PROGRAM BERMUTU
Better Education through Reformed Management and Universal Teacher Upgrading
TW
URI HANDAY
AN I
TU
PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN MATEMATIKA DI SD
KEMENTERIAN PENDIDIKAN NASIONAL BADAN PENGEMBANGAN SUMBER DAYA MANUSIA PENDIDIKAN DAN PENJAMINAN MUTU PENDIDIKAN
PUSAT PENGEMBANGAN DAN PEMBERDAYAAN PENDIDIK DAN TENAGA KEPENDIDIKAN MATEMATIKA
Modul Matematika SD Program BERMUTU
Pemanfaatan Matematika Rekreasi dalam Pembelajaran Matematika di SD
Penulis: Imam Sujadi Jakim Wiyoto
Penilai: Yansen Marpaung Atmini Dhoruri Editor: Endang Listiyani Layouter: Dian Yunitarini
Kementerian Pendidikan Nasional Badan Pengembangan Sumber Daya Manusia Pendidikan dan Penjaminan Mutu Pendidikan Pusat Pengembangan dan Pemberdayaan Pendidik dan Tenaga Kependidikan Matematika
2011
KATA PENGANTAR Segala bentuk pujian dan rasa syukur kami haturkan ke hadirat Allah SWT, atas limpahan nikmat dan rahmat-Nya PPPPTK Matematika dapat mewujudkan kembali modul pengelolaan pembelajaran matematika untuk guru SD dan SMP. Pada tahun 2011 ini telah tersusun sebanyak dua puluh judul, terdiri dari tujuh judul untuk guru SD, delapan judul untuk guru SMP, dan lima judul untuk guru SD maupun SMP. Modul-modul ini disusun untuk memfasilitasi peningkatan kompetensi guru SD dan SMP di forum Kelompok Kerja Guru (KKG) dan Musyawarah Guru Mata Pelajaran (MGMP), khususnya KKG dan MGMP yang dikelola melalui program BERMUTU (Better Education through Reformed Management and Universal Teacher Upgrading). Modul yang telah disusun, selain didistribusikan dalam jumlah terbatas ke KKG dan MGMP yang dikelola melalui program BERMUTU, juga dapat diunduh melalui laman PPPPTK Matematika dengan alamat www.p4tkmatematika.org. Penyusunan modul diawali dengan kegiatan workshop yang menghasilkan kesepakatan tentang daftar judul modul, sistematika penulisan modul, dan garis besar isi tiap judul modul. Selanjutnya secara berurutan dilakukan kegiatan penulisan, penilaian, editing, harmonisasi, dan layouting modul. Penyusunan modul melibatkan berbagai unsur, meliputi widyaiswara dan staf PPPPTK Matematika, dosen LPTK, widyaiswara LPMP, guru SD, guru SMP, dan guru SMA dari berbagai propinsi. Untuk itu, kami sampaikan terima kasih dan teriring doa semoga menjadi amal sholih kepada semua pihak yang telah membantu terwujudnya modul tersebut. Semoga dua puluh modul tersebut bermanfaat secara optimal dalam peningkatan kompetensi para guru SD dan SMP dalam mengelola pembelajaran matematika, sehingga dapat meningkat kualitas dan kuantitas hasil belajar matematika siswa SD dan SMP di seluruh Indonesia.
iii
Kata Pengantar
Kam mi sangat mengharappkan masukkan dari paara pembacca untuk ppenyempurn naan moddul-modul ini i demi penningkatan mutu m layanaan kita dalam m upaya penningkatan mutu m penndidikan maatematika dii Indonesia. Akhhir kata, kaami ucapkaan selamat membaca dan mengggunakan moodul ini daalam menngelola pem mbelajaran matematika m di sekolah.
