PENENTUAN SOLUSI OPTIMAL DAN NILAI OPTIMAL ANALISIS PARAMETRIK TERHADAP OPTIMASI LINEAR
MUHAMAD AVENDI
DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014
iii
PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA* Dengan ini saya menyatakan bahwa skripsi berjudul Penentuan Solusi Optimal dan Nilai Optimal Analisis Parametrik Terhadap Optimasi Linear adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir diskripsi ini. Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor. Bogor, Januari 2014 Muhamad Avendi NIM G54090031
ABSTRAK MUHAMAD AVENDI. Penentuan Solusi Optimal dan Nilai Optimal Analisis Parametrik terhadap Optimasi Linear. Dibimbing oleh BIB PARUHUM SILALAHI dan MUHAMMAD ILYAS. Optimasi adalah suatu ilmu dari matematika terapan yang mempelajari masalah-masalah yang bertujuan mencari nilai minimum atau maksimum dari suatu fungsi yang memenuhi kendala-kendala. Sedangkan optimasi linear khusus mempelajari hal-hal yang berkaitan dengan meminimumkan atau memaksimumkan fungsi-fungsi linear dengan kendala-kendala yang juga linear. Parameter-parameter dalam model optimasi linear dapat mengalami perubahan. Oleh karena itu perlu menganalisis perubahan ini dengan menggunakan analisis parametrik. Analisis parametrik merupakan analisis yang berguna untuk memeriksa dampak dari perubahan parameter secara kontinu terhadap solusi optimal. Masalah analisis parametrik memperkenankan parameter terpilih atau diubah secara kontinu pada interval tertentu. Sifat-sifat dari analisis parametrik yaitu (1) nilai optimal fungsi berbentuk kontinu, konkaf/konveks dan piecewise linear, (2) pada suatu interval tertentu perubahan parameter tidak akan mengubah solusi optimalnya, (3) break point adalah suatu titik di mana solusi optimal akan berubah bila terjadi perubahan parameter dari sisi kiri break point ke sisi kanannya, dan (4) terdapat titik ekstrem yang juga merupakan break point. Kata kunci: Analisis Parametrik, break point, Interval Linear, Optimasi Linear.
ABSTRACT MUHAMAD AVENDI. Determination of Optimal Solution and Optimal Value of Parametric Analysis of Linear Optimization. Supervised by BIB PARUHUM SILALAHI and MUHAMMAD ILYAS. Optimization is a field of applied mathematics which studies problems to find the minimum or maximum value of a function that satisfies all of the constraints. Moreover, linear optimization studies a problem where its objective function is a linear function and all of its constraints are linear also. The parameters of a linear optimization problem may have a variation. Therefore, it is necessary to analyze this variation. The analysis of parametric is a useful analysis in studying the continuously effects of parameter variations to the optimal solution. Parametric analysis introduces optional parameters ( ) which are changed continually at a certain interval. The characteristics of parametric analysis are as follows; (1) the optimal-value function is continuous, concave/convex and piecewise linear, (2) at a certain interval, the variations of parameter does not effect the optimal solution, (3) break point is a point at which the optimal solution will have a variations if the parameter value change from the left side of the break point to the right side, and (4) there is an extreme point which is also a break point. Keywords: Parametric Analysis, break point, Linearity Interval, Linear Optimization.
v
PENENTUAN SOLUSI OPTIMAL DAN NILAI OPTIMAL ANALISIS PARAMETRIK TERHADAP OPTIMASI LINEAR
MUHAMAD AVENDI
Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains pada Departemen Matematika
DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014
vii
Judul Skripsi : Penentuan Solusi Optimal dan Nilai Optimal Analisis Parametrik Terhadap Optimasi Linear Nama : Muhamad Avendi NIM : G54090031
Disetujui oleh
Dr Ir Bib Paruhum Silalahi, MKom Pembimbing I
Diketahui oleh
Dr Toni Bakhtiar, MSc Ketua Departemen
Tanggal Lulus:
Muhammad Ilyas, MSi Pembimbing II
PRAKATA Puji dan syukur penulis panjatkan kepada Allah SWT atas segala karuniaNya sehingga karya ilmiah ini berhasil diselesaikan. Karya ilmiah ini mulai dikerjakan oleh penulis sejak bulan Januari 2013. Judul karya ilmiah ini adalah Penentuan Solusi Optimal dan Nilai Optimal Analisis Parametrik terhadap Optimasi Linear. Terima kasih penulis ucapkan kepada Bapak Dr Ir Bib Paruhum Silalahi, MKom. dan Bapak Muhammad Ilyas, MSi selaku dosen pembimbing, serta Bapak Drs Prapto Tri Supriyo, MKom selaku dosen penguji yang telah banyak memberi saran. Di samping itu, terima kasih kepada seluruh dosen dan staf Departemen Matematika atas segala ilmu yang diberikan dan bantuannya selama masa perkuliahan. Ungkapan terima kasih juga disampaikan kepada kedua orang tua yakni Ayah Supendi dan Ibu Manzilah (Alm), kakak dan adik-adikku yakni Kak Eka, Ridwan, Nabila, Diana dan Faraby serta seluruh keluarga besar, atas segala dukungan, doa dan kasih sayangnya. Tak lupa ucapan terima kasih untuk sahabat Matematika 46 yakni Galih, Aldi (dio), Adit, Mirna, Rohmat, Qowi dan lainnya, kakak dan adik kelas, sahabat SMA yakni Andika, teman kos Badoneng Ceria yakni Fahmi, Arif, Suhe dan Karim serta seluruh pihak yang telah mendukung dan mendoakan penulis hingga terselesaikannya karya ilmiah ini. Mohon maaf karena penulis tidak dapat menyebutkannya satu per satu. Semoga karya ilmiah ini bermanfaat. Bogor, Januari 2014 Muhamad Avendi
ix
DAFTAR ISI DAFTAR GAMBAR
vi
DAFTAR LAMPIRAN
vi
PENDAHULUAN
1
Latar Belakang
1
Tujuan Penelitian
2
TINJAUAN PUSTAKA
2
Sistem Persamaan Linear dan Matriks
2
Optimasi Linear
3
Fungsi Konveks dan Fungsi Konkaf
4
Analisis Parametrik
6
HASIL DAN PEMBAHASAN Nilai Optimal Fungsi Adalah Piecewise Linear
6 9
Set Optimal pada Interval Linear
11
Set Optimal di Break Point
14
Titik Ekstrem di Interval Linear
17
Prosedur Menentukan Semua Break Point dan Interval Linear
19
Contoh Aplikasi
22
SIMPULAN DAN SARAN
29
Simpulan
29
Saran
29
DAFTAR PUSTAKA
30
LAMPIRAN
31
RIWAYAT HIDUP
35
DAFTAR GAMBAR 1 2 3 4 5 6 7
Ilustrasi himpunan konveks dan bukan himpunan konveks Ilustrasi fungsi konveks Ilustrasi fungsi konkaf Nilai optimasi Nilai optimasi Hasil analisis untuk contoh aplikasi 1 Hasil analisis untuk contoh aplikasi 2
5 5 5 10 11 25 29
DAFTAR LAMPIRAN 1 Pembuktian domain dari adalah konveks 2 Pembuktian pelengkap dari domain dari garis real. 3 Pembuktian Lema 3 4 Algoritme Nilai Optimal Fungsi 5 Algoritme Nilai Optimal Fungsi
31 adalah
subset
terbuka 32 32
dan dan
33 34
PENDAHULUAN Latar Belakang Optimasi adalah suatu bidang dari matematika terapan yang mempelajari masalah-masalah yang bertujuan mencari nilai minimum atau maksimum suatu fungsi, dengan memenuhi kendala-kendala yang ada. Optimasi linear khusus mempelajari hal-hal yang berkaitan dengan meminimumkan atau memaksimumkan fungsi-fungsi linear, dengan kendala yang juga linear (berupa persamaan atau pertidaksamaan). Dalam pemodelan optimasi linear, setiap parameter yang digunakan dalam model diasumsikan nilainya diketahui dengan pasti. Parameter-parameter ini terdiri dari koefisien nilai ruas kanan ( ) dan koefisien fungsi tujuan . Pada kenyataannya, parameter-parameter tersebut kebanyakan adalah hasil perkiraan pengambil keputusan yang dapat mengalami perubahan karena faktor-faktor tertentu. Faktor-faktor yang menyebabkan perubahan-perubahan parameter ini, umumnya merupakan faktor yang berada di luar kendali para pengambil keputusan. Faktor-faktor tersebut seperti situasi ekonomi, bencana alam, dan lain sebagainya. Misalnya, apabila situasi ekonomi mengalami krisis, hal tersebut dapat menyebabkan terjadinya perubahan pada parameter-parameter koefisien fungsi tujuan. Demikian juga halnya dengan bencana alam, dapat menyebabkan terjadinya perubahan pada parameter-parameter nilai ruas kanan. Pada saat terjadi perubahan, parameter-parameter mungkin ada yang sensitif terhadap perubahan. Artinya ada parameter-parameter yang bila nilainya berubah, solusi optimalnya berubah. Sementara itu terdapat juga parameter yang meskipun nilainya berubah, namun tidak mempengaruhi solusi optimal. Oleh karena itu perlu menganalisis perubahan ini dengan menggunakan analisis sensitivitas. Analisis sensitivitas merupakan analisis yang dilakukan untuk mengetahui pengaruh perubahan yang terjadi pada parameter-parameter model optimasi linear terhadap solusi optimal yang telah dicapai (Lestaurika 2007). Roos et al. (2006) menggunakan analisis parametrik sebagai bentuk lain dari analisis sensitivitas. Analisis parametrik merupakan analisis sensitivitas sistematis karena perubahan parameter terjadi secara kontinu. Oleh karena itu, analisis parametrik merupakan analisis sensitivitas lanjutan yang sangat berguna untuk memeriksa dampak dari hubungan parameter-parameter yang berubah secara kontinu dan bersamaan. Pada tugas akhir ini, penulis meneliti interval yang diizinkan dari perubahan parameter-parameter tersebut hingga solusi tetap optimal. Pada karya ilmiah ini akan dibahas penentuan solusi optimal dan nilai optimal analisis parametrik terhadap optimasi linear, dengan rujukan utama adalah Roos et al. (2006) yang berjudul Interior Point Methods for Linear Optimization.
