed by Slavin (1995) was used as the cooperative model. Instrumentation: Achievement test: In this study, the achievement test was used to measure the students’ mastery of the topic of fractions. The pre and post test contained 16 objectives questions and 10 subjective questions. The time allocated is 60 min. Each subjective item is allocated five points, while two marks allocated to each objectives item. All items used are based on form 1 mathematics syllabus. Validity is an important feature for an instrument (Wiersma, 2000). An instrument is said to have high validity if the degree of its ability to measure what it should be measured is high. All the items were reviewed by the Head of Department of Mathematics and Science and expert teachers for validation. Attitude towards mathematics: A set of attitude questionnaire items have been adopted and modified by the researchers. The instrument was given to experts in mathematics education for validation. Since the items were not scored dichotomously, the reliability coefficient of the test was estimated using Cronbach’s coefficient alpha (α) as provided by Gregory (2004). The reliability coefficient was found to be 0.81. Attitude questionnaire contains 15 items. In this questionnaire, all respondents were required to choose the answer that reflects their own views and stance on the statements that are administered in accordance with the Likert scale of five points, strongly disagree-1 to strongly agree-5 points.
commit 273 to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
J. Social Sci., 6 (2): 272-275, 2010 RESULTS Table 1 shows the demographics variables. The sample included 38 male (47.4%) and 44 (53.7%) female. In terms of ethnic group, the Iban 45 (54.9%) is the majority. The monthly parents’ incomes in Ringgit Malaysian (RM) of the respondents were illustrated in detail. Most of the student, 54 (65.9%) had a parent income of between RM500-RM1000 per month. Effects of cooperative learning on students’ mathematics achievement: To determine the effects of cooperative learning on students’ achievement, an analysis of students’ pre and post test mean scores was carried out. Table 2 shows the pre-test scores of the experimental and the control group. The results indicate that the mean score for experimental group was 50.34 with a standard deviation of 10.92 and that of control group was 47.68 with a standard deviation of 11.18. The results also indicate that the difference between the achievement mean scores for experimental and control groups t(80) = 0.281 is not significant at the alpha level of 0.05. This, therefore, means that the experimental and control groups were at the same level of achievement at the start of the study. Table 3 shows the post-test achievement mean scores of the experimental and the control group. The results indicate that the mean score for experimental group was 56.18 and that of control group was 50.18. The results also indicate that the difference between the achievement mean scores for experimental and control groups t(80) = 0.031 is significant at the alpha level of 0.05. As shown in Table 4, the results indicate that the mean score for experimental group was 41.41 with a standard deviation of 6.82 and that of control group was 40.50 with a standard deviation of 7.19. The results also indicate that the difference between the attitude mean scores for experimental and control groups t(80) = 0.559 is not significant at the alpha level of 0.05. This, therefore, means that the experimental and control groups were at the same level of attitude at the start of the study. Table 5 shows the post-test attitude mean scores of the experimental and the control group. The results indicate that the mean score for experimental group was 48.02 and that of control group was 41.68. The results also indicate that the difference between the attitude mean scores for experimental and control groups t(80) = 0.000 is significant at the alpha level of 0.05.
Table 1: Respondents’ profile Variables Gender Male Female Ethnic groups Iban Chinese Malay Others Parent Income
RM 2,000
Frequency 38 44 45 18 11 8 11 54 11 6
Percentage 46.3 53.7 54.9 21.9 13.4 9.8 13.4 65.9 13.4 7.3
Table 2: Pre-test achievement mean scores of the experimental and the control group Groups N Mean SD t-value df p-value Experimental 44 50.34 10.92 -1.086 80 0.281 Control 38 47.68 11.18 Table 3: Post-test achievement scores of the experimental and the control group Groups N Mean t-value df p-value Experimental 44 56.18 -2.189 80 0.031 Control 38 50.18 Table 4: Pre-test attitude mean control group Groups N Mean Experimental 44 41.41 Control 38 40.50
scores of the experimental and the SD 6.82 7.19
t-value -0.578
df 80
p-value 0.559
Table 5: Post-test attitude mean scores of the experimental and the control group Groups N Mean t-value df p-value Experimental 44 48.02 -4.801 80 0.000 Control 38 41.68