Yogyakkarta, Juni 22011 Plh. Keepala
iv
DAFTAR JUDUL MODUL I. PEMANFAATAN
MATEMATIKA
REKREASI
DALAM
REKREASI
DALAM
PEMBELAJARAN ASPEK BILANGAN II. PEMANFAATAN
MATEMATIKA
PEMBELAJARAN ASPEK GEOMETRI DAN PENGUKURAN III. PEMANFAATAN
MATEMATIKA
REKREASI
DALAM
PEMBELAJARAN ASPEK PENGOLAHAN DATA
v
Daftar Judul Modul
vi
Judul buku modul (COURIER, point 10,Bold)
vii
DAFTAR ISI KATA PENGANTAR…………………………………………………………… III DAFTAR JUDUL MODUL .................................................................................. V DAFTAR ISI …………………………………………………………………… VII PENDAHULUAN .........................................................................................................1 A. Latar Belakang ........................................................................................................1 B. Tujuan .....................................................................................................................3 C. Peta Kompetensi .....................................................................................................3 D. Ruang Lingkup .......................................................................................................5 E. Saran Cara Penggunaan Modul di KKG.................................................................5 I. PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK BILANGAN ................................................................................................9 A. Kegiatan Belajar 1: Sejarah Matematika Terkait Bilangan ..................................11 B. Kegiatan Belajar 2: Topik-topik Matematika Rekreasi tentang Bilangan ............17 C. Ringkasan .............................................................................................................30 D. Latihan/Tugas .......................................................................................................31 E. Umpan Balik .........................................................................................................31 F. Daftar Pustaka.......................................................................................................32 II. PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK GEOMETRI DAN PENGUKURAN ........................................................35 A. Kegiatan Belajar 1: Sejarah Matematika Terkait Geometri dan Pengukuran ......36 B. Kegiatan Belajar 2. Topik-topik Matematika Rekreasi tentang Geometri dan Pengukuran ...........................................................................................................40 C. Ringkasan .............................................................................................................52 D. Latihan/Latihan .....................................................................................................53 E. Umpan Balik .........................................................................................................54 F. Daftar Pustaka.......................................................................................................55 III. PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK PENGOLAHAN DATA .........................................................................57 A. Kegiatan Belajar 1: Sejarah Matematika Terkait Pengolahan Data .....................58 B. Kegiatan Belajar 2 : Berbagai Topik Matematika Rekreasi Tentang Pengolahan Data .......................................................................................................................61 C. Kegiatan Belajar 3: Menggunakan Sejarah Matematika dan/atau Matematika Rekreasi tentang Pengolahan Data untuk Pembelajaran Matematika Aspek Pengolahan Data di SD .........................................................................................67 D. Ringkasan .............................................................................................................69 E. Latihan/Tugas......................................................................................................70 F. Umpan Balik........................................................................................................70 G. Daftar Pustaka.......................................................................................................72
vii
Daftar Isi
PENUTUP ...................................................................................................................73 A. Rangkuman ...........................................................................................................73 B. Penilaian ...............................................................................................................74 LAMPIRAN ................................................................................................................77 Kunci Latihan/Tugas Modul I ....................................................................................77 Kunci Latihan/Tugas Modul II ....................................................................................78