2 Tujuan Penelitian Tujuan dari karya ilmiah ini ialah sebagai berikut: 1 menjelaskan dan mengonstruksi kembali analisis parametrik, 2 menganalisis perubahan parameter yakni koefisien dari fungsi tujuan dan/atau nilai ruas kanan kendala terhadap solusi optimal, dengan sifatsifat analisis parametrik.
TINJAUAN PUSTAKA Pada bab ini akan dijelaskan mengenai definisi dari berbagai istilah terkait analisis parametrik yang akan digunakan pada bab hasil dan pembahasan, seperti sistem persamaan linear, matriks, optimasi linear, fungsi konveks dan fungsi konkaf yang juga akan dilengkapi dengan contohnya.
Sistem Persamaan Linear dan Matriks Berikut ini akan dibahas definisi SPL dan matriks. Suatu persamaan linear dalam N variabel dinyatakan sebagai berikut dengan dan b adalah bilangan-bilangan real dan adalah variabel (Leon 1998). Persamaan linear tersebut disebut sebagai hiperbidang pada (Anton & Rorres 2005). Suatu sistem persamaan ruang Euclid berdimensi , linear (SPL) dari persamaan dalam variabel adalah suatu sistem berbentuk
dan adalah bilangan bilangan real dan adalah variabel. SPL tersebut disebut sebagai SPL berukuran (Leon 1998). Penyelesaian SPL berukuran adalah sebuah vektor
dengan
berukuran
], yang memenuhi semua persamaan linear dalam
[
, yaitu
sistem. Vektor yang demikian disebut sebagai vektor penyelesaian. SPL berukuran tersebut dapat ditulis dalam bentuk dengan vektor-vektor kolom dan (maisng-masing berukuran ) adalah [
]
Selain itu, SPL berukuran
[
]
(Anton & Rorres 2005).
tersebut juga dapat ditulis dalam bentuk
3 dengan matriks A, vektor kolom dan vektor kolom b (masing-masing berturutturut berukuran , dan ) adalah
[
],
[
],
[
].
Matriks A disebut matriks koefisien, sedangkan vektor kolom b disebut sebagai vektor konstanta. Suatu SPL dikatakan konsisten jika mempunyai paling sedikit satu penyelesaiaan, sedangkan suatu SPL yang tidak mempunyai penyelesaiaan dikatakan takkonsisten (Leon 1998). Matriks identitas adalah matriks yang berukuran , dengan { Suatu matriks A yang berorde dikatakan tak singular jika terdapat matriks B sehingga AB=BA=I. Matriks B dikatakan invers multiplikatif dari matriks A. Invers multiplikatif dari matriks taksingular A secara sederhana disebut juga sebagai invers dari matriks A dan dinotasikan dengan . Transpos dari suatu adalah matriks yang matriks yang berukuran berukuran yang terdefinisi oleh untuk setiap i dan j. Transpos dari A dinotasikan oleh
(Leon 1998).
Optimasi Linear Berikut ini akan dibahas mengenai definisi optimasi, optimasi linear, daerah fisibel, solusi fisibel, dan solusi optimum. Optimasi adalah suatu bidang dari matematika terapan yang mempelajari masalah-masalah yang bertujuan mencari nilai minimum atau maksimum suatu fungsi, dengan memenuhi kendalakendala yang ada. Optimasi Linear (OL) khusus mempelajari hal-hal yang berkaitan dengan meminimumkan atau memaksimumkan fungsi-fungsi linear, dengan kendala yang juga linear (berupa persamaan atau pertidaksamaan). Misalkan menyatakan suatu fungsi dalam variable-variabel . Fungsi dikatakan linear jika dan hanya jika untuk suatu himpunan konstanta , = (Winston 2004.) Sebagai contoh merupakan fungsi linear, sedangkan bukan fungsi linear. Jika f fungsi linear dan d konstanta, maka merupakan persamaan linear. Untuk sembarang fungsi linear dan sembarang bilangan d, pertidaksamaan dan adalah pertidaksamaan linear (Winston 2004). Solusi optimasi linear mempunyai bentuk standar seperti yang didefinisikan sebagai berikut. Masalah optimasi linear dalam bentuk standar diberikan sebagai berikut } min{ dengan vektor , serta adalah matriks berpangkat baris penuh. Masalah disebut masalah primal.
4 diberikan sebagai berikut Masalah dual dari masalah primal }, max { dengan dan . Masalah disebut masalah dual. adalah notasi dari nilai optimal dan . Daerah fisibel dari masalah didefinisikan sebagai { } sedangkan daerah fisibel dari didefinisikan sebagai { } (Roos et al. 2006). Daerah fisibel optimasi linear adalah daerah yang memenuhi semua kendala pada optimasi linear. Suatu solusi disebut fisibel jika memenuhi semua kendala pada optimasi linear (Nash & Sofer 1996). Solusi Basis Solusi dari suatu optimasi linear disebut solusi basis jika memenuhi syarat berikut: Solusi tersebut memenuhi kendala pada optimasi linear, 1 2 Kolom-kolom dari matriks kendala yang berpadanan dengan komponen taknol dari solusi tersebut adalah bebas linear. Solusi dari suatu optimasi linear disebut solusi basis jika memenuhi . Vektor disebut solusi basis fisibel jika merupakan solusi (Nash & Sofer 1996). basis dan Pada masalah maksimisasi, solusi optimum suatu optimasi linear adalah suatu titik dalam daerah fisibel dengan nilai fungsi objektif terbesar. Pada masalah minimisasi, solusi optimum suatu optimasi linear adalah suatu titik dalam daerah fisibel dengan nilai fungsi objektif terkecil (Winston 2004). Dalam (Roos et al. 2006) setiap sistem persamaan linear dan pertaksamaan linear yang memenuhi kondisi titik interior jika ada solusi fisibel yang memenuhi semua kendala ketaksamaan dalam sistem.