DISCUSSION Mathematics achievements: The results of this study indicate that the cooperative learning approach resulted in higher achievement than the traditional teaching approaches. The reason for the increase in students’ achievement could be caused by the students involvement in explaining and receiving explanation in which the concepts can be easily understood. Cooperative learning gives more space and opportunities for students to discuss, solve problems, create solutions, provide ideas and help each other. The results were also in line with previous studies, as reported by some researchers such as Tarim and Akdeniz (2008) and Nichols and Miller (1994). Traditional teaching methods are teacher based, therefore, less opportunity is given to students for discussion, problem solving, creating solutions and working with peers. Attitude towards mathematics: The results of this study also indicate that the cooperative learning approach increase attitude towards mathematics. This is probably because when students work in group they feel that they can depend on others for help and
commit 274 to user
perpustakaan.uns.ac.id
digilib.uns.ac.id
J. Social Sci., 6 (2): 272-275, 2010 therefore increase their confidence in solving mathematics problem. This may indirectly change their attitudes towards mathematics. Cooperative learning also emphasizes social interaction and relationships among groups of students in particular and among classmates in general. Cooperative learning actively involves students in the learning process. These findings are consistent with the findings of some previous researchers such as Ifamuyiwa and Akinsola (2008) and Brush (1997). CONCLUSION Student-centered approaches such as cooperative learning improve mathematics achievement and attitudes towards mathematics among students. Therefore, teachers in schools, especially teachers who teach mathematics need to be aware of the benefits and importance of cooperative learning and thus changing the practice of teacher-centered teaching methods to student-centered teaching methods. There are positive changes taking place when teachers change their teaching methods towards a more student-centered approach. Teachers need to master the mathematical content to be delivered and plan how to implement cooperative learning better. Cooperative learning should be employed especially STAD so that students can be help each other in small groups. Therefore, teachers are encouraged to practice these methods regularly and effectively. The results showed that cooperative learning could have a positive effect on the formation of a more positive attitude towards mathematics among students. However, attitude is something very abstract and subjective in detecting changes in the short term. This study only lasted for two weeks. This means that students are exposed to learning in a very short period. Therefore, research should take a longer time span so that the results of this study can be validated. ACKNOWLEDGEMENT The researcher has been supported generously by the Faculty of Education, University Kebangsaan Malaysia. The researchers would like to express their sincere appreciation for all of the support provided. REFERENCES Brush, T., 1997. The effects on student achievement and attitudes when using integrated learning system with cooperative pairs. Educ. Tech. Res. Dev., 45: 51-64. DOI: 10.1007/ BF02299612 Burns, M., 1990. The Math Solution: Using Groups of Four. In: Cooperative Learning in Mathematics, Davidson, N. (Ed.). Addison-Wesley, ISBN: 0201-23299-5, pp: 25.
Gregory, R.J., 2004. Psychological Testing: History, Principle and Application. 4th Edn., Allyn and Bacon, Boston, ISBN: 0-205-35472-6, pp: 86. Ifamuyiwa, S.A. and M.K. Akinsola, 2008. Improving senior secondary school students attitude towards mathematics through self and cooperativeinstructional strategies. Int. J. Math. Educ. Sci., Technol., 39: 569-585. DOI: 10.1080/00207390801986874 Isik, D. and K. Tarim, 2009. The effects of the cooperative learning method supported by multiple intelligence theory on Turkish elementary students mathematics achievement. Asia Pacific Educ. Rev., 10: 465-474. DOI: 10.1007/s12564-009-9049-5 Johnson, D.W. and R.T. Johnson, 1990. Using Cooperative Learning in Math. In: Cooperative Learning in Mathematics, Davidson. N. (Ed.). Addison-Wesley, ISBN: 0-201-23299-5, pp: 122. Keefe, J.W., 1997. Learning Style Theory and Practice. National Association of Secondary School Principals, Reston, ISBN: 0-882-201-X, pp: 25. Lau, P.N.K., P. Singh and T.Y. Hwa, 2009. Constructing mathematics in an interactive classroom context. Educ. Stud. Math., 72: 307-324. DOI: 10.1007/s10649-009-9196-y Nichols, J.D. and R.B. Miller, 1994. Cooperative learning and student motivation. Contem. Educ. Psychol., 19: 167-178. DOI: 1006/s10649-007-9088-y Posamentier, A.S., B.S. Smith and J. Stepelman, 2006. Teaching Secondary Mathematics: Techniques and Enrichment Units. 7th Edn., Pearson Education, New Jersey, ISBN: 0-13-118520-9, pp: 6. Sabri, A., 2006. Issues in Mathematics Education. Utusan Publications and Distributors, ISBN: 96761-1783-8, pp: 10. Shimazoe, J. and H. Aldrich, 2010. Group work can be gratifying: Understanding and overcoming resistance to cooperative learning. Coll. Teach., 58: 52-57. DOI: 10.1080/ 87567550903418594 Slavin, R.E., 1995. Cooperative Learning: Theory, Research and Practice. Allyn and Bacon, ISBN: 0205-15630-4, pp: 71. Tarim, K. and F. Akdeniz, 2008. The effects of cooperative learning on Turkish elementary students’ mathematics achievement and attitude towards mathematics using TAI and STAD methods. Educ. Stud. Math., 67: 77-91. Tarim, K., 2009. The effects of cooperative learning on preschoolers’ mathematics problem solving ability. Educ. Stud. Math., 72: 325-340. DOI: 10.1007/s10649-069-9197-x Wiersma, W., 2000. Research Methods in Education: An Introduction. 7th Edn., Allyn and Bacon, Massachussetts, ISBN: 0-205-15654-1, pp: 311.
commit 275 to user