Fungsi Konveks dan Fungsi Konkaf Berikut ini akan dibahas mengenai definisi himpunan konveks, fungsi konkaf, fungsi konkaf serta ilustrasinya. Sebelum membahas fungsi konveks dan konkaf, sebaiknya terlebih dahulu dibahas himpunan konveks yang didefinisikan sebagai berikut. Misalkan S menyatakan himpunan titik. Himpunan S adalah himpunan konveks jika segmen garis yang menghubungkan sembarang titik-titik dalam S seluruhnya termuat dalam S, atau dengan perkataan lain himpunan dikatakan himpunan konveks jika untuk setiap dan untuk setiap [ ] berlaku Ilustrasi himpunan konveks dan bukan konveks diberikan pada Gambar 1 berikut (Maulana 2009).
5
Gambar 1 Ilustrasi himpunan konveks dan bukan himpunan konveks Pada Gambar 1, lingkaran (i) dan persegi panjang (ii) merupakan himpunan konveks, sedangkan bidang (iii) dan cincin (iv) bukan himpunan konveks. Dalam (Bazaraa et al. 1993), dimisalkan . Maka ∑ dengan ∑ dan untuk disebut kombinasi konveks dari . Konsep fungsi konveks dan fungsi konkaf yang digunakan pada karya ilmiah ini meliputi definisi-definisi berikut ini. Misalkan , dengan S himpunan konveks yang takkosong di . Fungsi f dikatakan konveks di S jika untuk setiap Ilustrasi:
dan untuk setiap
[
]
Gambar 2 Ilustrasi fungsi konveks Misalkan , dengan S himpunan konveks yang takkosong di dikatakan konkaf di S jika untuk setiap Ilustrasi:
dan untuk setiap
[
. Fungsi f
] (Peressini et al. 1988).
Gambar 3 Ilustrasi fungsi konkaf
6 Analisis Parametrik Berikut ini akan dibahas mengenai definisi analisis parametrik dan sifat sifat analisis parametrik. Analisis parametrik merupakan analisis sensitivitas sistematis karena perubahan parameter terjadi secara kontinu. Oleh karena itu, analisis parametrik merupakan analisis sensitivitas lanjutan yang sangat berguna untuk memeriksa dampak dari hubungan parameter-parameter yang berubah secara kontinu dan bersamaan (Lestaurika 2007). Dalam buku yang ditulis Roos C, Terlaky T, dan Vial J-Ph tahun 2006 dimodelkan hasilnya sifat-sifat dari analisis parametrik yaitu (1) nilai optimal fungsi dengan adanya perubahan parameterparameter pada koefisien fungsi tujuan dan nilai ruas kanan pada masalah optimasi linear adalah kontinu, konkaf/konveks dan piecewise linear, (2) pada suatu interval tertentu perubahan parameter tidak akan mengubah solusi optimalnya, (3) break point adalah suatu titik di mana solusi optimal akan berubah bila terjadi perubahan parameter dari sisi kiri break point ke sisi kanannya, dan (4) terdapat titik ektrem yang juga merupakan break point. Untuk lebih lanjut mengenai sifat-sifat tersebut akan dibahas di Bab Hasil dan Pembahasan. Proposisi 1 (Dualitas Lemah) dan adalah solusi fisibel Misalkan adalah solusi fisibel untuk untuk maka . disebut kesenjangan dualitas. Akibatnya, adalah batas atas untuk nilai optimal dari , jika ada, serta adalah batas bawah untuk nilai optimal dari , jika ada. Selanjutnya, jika dan kesenjangan dualitas adalah nol maka adalah solusi optimal dari adalah solusi optimal dari (Roos et al. 2006). Teorema 1.1 (Dualitas) Jika dan fisibel maka kedua masalah tersebut mempunyai solusi optimal; kemudian, dan adalah solusi optimal jika dan hanya jika . Jika tak satu pun dari dua masalah memiliki solusi optimal, maka keduanya dan tidak fisibel atau salah satu dari dua masalah adalah tidak fisibel dan yang lain tak terbatas (Roos et al. 2006). Teorema 1.2 (Goldman-Tucker) Jika dan fisibel maka terdapat solusi optimal dengan strictly complementary (pelengkap yang kuat), yaitu suatu pasangan solusi optimal dengan (Roos et al. 2006).
HASIL DAN PEMBAHASAN Dalam bab ini akan menyelidiki efek dari perubahan b dan c pada nilai optimal fungsi . Jadi kita akan mempelajari nilai optimal fungsi yang dapat ditulis sebagai berikut.
7 sebagai fungsi dari parameter dan , dan dan adalah vektor perturbasi (pengganggu), vektor b dan c adalah tetap. Karya ilmiah ini mempelajari tentang kasus-kasus variasi yang hanya terjadi pada salah satu dari dua vektor b dan c. Ini berarti, jika kita mengambil maka akan diperhatikan variasi dari demikian pula sebaliknya, jika kita mengambil maka akan diperhatikan variasi dari . adalah notasi perturbasi untuk masalah primal dengan dan ( ) untuk masalah dualnya. Daerah fisibel pada kedua masalah diatas dilambangkan dengan dan . Sebaliknya juga, adalah notasi perturbasi untuk masalah dan ( ) untuk masalah primalnya serta daerah fisibel pada dual dengan masalah diatas dilambangkan dengan dan . Perhatikan bahwa daerah fisibel adalah hanya dan daerah fisibel ( ) hanya . Asumsi yang diberikan bahwa b dan c sedemikian rupa sehingga (P) dan (D) keduanya fisibel. Oleh karena itu, adalah didefinisikan ada dan terbatas. Selanjutnya notasi berikut akan diperkenankan ( ) Disini domain dari parameter dan diambil sebesar mungkin dengan memperhatikan domain Jika ada maka fungsi ini terdefinisi. Perhatikan bahwa, ketika bervariasi maka daerah fisibel ( ) adalah konstan, dan karena diasumsikan bahwa ( ) fisibel untuk , berarti ( ) fisibel untuk setiap nilai . Oleh karena itu, didefinisikan jika masalah dual ( ) memiliki solusi optimal dan tidak didefinisikan (atau tak terhingga) jika masalah dual didefinisikan ( ) tak terbatas. Dengan Teorema Dualitas ini berarti bahwa jika dan hanya jika masalah primal ( ) fisibel. Dengan cara yang sama dapat dipahami bahwa domain dari terdiri dari semua yang ( ) fisibel dan ( ) dibatasi. Lema 1 Domain dari dan
adalah konveks.
Bukti: Akan dibuktikan untuk domain dari adalah konveks. Untuk bukti ada di Lampiran 1. Diberikan , dom dan < < . Kemudian dan adalah terbatas, ini berarti bahwa dan tidak kosong. Diberikan dan . Kemudian dan adalah nonnegatif dan Sekarang perhatikan
8 Perhatikan bahwa adalah kombinasi konveks dari adalah nonnegatif maka akan ditunjukkan bahwa dengan sehingga mengakibatkan
dengan mengalikan matriks
dan dan karena Dengan mengurangkan
dengan persamaan (2) sehingga
ini membuktikan bahwa ( ) adalah fisibel dan karenanya dom Domain dari dan dalam interval sebenarnya ditutup pada garis real. ini mengikuti dari lema di atas, dan fakta bahwa pelengkap dari domain dari dan adalah subset terbuka dari garis real. Pernyataan terakhir adalah isi dari lema berikutnya. Lema 2 Pelengkap dari domain dan
adalah subset terbuka pada garis real.
Bukti: Seperti dalam pembuktian sebelumnya, untuk bukti pelengkap dari domain adalah subset terbuka dan pada garis real terdapat di Lampiran 2 karena mirip dengan bukti untuk . Kita cukup menunjukkan bahwa pelengkap dari dom adalah terbuka. Diberikan dom . Ini berarti bahwa ( ) adalah takterbatas. Hal tersebut setara dengan keberadaan vektor sedemikian rupa sehingga sebagai variabel, di Dengan menetapkan z dan mempertimbangkan mana himpunan semua yang memenuhi ketidaksetaraan secara sempurna adalah interval terbuka. Untuk semua dalam interval ini ( ) takterbatas. Oleh karena itu, pelengkap dari domain dari adalah terbuka. Suatu dampak dari dua lema terakhir adalah teorema berikutnya, yang tidak memerlukan bukti lebih . Teorema 2 Domain dari
dan
adalah interval tertutup pada garis real.
Diberikan Contoh 1 yang mengacu pada Lema 2 dan Teorema 2 berikut ini. Contoh 1 Tentukan
dengan masalah
{ } Dalam kasus ini b = (0, 1) dan c = (1). Perhatikan bahwa (D) adalah daerah fisibel dan dibatasi. Set dari semua solusi yang optimal terdiri dari setiap ( , 1)
9 dengan . Sekarang mari kita lihat dan mempertimbangkan sebagaimana efek mengganti b dengan , dan membiarkan dijelaskan di atas. Kemudian, { } dengan mudah untuk memverifikasi bahwa masalah perturbasi adalah tak terbatas untuk semua taknol. Karenanya domain dari adalah himpunan singleton yakni {0}. Selanjutnya akan dibahas tentang sifat-sifat dari analisis parametrik yaitu nilai optimal fungsi adalah piecewise linear, set optimal pada interval linear, set optimal di break point, dan titik ekstrem di interval linear. Keempat sifat-sifat tersebut disajikan pula teorema, lema, dan corollary beserta buktinya yang mendukung. Pada subbab terakhir akan disajikan prosedur mencari break point dan interval linear serta contoh aplikasi.
Nilai Optimal Fungsi Adalah Piecewise Linear Dalam subbab ini akan ditunjukkan bahwa fungsi . piecewise linear pada domainnya. Kita mulai dengan
dan
Teorema 3 adalah kontinu, konkaf dan piecewise linear. Bukti: Menurut definisi, { } Untuk setiap dicapai nilai minimum pada solusi sentral dari masalah perturbasi ( ). Solusi ini secara unik ditentukan oleh partisi optimal ( ). Karena jumlah partisi dari himpunan indeks penuh, { } adalah terbatas maka dapat dituliskan { } di mana T adalah subset terbatas dari P. Untuk setiap x T yang merupakan fungsi linear dari . Karena adalah minimum dari satu set fungsi linear terbatas maka adalah kontinu, konkaf dan piecewise linear. Selanjutnya akan ditunjukkan bahwa fungsi piecewise linear pada domainnya yang disajikan dalam Teorema 4 berikut ini. Teorema 4 adalah kontinu, konveks dan piecewise linear. Bukti: Buktinya dengan cara yang sama seperti Teorema 3. Menurut definisi, } { Untuk setiap β yang nilai maksimum dicapai pada solusi pusat dari ( ). Sekarang secara unik ditentukan oleh partisi optimal ( ) dan yang konstan untuk semua yang optimal. Mengaitkan salah satu khususnya
10 dengan setiap kemungkinan slack didapatkan di mana S adalah subset terbatas dari
yang muncul timbul dalam cara ini { } . Untuk setiap y , kita memiliki
merupakan fungsi linear dari . Hal ini menjelaskan bahwa adalah maksimum set terbatas dari fungsi linear. Oleh karena itu, adalah kontinu, konveks dan piecewise linear, seperti yang dibutuhkan. dari disebut break Perubahan kemiringan nilai optimal fungsi points dari dan setiap interval antara dua break point secara berturut-turut disebut linearity interval (interval linear) dari . Dengan cara yang sama kita mendefinisikan break point dan interval linear untuk . Berikut ini diberikan Contoh 2 yang mengacu pada Teorema 3. Contoh 2 Untuk seti p γ
Dalam hal ini
mempertimbangkan masalah ( ) didefinisikan oleh ( ) adalah konstan dan vektor perturbasi untuk c = (1, 3, 1) adalah
Masalah Dualnya { ( ) Dari sini dijelaslah bahwa nilai optimal diberikan oleh Grafik dari nilai optimal fungsi bahwa
}
digambarkan pada Gambar 4. Perhatikan
Gambar 4 Nilai optimal fungsi adalah piecewise linear dan konkaf. Break point dari dan
terjadi pada
11 Berikut ini diberikan Contoh 3 yang mengacu pada Teorema 4. Contoh 3 Untuk setiap ( )
mempertimbangkan masalah ( {
) didefinisikan oleh }
Dalam hal ini b adalah konstan dan vektor perturbasi untuk adalah Masalah Dualnya (
) {
}
Setara dengan
{ } Dengan misalkan variabel baru yakni , sehingga menjadi { } dapat ditulis kembali { } Dari sini dijelaslah bahwa nilai optimal diberikan oleh Grafik dari nilai optimal fungsi
digambarkan pada Gambar 4.
Gambar 5 Nilai optimal fungsi dan
adalah piecewise linear dan konveks. Break point dari .
terjadi pada
Set Optimal pada Interval Linear Untuk setiap di domain optimal ( ) oleh .
kita notasikan set optimal (
Teorema 5 Jika adalah linear pada interval [ , optimal dualnya adalah konstan untuk ( ,
], di mana ).
) oleh
<
dan set
maka set
12 Bukti:
Ambil ̅ ( , ) sembarang dan ̅ optimal untuk ̅ kita memiliki
̅
sembarang. Karena ̅ adalah
( ) ( ) dan, saat ̅ adalah masalah dual yang fisibel untuk semua β,
Diperoleh
Fungsi
( ) ( ) ( ) ( ) berbentuk linear pada [ , ] akan mengakibatkan ( ) ( )
Dengan menggunakan aturan
̅
̅
dan ( )
dapat mengakibatkan
( )
Oleh karena itu, persamaan (11) berubah menjadi pertidaksamaan (12), dan kemiringan pada interval tertutup [ , ] pada . Ini berarti bahwa turunan terhadap pada interval terbuka ( , ) memenuhi ( ̅) Hal tersebut sama artinya dengan, Dapat disimpulkan bahwa optimal untuk setiap Karena adalah sembarang di dapat dikatakan bahwa Karena ̅ adalah sembarang di interval terbuka untuk setiap ̃ , maka dapat dibuat
dengan
.
, argumen di atas berlaku
̃
Sehingga dapat disimpulkan bahwa
dan
̃
, maka
̃.
Bukti di atas menyatakan bahwa harus memiliki nilai yang sama untuk setiap dan setiap dapat dinyatakan sebagai berikut. Corollary 5.1 Menurut hipotesis dari Teorema 5, Dengan kontinuitas dapat ditulis Dapat menyiratkan konsekuensi lainnya. Corollary 5.2 Berdasarkan hipotesis dari Teorema 5 , kemudian
untuk perubahan
Dalam hasil selanjutnya dapat sepakati dengan kebalikan dari implikasi dari Teorema 5 disajikan dalam Teorema 6 berikut ini.
13 Teorema 6 Misalkan dan sedemikian rupa sehingga . konstan untuk setiap dan linear pada interval Kemudian [ ]. Bukti: . Kemudian
Misalkan Pertimbangkan fungsi h linear:
̅ Kemudian bertepatan dengan f di mengakibatkan
̅ [ ] . Karena konveks dapat
dan
[ ] Jadi fisibel untuk setiap [ ]. Karena adalah nilai optimal dari , ̅ ̅ Oleh karena itu, yang bertepatan dengan di [ ]. Berakibat, linear di [ ] dan ̅ optimal untuk , bila [ ] . Karena ̅ sembarang di berakibat pada subset dari untuk setiap . Berdasarkan Teorema 5 dan Corollary 5.2 juga memiliki pernyataan sebaliknya adalah konstan. (inklusi converse). Set optimal dual di Selanjutnya akan ditunjukkan bahwa untuk setiap di domain kita notasikan set optimal ( ) oleh dan set optimal ( ) oleh , disajikan dalam Teorema 7, Corollary 7.1, dan Corollary 7.2 berikut ini. Teorema 7 Jika optimal primal
adalah linear pada interval [ adalah konstan untuk
], di mana .
, maka set
Bukti: lihat Roos et al. 2006 Corollary 7.1 Berdasarkan hipotesis dari Teorema 7, ( ) Corollary 7.2 Berdasarkan hipotesis dari Teorema 7 ( (
). Maka
(
)
(
)
untuk sembarang
)
Dalam hasil selanjutnya dapat sepakati dengan kebalikan dari implikasi pada Teorema 7 yang disajikan dalam Teorema 8 berikut ini. Teorema 8 Misalkan dan sedemikian rupa sehingga . Kemudian adalah konstan untuk setiap [ ] dan adalah linear pada interval [ ].
14 Bukti: lihat Roos et al. 2006. Diberikan Contoh 4 yang mengacu pada Teorema 7 berikut ini. Contoh 4 Dengan menggunakan masalah yang sama dengan Contoh 2 untuk setiap , masalah ( ) didefinisikan sebagai berikut ( ) Kendala Masalah Dual } { ( ) Didapat vektor perturbasi untuk adalah Pada masalah ini didapatkan break point terjadi pada dan dan Gambar 4 menerangkan bahwa adalah linear pada interval [ ]. Sehingga kita mengambil , di mana yang diambil yakni , dan . menjadi Misalkan , sehingga , Setara dengan Masalah ini adalah masalah minimisasi maka solusi optimal yang didapat yakni . menjadi Misalkan , sehingga , Setara dengan Masalah ini adalah masalah minimisasi maka solusi optimal yang didapat yakni . Misalkan , sehingga menjadi , Setara dengan Masalah ini adalah masalah minimisasi maka solusi optimal yang didapat yakni . Sehingga dapat disimpulkan bahwa set optimal primal adalah konstan untuk .
Set Optimal di break point Kembali ke fungsi pada bagian sebelumnya, jika bukan break point maka banyaknya konstan untuk setiap . Jika domain memiliki titik ekstrem dari kanan maka dapat dipertimbangkan turunan kanan pada titik yang menjadi , dan jika domain dari memiliki titik ekstrem dari kiri turunan kiri pada saat diambil . Kemudian adalah break point jika dan hanya jika turunan kanan dan kiri di berbeda. Ini mengikuti dari definisi break
15 point. Dinotasikan turunan kiri dan kanan yakni dan dari mengimplikasikan bahwa pada break point dapat di tulis
. Konveksitas
Lema 3 Misalkan , dan memiliki interior pada dom seperti yang memiliki interval linear terbuka hanya di sebelah kanan dan ke interval Selain itu, dan linear terbuka hanya di sebelah kiri kemudian } { {
}
Bukti: lihat Lampiran 3 Berdasarkan Lema 3, akan menjadi bentuk umum yang baik jika berlaku adalah titik ekstrem pada domain sehingga dapat disajikan dalam Teorema 9 berikut ini. Teorema 9 Misalkan dom turunan pada β didefinisikan
dan
akan ada solusi optimal dari
. Kemudian
{
}
{
}
Bukti: lihat Roos et al. 2006 Corollary 9.1 β bukan ekstrem break point dari f dan lema 3 sehingga menjadi
dan
didefinisikan dalam
Corollary 9.2 { {
} }
Corollary 9.3
Dengan menganalogikan dual dari Lema 3 dan Teorema 9 sehingga dapat disajikan dalam Lema 4 berikut ini. Lema 4 Misalkan , dan memiliki interior pada dom( ), hanya interval linear terbuka sebelah kanan, dan hanya interval linear terbuka sebelah kiri. Selain itu, dan . Kemudian menjadi
16 { {
} }
Bukti: lihat Roos et al. 2006 Berdasarkan Lema 4 diatas, akan menjadi bentuk umum yang baik jika berlaku adalah titik ekstrem pada domain sehingga dapat disajikan dalam Teorema 10 berikut ini. Teorema 10 Misalkan Kemudian turunan pada
dan didefinisikan {
akan ada solusi optimal dari
{
.
} }
Bukti: lihat Roos et al. 2006 Corollary 10.1 Misalkan bukan ekstrem break point dari didefinisikan dalam lema 4 sehingga menjadi
dan
dan
Corollary 10.2 { {
} }
Corollary 10.3
Diberikan Contoh 5 yang mengacu pada Lema 4 dan Teorema 10 berikut ini. Contoh 5 Dengan menggunakan masalah yang sama dengan Contoh 2 untuk setiap , masalah ( ) didefinisikan sebagai berikut ( ) Kendala Masalah Dual { } ( ) Didapat vektor perturbasi untuk adalah Grafik digambarkan dalam Gambar 4, break point pada terjadi pada dan Untuk solusi optimal pada ( ) adalah serta . Pada break point set solusi optimal primal dapat diberikan sebagai berikut { } Nilai ekstrem pada set ini adalah 2 dan 0. Nilai maksimal yang terjadi untuk dan nilai minimal untuk . Oleh sebab itu,
17 turunan kiri dan kanan pada diberikan nilainya. Jika maka solusi optimal masalah primal diberikan dan , sehinnga set solusi turunan dari adalah 0 untuk wilayah ini. Pada break point optimal primal dapat diberikan sebagai berikut { } Nilai ekstrem pada set ini adalah dan . Turunan kiri dan kanan pada diberikan nilainya. Nilai maksimal yang terjadi untuk dan nilai minimal untuk . Pada contoh ini, solusi optimal primal didapatkan untuk setiap break point yang berdimensi satu, serta interval linear terbuka pada solusi optimalnya selalu unik.
Titik Ekstrem di Interval Linear Di bagian ini, asumsi yang digunakan yakni ̅ memiliki interior interval linear [ ]. Diberikan solusi optimal akan ditunjukan bagaimana titik ekstrem dan dari interval linear yang mengandung ̅ dapat ditentukan dengan memecahkan dua masalah Linear Optimasi tambahan. Teorema 11 Misalkan ̅ sembarang dan ( Titik ekstrem dari interval linear [ berikut { {
) akan menjadi solusi optimal dari ( ̅ ). ] mengandung ̅ dapat ditulis sebagai } }
Bukti: lihat Roos et al. 2006 Selanjutnya akan ditunjukkan bahwa ̅ menjadi break point dan ( akan menjadi pelengkap solusi optimal dari ( ̅ ).
)
Teorema 12 Misalkan ̅ menjadi break point dan ( ) akan menjadi pelengkap solusi optimal dari ( ̅ ). Kemudian dan yang diberikan pada Teorema 11 ̅ didapat Bukti: lihat Roos et al. 2006 Selanjutnya, asumsi yang digunakan yakni ̅ memiliki interior interval linear [ ]. Diberikan solusi optimal akan ditunjukan bagaimana titik ekstrem dan dari interval linear yang mengandung ̅ dapat ditentukan dengan memecahkan dua masalah linear optimasi tambahan.
18 Teorema 13 Misalkan ̅ sembarang dan akan menjadi solusi optimal dari ( ̅ ). Titik ekstrem dari interval linear [ ] mengandung ̅ dapat ditulis sebagai berikut { } {
}
Bukti: lihat Roos et al. 2006 Selanjutnya akan ditunjukkan bahwa ̅ menjadi break point dan menjadi pelengkap solusi optimal dari ( ̅ ).
akan
Teorema 14 Misalkan ̅ menjadi break point dan akan menjadi pelengkap solusi optimal dari ( ̅ ). Kemudian dan diberikan pada Teorema 13 didapatkan ̅ Bukti: lihat Roos et al. 2006 Berikut ini diberikan Contoh 6 yang mengacu pada Teorema 13 dan Teorema 14. Contoh 6 Dengan menggunakan masalah yang sama dengan Contoh 5, dengan menggunakan notasi pada Teorema 13 langkah selanjutnya menentukan interval linear untuk ̅ . Dengan memverifikasi bahwa adalah optimal dan dari interval linear yang untuk ( ). Oleh karena itu titik ekstrem mengandung ̅ diikuti dengan meminimalkan dan memaksimalkan atas wilayahnya } { Kendala terakhir menyiratkan , sehingga mempengaruhi kendala lain untuk dan , dengan diberikan Oleh karena itu interval adalah [ ]. linear mengandung ̅ Ketika ̅ , adalah optimal pada ( ), dan interval linear mengandung ̅ dengan meminimalkan dan memaksimalkan di atas wilayah. { } Kendala terakhir menyiratkan , sehingga mempengaruhi kendala lain untuk γ dan γ , setara dengan Oleh karena itu interval linear mengandung ̅ adalah [ ] Ketika ̅ , adalah optimal pada , dan interval linear mengandung ̅ dengan meminimalkan dan memaksimalkan di atas wilayah. { } Kendala terakhir menyiratkan , sehingga mempengaruhi kendala lain untuk dan , setara dengan Oleh karena itu ] interval linear mengandung ̅ adalah [ Perhatikan bahwa interval linear dihitung sesuai dengan Gambar 4. Akhirnya dapat ditunjukkan penggunaan Teorema 14 pada break point.
19 Mengambil ̅ dapat dilihat bahwa adalah optimal untuk , dan diperlukan untuk meminimalkan dan memaksimalkan γ atas wilayah tersebut { } Kendala terakhir menyiratkan , sehingga mempengaruhi kendala lain untuk dan , setara dengan dan dapat ditemukan interval linear [ ] kiri dari 1. Ini karena juga optimal pada interval ini. Ingat dari Contoh 4 bahwa set optimal pada diberikan oleh { } Jadi, bukannya solusi optimal sama baiknya bila menggunakan strictly complementary solution . Kemudian perlu meminimalkan dan memaksimalkan γ atas daerah { } Terakhir kendala sebesar , subsitusikan pada hasil Kendala ketiga atau . Karena diiriskan dengan kendala kedua didapatkan , dari . Dengan demikian, sesuai dengan Teorema 14.
Prosedur Menemukan Semua break point dan Interval Linear Dengan menggunakan hasil pada subbab sebelumnya, dalam bagian ini akan dijelaskan algoritme yang menghasilkan nilai optimal fungsi untuk perturbasi dimensi satu dari vektor b atau vektor c. Pertama-tama, perturbasi b yang berdimensi satu dengan kelipatan skalar dari vektor dengan menyatakan algoritme untuk perhitungan nilai optimal fungsi dan kemudian membuktikan bahwa algoritme dapat menemukan semua break point dan interval linear. Kemudian akan jelas bagaimana memperlakukan perturbasi dimensi satu c; dengan menyatakan algoritme yang sesuai dan hasil konvergensi tanpa bukti lebih lanjut. Teorema berikut menyatakan bahwa algoritme ini dapat menentukan break point dari yang berturut-turut pada garis real taknegatif, serta kemiringan dari pada interval linear secara berturut-turut. Teorema 15 Algoritme berakhir setelah jumlah iterasi terbatas. Jika adalah banyaknya iterasi pada saat terakhir maka adalah break point dari secara berturut-turut pada garis real taknegatif. Nilai optimal pada didapat dari dan kemiringan dari pada interval didapat dari Bukti: dalam iterasi pertama algoritme dimulai dengan langkah sebagai berikut Di mana adalah vektor slack dalam solusi optimal yang diberikan dari Masalah ini fisibel, karena (P) memiliki sebuah solusi optimal dan memenuhi kendala. Oleh sebab itu masalah tambahan pertama adalah takterbatas atau memiliki solusi optimal Menurut Teorema 11, yakni sama dengan titik ekstrem di sebelah kanan dari interval linear yang mengandung 0. Jika masalah tak terbatas (ketika )
20 maka adalah linear pada dan algoritme berhenti; dengan kata lain adalah break point pertama disebelah kanan dari 0. (perhatikan bahwa, apabila Hal ini tentu mengakibatkan jika 0 adalah break point dari f dan terjadi solusi dimulai adalah strictly complementary.) Jelas adalah primal fisibel pada dan , didapat adalah optimal untuk dengan mengasumsikan bahwa paruh kedua algoritme yang terjadi ketika masalah ini memiliki solusi optimal, algoritme dapat dilakukan dengan pemecahan masalah tambahan kedua } { Menurut Teorema 9 nilai maksimal sama dengan turunan dari kanan di . Jika masalah takterbatas maka adalah break point terbesar dari pada dan untuk Dalam masalah ini sudah selesai sehingga algoritme berhenti. Jika tidak, ketika masalah dibatasi, solusi optimal adalah sedemikian rupa sehingga adalah sama dengan kemiringan pada interval linear di sebelah kanan , hal ini berdasarkan Lema 3 Selain itu, akibat optimal dual pada interval terbuka linearitas sebelah dari Corollary 9.2, kanan . Oleh sebab itu, pada awal iterasi kedua adalah solusi optimal pada interval terbuka sebelah kanan break point pertama pada [ Dengan demikian, untuk memulai iterasi kedua dan selanjutnya seperti pada iterasi pertama. Karena setiap iterasi menghasilkan Interval linear, dan hanya memiliki banyak interval yang terbatas, maka algoritme berakhir setelah banyaknya iterasi yang terbatas. Berikut ini diberikan langkah-langkah untuk menemukan semua break point dan interval linear pada nilai optimasi fungsi dengan dan dalam buku (Roos et al. 2006). Untuk algoritme nilai optimasi fungsi secara lengkap dapat dilihat di Lampiran 4. Sebelum itu, akan diperkenalkan notasi-notasi untuk iterasi-iterasi yang adalah titik yang terletak pada daerah fisibel berurutan ini. Misalkan vektor masalah primal yang dihasilkan saat iterasi ke- . Vektor dan adalah titik yang terletak pada daerah fisibel masalah dual yang dihasilkan saat iterasi ke- . Algoritme atau langkah-langkah untuk mendapatkan break point, interval linear, solusi optimal dan nilai optimal adalah sebagai berikut.adalah sebagai berikut. Input Output
: Matriks , vektor untuk masalah primal, vektor untuk masalah dual, dan vektor . : Menemukan semua break point dan interval linear.
, vektor
Inisialisasi Misalkan solusi optimal dengan , , dan . Langkah 1. Hitung parameter pada solusi persamaan (29) jika Hitung parameter pada solusi persamaan (28) jika Langkah 2.
atau .
Selama masalah terbatas lanjut ke Langkah 3; selainnya, BERHENTI .
21 Langkah 3.
pada solusi persamaan (19) untuk Hitung pada solusi persamaan (18) untuk .
Langkah 4.
Selama masalah terbatas lanjut ke Langkah 5; selainnya, BERHENTI.
Langkah 5.
Perbarui solusi,
Selanjutnya
atau Hitung
, kembali ke Langkah 1 (Roos et al. 2006).
Ketika vektor c adalah perturbasi oleh kelipatan skalar dari untuk hal ini bertujuan untuk menemukan nilai optimal fungsi . Dengan mengetahui bahwa adalah konkaf. Hal tersebut menyebabkan masalah tambahan kedua di algoritme ini adalah masalah minimisasi. Teorema berikut menyatakan bahwa algoritme ini dapat menentukan break point dari yang berturut-turut pada garis real taknegatif, serta kemiringan dari pada interval linear secara berturut-turut. Teorema 16 Algoritme berakhir setelah jumlah iterasi terbatas. Jika K adalah adalah break point dari banyaknya iterasi pada saat terakhir maka secara berturut-turut pada garis real taknegatif. Nilai optimal pada didapat dari dan kemiringan dari pada interval didapat dari Bukti: seperti Teorema 15 Berikut ini diberikan langkah-langkah untuk menemukan semua break point dan interval linear pada nilai optimasi fungsi dengan dan dalam buku (Roos et al. 2006). Untuk algoritme nilai optimasi fungsi secara lengkap dapat dilihat di Lampiran 6. Sebelum itu, akan diperkenalkan notasi-notasi untuk iterasi-iterasi yang berurutan ini. Misalkan vektor adalah titik yang terletak pada daerah fisibel masalah primal yang dihasilkan saat iterasi ke- . Vektor adalah titik yang terletak pada daerah fisibel masalah dual yang dihasilkan saat iterasi ke- . Algoritme atau langkah-langkah untuk mendapatkan break point, interval linear, solusi optimal dan nilai optimal adalah sebagai berikut. Input
: Matriks , vektor
untuk masalah primal dan vektor Perturbasi
Output : Menemukan semua break point dan interval linear. Inisialisasi
Misalkan solusi optimal dengan
dan
.
22 Langkah 1.
Hitung parameter pada solusi persamaan (31) jika Hitung parameter pada solusi persamaan (30) jika
atau .
Langkah 2.
Selama masalah terbatas lanjut ke Langkah 3; selainnya, BERHENTI.
Langkah 3.
Hitung pada solusi persamaan (25) untuk pada solusi persamaan (24) untuk .
Langkah 4.
Selama masalah terbatas lanjut ke Langkah 5; selainnya, BERHENTI.
Langkah 5.
Perbarui solusi,
atau Hitung
, kembali ke Langkah 1 (Roos et al. 2006).
Selanjutnya
Contoh Aplikasi Selanjutnya akan dibahas mengenai dua contoh aplikasi dari analisis parametrik pada masalah optimasi linear yang diperoleh dengan menjalankan algoritme yang diperoleh dari corollary, lema, dan teorema yang dibuktikan dalam bab Hasil dan Pembahasan. Contoh Aplikasi 1 (Perubahan Parameter pada Koefisien Fungsi Tujuan) (P) { Dan masalah dualnya { (D) Didapatkan [
],
} } [ ],
[ ].
dengan vektor perturbasi yakni Sehingga dapat ditulis (P) { } Dan masalah dualnya { } (D) Dan menghitung interval linear dari Lema 4 dibutuhkan pengetahuan bahwa suatu solusi optimal primal untuk beberapa interval. Sehingga input pada Contoh Aplikasi 1 adalah
23 Kasus Nilai Optimal Fungsi Iterasi ke-1 Inisialisasi Langkah 1.
Misalkan solusi optimal dengan Hitung parameter {
dan
pada solusi persamaan (31)
. }
Dimulai dengan sebagai calon break point yang pertama serta nilai optimal pada saat break point ini adalah
Langkah 2.
Masalah terbatas maka lanjut ke Langkah 3.
Langkah 3.
Hitung {
pada solusi persamaan (25).
}
terlihat bahwa dan adalah minimal jika . Sehingga dapat ditemukan suatu solusi optimal untuk interval linear yang hanya di sebelah kanan pada dan kemiringan dari di interval ini.
Langkah 4.
Masalah terbatas maka lanjut ke Langkah 5.
Langkah 5.
Perbarui solusi optimal dengan dan . Lanjut ke langkah 2.
Iterasi ke-2 Langkah 1.
Hitung parameter {
pada solusi persamaan (31)
Dengan mudah kita lihat bahwa adalah optimal dengan dapat ditentukan calon break poin kedua dan nilai optimal
Langkah 2.
Masalah terbatas maka lanjut ke Langkah 3.
Langkah 3.
Hitung {
pada solusi persamaan (25).
,
} Sehingga
}
terlihat bahwa dan adalah minimal jika dan . Sehingga dapat ditemukan suatu solusi optimal untuk interval linear yang hanya di sebelah kanan pada dan kemiringan dari di interval ini. Langkah 4.
Masalah terbatas maka lanjut ke Langkah 5.
24 Langkah 5.
Iterasi ke-3 Langkah 1.
Perbarui solusi optimal dengan dan . Lanjut ke langkah 2.
Hitung parameter {
Perhatikan bahwa
Langkah 2.
{
,
pada solusi persamaan (31)
dan masalah menjadi setara dengan
} }
Masalah tidak terbatas maka BERHENTI.
Kasus Nilai Optimal Fungsi Iterasi ke-1 Inisialisasi Langkah 1. karena
Misalkan solusi optimal dengan Hitung parameter { ini setara dengan
dan
pada solusi persamaan (30)
{
. }
}
Dimulai sebagai calon break point pertama dan solusi optimal pada break point ini diberikan oleh
Langkah 2.
Masalah terbatas maka lanjut ke Langkah 3.
Langkah 3.
Hitung {
pada solusi persamaan (24).
}
terlihat bahwa dan adalah maksimal jika . Sehingga dapat ditemukan suatu solusi optimal untuk interval linear yang hanya di sebelah kiri pada dan kemiringan dari di interval ini.
Langkah 4.
Masalah terbatas maka lanjut ke Langkah 5.
Langkah 5.
Perbarui solusi optimal dengan dan . Lanjut ke langkah 1.
Iterasi ke-2 Langkah 1. karena
Hitung parameter { ini setara dengan
{
,
pada solusi persamaan (30)
}
}
25 Jadi calon break point kedua dan solusi optimal pada break point ini diberikan oleh
Langkah 2.
Masalah terbatas maka lanjut ke Langkah 3.
Langkah 3.
Hitung {
kasus ini setara dengan
pada solusi persamaan (24).
{
}
}
Karena adalah maksimal jika dan . Sehingga dapat ditentukan suatu solusi optimal untuk interval linear yang hanya disebelah kiri dan kemiringan dari g di interval ini.
Langkah 4.
Masalah terbatas maka lanjut ke Langkah 5.
Langkah 5.
Perbarui solusi optimal dengan dan . Lanjut ke langkah 1.
Iterasi ke-3 Langkah 1.
Hitung parameter {
perhatikan bahwa
Langkah 2.
{
,
pada solusi persamaan (31)
dan masalah menjadi seperti
} }
Masalah tidak terbatas maka BERHENTI.
Untuk melengkapi perhitungan nilai optimal fungsi dapat dilihat di Gambar 6.
Gambar 6 Hasil analisis
dari Contoh Aplikasi 1
pada contoh ini
26 Contoh Aplikasi 2 (Perubahan Parameter pada Koefisien Nilai Ruas Kanan) Diberikan masalah primal (P) { dan masalah dualnya (D) { Didapatkan [
],
} }. [ ],
[ ].
Di dapatkan vektor perturbasi b dengan kelipatan skalar yakni [
]
Sehingga dapat ditulis. (P) { (D) {
}
}.
Dengan menggunakan algoritme untuk menentukan break point dan interval linear dari Sehingga solusi optimal (P) dan (D) diketahui sebagai input. . Kasus Nilai Optimal Fungsi Iterasi ke-1 Inisialisasi dan Langkah 1.
Misalkan solusi optimal dengan . Hitung parameter {
pada solusi persamaan (29)
,
}
Dimulai dengan β sebagai calon break point yang pertama serta nilai optimal pada saat break point ini adalah
Langkah 2.
Masalah terbatas maka lanjut ke Langkah 3.
Langkah 3. {
Hitung
pada solusi persamaan (19).
}
Maka dan adalah maksimum jika dan . Sehingga dapat ditentukan solusi optimal untuk interval linear yang hanya disebelah kanan dan kemiringan dari di interval ini:
Langkah 4.
Masalah terbatas maka lanjut ke Langkah 5.
27 Langkah 5.
Iterasi ke-2 Langkah 1.
Perbarui solusi optimal dengan dan . Lanjut ke langkah 1
Hitung parameter {
,
pada solusi persamaan (29)
}
Dari dapat disimpulkan bahwa dan didapatkan hasil β sebagai calon break point yang kedua serta nilai optimal pada saat break point ini adalah
Langkah 2.
Masalah terbatas maka lanjut ke Langkah 3.
Langkah 3.
Hitung {
pada solusi persamaan (19).
}
dan adalah maksimal jika . Maka Sehingga dapat ditentukan solusi optimal untuk interval linear yang hanya disebelah kanan β dan kemiringan dari di interval ini:
Langkah 4.
Masalah terbatas maka lanjut ke Langkah 5.
Langkah 5.
Perbarui solusi optimal dengan dan . Lanjut ke langkah 1
Iterasi ke-3 Langkah 1. setara dengan
Langkah 2.
Hitung parameter {
,
pada solusi persamaan (29)
{
} }
Masalah tidak terbatas maka BERHENTI.
Kasus Nilai Optimal Fungsi Iterasi ke-1 Inisialisasi dan Langkah 1.
Misalkan solusi optimal dengan . Hitung parameter {
pada solusi persamaan (28)
,
}
Dimula β sebagai calon break point yang pertama serta nilai optimal pada saat break point ini adalah
28
Langkah 2.
Masalah terbatas maka lanjut ke Langkah 3.
Langkah 3. {
Hitung
pada solusi persamaan (18).
}
Maka dan adalah minimal jika dan . Sehingga dapat ditentukan solusi optimal untuk interval linear yang hanya disebelah kiri dan kemiringan dari di interval ini, Langkah 4.
Masalah terbatas maka lanjut ke Langkah 5.
Langkah 5.
Perbarui solusi optimal dengan dan . Lanjut ke langkah 1.
Iterasi ke-2 Langkah 1.
Hitung parameter {
,
pada solusi persamaan (28)
}
Dari dan didapatkan hasil β sebagai calon break point yang kedua serta nilai optimal pada saat break point ini adalah
Langkah 2.
Masalah terbatas maka lanjut ke Langkah 3.
Langkah 3.
Hitung {
Setara dengan
Langkah 4.
pada solusi persamaan (18).
{ Masalah tidak BERHENTI.
} }
terbatas
karena
Sehingga
Untuk melengkapi perhitungan nilai optimal fungsi dilihat di Gambar 7
pada contoh ini dapat
29
Gambar 7 Hasil analisis
dari Contoh Aplikasi 2
SIMPULAN DAN SARAN Simpulan Berdasarkan pembahasan yang telah diuraikan sebelumnya, dapat disimpulkan bahwa analisis parametrik adalah analisis sensitifitas sistematis yang sangat berguna untuk memeriksa dampak dari perubahan parameter secara kontinu terhadap solusi optimal. Masalah analisis parametrik memperkenankan parameter terpilih ( atau ) diubah secara kontinu pada interval tertentu dengan menggunakan sifat-sifatnya. Sifat-sifat dari analisis parametrik adalah (1) nilai optimal fungsi dengan adanya perubahan parameter-parameter pada koefisien fungsi tujuan dan nilai ruas kanan pada masalah optimasi linear adalah kontinu, konkaf/konveks dan piecewise linear, (2) pada suatu interval tertentu perubahan parameter tidak akan mengubah solusi optimalnya, (3) break point adalah suatu titik di mana solusi optimal akan berubah bila terjadi perubahan parameter dari sisi kiri break point ke sisi kanannya, dan (4) terdapat titik ektrem yang juga merupakan break point. Algoritme yang disajikan dapat menentukan semua break point dan interval linear dalam suatu optimasi linear.
Saran Bagi yang berminat untuk memperluas tema dari karya ilmiah ini, penulis menyarankan untuk membahas penentuan solusi optimal dan nilai optimal analisis parametrik terhadap optimasi linear menggunakan teknik komputasi berupa pemakaian software optimasi untuk mempermudah mendapatkan solusi optimal dan nilai optimal.
30
DAFTAR PUSTAKA Anton H, Rorres C. 2005. Elementary Linear Algebra. Ed-ke-9. New Jersey (US): J Wiley. Bazaraa MS, HD Sherali & CM Shetty. 1993. Nonlinear Programming: Theory and Algorithms. ed. New Jersey (US): John Wiley. Dumaria Lestaurika Tambunan. 2007. Menentukan Solusi Optimal Program Linear Parametrik Dengan Menggunakan Metode Simplex [Skripsi]. Medan (ID): Universitas Sumatra Utara Leon SJ. 1998. Linear Algebra with Applications. Ed ke-5. London: Springer. Nash SG, Sofer A. 1996. Linear and Nonlinear Programming. New York (US): McGraw-Hill. Peressini AL, Sullivan FE, Uhl JJ. 1988. The Mathematics of Nonlinear Programming. New York (US): Springer-Verlag. Roos C, Terlaky T, Vial J-Ph. 2006. Interior Point Methods for Linear Optimization. New York (US): Springer. Winston WL. 2004. Operations Reserch Applications and Algorithms Ed ke-4. New York (US): Duxbury. Yusep Maulana. 2009. Penyelesaian Integer Programming Dengan Metode Relaksasi Lagrange [Skripsi]. Bogor (ID): Institut Pertanian Bogor.
31 Lampiran 1 Pembuktian domain dari adalah konveks dom dan < < . Kemudian dan Diberikan , adalah terbatas, yang berarti bahwa kedua dan yang tidak kosong. Diberikan dan . Kemudian dan adalah nonnegatif dan Sekarang perhatikan
Perhatikan bahwa x adalah kombinasi konveks dari dan dan karenanya adalah nonnegatif. Kita melanjutkan dengan menunjukkan bahwa . Menggunakan bahwa
Dengan menggunakan persamaan (3) sehingga
Ini membuktikan bahwa (
) adalah fisibel dan karenanya
dom
32 Lampiran 2 Pembuktian pelengkap dari domain nyata
adalah subset terbuka dari garis
Ambil dom . Ini berarti bahwa ( ) adalah takterbatas. Ini setara dengan keberadaan vektor sedemikian rupa sehingga Menetapkan z dan mempertimbangkan sebagai variabel, himpunan semua yang memenuhi ketidaksetaraan secara ketat/sempurna adalah interval terbuka. Untuk semua dalam interval ini ( ) takterbatas. Oleh karena itu domain dari g adalah terbuka.
Lampiran 3 Pembutktian Lema 4 Diberikan bukti , dan bukti caranya. Karena adalah optimal untuk
tidak dijelaskan karena sama didapatkan
Didapatkan juga mengakibatkan
teorema
berdasarkan
5
dan
corollary
Mengurangi kedua ruas persamaan ini akan menyebabkan Dengan membagi kedua ruas oleh bilangan positif ini akan membuktikan bahwa { Karena
}
berdasarkan corollary 5.1.
didapatkan
5.2
33 Lampiran 4 Algoritme Nilai Optimal Fungsi
dan
Nilai Optimal Fungsi Input: Solusi Optimal Vektor Perturbasi
dari (D);
. begin k:=1; ; ready: false; while not ready do begin { Solve if masalah ini adalah takterbatas: ready:=true else adalah solusi optimal; begin { Solve if masalah ini adalah takterbatas: ready:= true else adalah solusi optimal; k:=k+1; end end end
}
}
Nilai Optimal Fungsi Input: Solusi Optimal Vektor Perturbasi
dari (D);
. begin k:=1; ; ready: false; while not ready do begin { Solve if masalah ini adalah takterbatas: ready:=true else adalah solusi optimal; begin { Solve if masalah ini adalah takterbatas: ready:= true else adalah solusi optimal; k:=k+1; end end end
}
}
34 Lampiran 5 Algoritme Nilai Optimal Fungsi
dan
Nilai Optimal Fungsi Input: Solusi Optimal dari (P); Vektor Perturbasi . begin ready: false; k:=1; while not ready do begin { Solve if masalah ini adalah takterbatas: ready:=true else adalah solusi optimal; begin { } Solve if masalah ini adalah takterbatas: ready:= true else adalah solusi optimal; k:=k+1 end end end
}
Nilai Optimal Fungsi Input: Solusi Optimal dari (P); Vektor Perturbasi . begin ready: false; k:=1; while not ready do begin { Solve if masalah ini adalah takterbatas: ready:=true else adalah solusi optimal; begin { } Solve if masalah ini adalah takterbatas: ready:= true else adalah solusi optimal; k:=k+1; end end end
}
35
RIWAYAT HIDUP Penulis dilahirkan di Jakarta pada tanggal 21 Januari 1992 dari ayah Supendi dan ibu Manzilah (Alm). Penulis merupakan putra kedua dari enam bersaudara. Pada tahun 2003, penulis lulus dari SD Negeri Duren Tiga 15 pagi Jakarta. Pada tahun 2006, penulis lulus dari SMP Negeri 238 Jakarta. Pada tahun 2009, penulis lulus dari SMA Negeri 60 Jakarta dan pada tahun yang sama diterima sebagai mahasiswa IPB melalui jalur Undangan Seleksi Masuk IPB (USMI). Penulis memilih mayor Matematika minor Kewirausahaan Agribisnis, Departemen Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam. Selama mengikuti perkuliahan, penulis menjadi asisten mata kuliah Analisis Numerik (S1) pada semester ganjil tahun akademik 2012-2013, asisten mata kuliah Pemrograman Linear (S1) pada semester genap tahun akademik 20122013. Penulis mendapatkan beasiswa dari Bantuan Belajar Mahasiswa (BBM) IPB pada semester pertama tahun 2009 sampai semester delapan tahun 2013. Penulis aktif di berbagai kegiatan kemahasiswaan seperti organisasi maupun kepanitiaan. Kepanitiaan yang perah diikuti yakni menjadi panitia dalam Masa Perkenalan Kampus Mahasiswa Baru (MPKMB) 2010 dan menjadi panitia dalam Masa Perkenalan Fakultas MIPA 2011. Dalam berorganisasi, penulis pernah memegang amanah selama dua periode sebagai Ketua Komisi IV Dewan Perwakilan Mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor (Dewan Epicentrum dan Dewan Zwiterium) tahun 2011-2012.