viii
PENDAHULUAN
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
PENDAHULUAN A. Latar Belakang Dalam rangka
implementasi program BERMUTU, sesuai dengan tanggung
jawabnya, PPPPTK Matematika menyelenggarakan kegiatan penyusunan modul. Kegiatan itu dalam rangka memfasilitasi sumber belajar terkait pengelolaan pembelajaran matematika untuk para guru yang belajar di KKG SD (Sekolah Dasar), khususnya yang melalui program BERMUTU. Berdasarkan hasil penjaringan aspirasi kebutuhan guru melalui kegiatan monitoring dan evaluasi Program BERMUTU, salah satu aspirasi yang muncul dari para guru adalah agar kegiatan belajar di KKG difasilitasi dengan sumber belajar tentang pembelajaran matematika yang mampu memotivasi siswa untuk mempelajari matematika Aspirasi guru tersebut wajar karena matematika merupakan ilmu universal yang mendasari perkembangan teknologi modern, mempunyai peran penting dalam berbagai disiplin dan memajukan daya pikir manusia. Perkembangan pesat di bidang teknologi informasi dan komunikasi dewasa ini dilandasi oleh perkembangan matematika. Untuk menguasai dan mencipta teknologi di masa depan diperlukan penguasaan matematika yang kuat sejak dini. Mata pelajaran matematika perlu diberikan kepada semua siswa mulai dari sekolah dasar untuk membekali siswa dengan kemampuan berpikir logis, analitis, sistematis, kritis, dan kreatif, serta kemampuan bekerjasama. Kompetensi tersebut diperlukan agar siswa dapat memiliki kemampuan memperoleh, mengelola, dan memanfaatkan informasi untuk bertahan hidup pada keadaan yang selalu berubah, tidak pasti, dan kompetitif. Kompetensi tersebut dapat tercapai apabila siswa mempunyai motivasi dalam mempelajari matematika. Untuk menjamin mutu layanan pendidikan dengan KTSP yang bervariasi, Pemerintah mengeluarkan PP No 19 tahun 2005 yang menetapkan delapan standar nasional pendidikan yang digunakan sebagai acuan pengembangan kurikulum. Salah satu standar yang harus dikembangkan adalah standar proses. Standar proses adalah
1
Pendahuluan
standar nasional pendidikan yang berkaitan dengan pelaksanaan pembelajaran pada satuan pendidikan untuk mencapai kompetensi lulusan. Memberikan motivasi kepada siswa merupakan bagian penting dalam proses pembelajaran. Dengan adanya motivasi, siswa akan cenderung bersemangat mengikuti kegiatan pembelajaran. Salah satu kegiatan yang dapat dilakukan untuk memotivasi siswa adalah menjelaskan kegunaan materi yang akan dipelajari dalam kehidupan sehari-hari. Matematika merupakan aktivitas insani (human activities) sehingga matematika bisa dikaitkan
dengan
realitas.
Berdasarkan
pemikiran
tersebut,
dalam
proses
pembelajaran matematika siswa harus diberi kesempatan untuk menemukan kembali (to reinvent) matematika melalui bimbingan guru (Gravemeijer, 1994), dan bahwa penemuan kembali (reinvention) ide dan konsep matematika tersebut harus dimulai dari penjelajahan berbagai situasi dan persoalan “dunia riil” (de Lange, 1995). Dunia riil bisa berupa mata pelajaran lain selain matematika, atau bidang ilmu yang berbeda dengan matematika, ataupun kehidupan sehari-hari dan lingkungan sekitar kita (Blum & Niss, 1989). Salah satu tujuan mata pelajaran matematika diberikan di SD adalah agar siswa memiliki sikap menghargai kegunaan matematika dalam kehidupan, memiliki rasa ingin tahu, perhatian, dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah. Suatu upaya yang dapat dilakukan untuk menumbuhkan sikap positif terhadap matematika adalah dengan mengembangkan kegiatan rekreasi matematika. Rekreasi matematika diartikan sebagai kegiatan yang menyenangkan yang membangkitkan minat siswa mempelajari dan memahami konsep matematika. Kegiatan tersebut dapat berupa mengkaji latar belakang sejarah baik dari penemuan konsep maupun penemu konsep tersebut, pemberian fakta-fakta menarik suatu konsep, menyelesaikan teka-teki, menelaah paradoks, serta mengkaji aplikasi matematika. Sedangkan matematika rekreasi adalah topik-topik yang dipilih untuk dapat dikembangkan sebagai wahana kegiatan rekreasi matematika. Sebagai konsekuensinya, guru harus mampu memilih dan mengembangkan topik-topik menarik sehingga pembelajaran menjadi kegiatan yang interaktif dan menyenangkan.
2
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Mengingat hal-hal tersebut maka modul dengan judul Pemanfaatan Matematika Rekreasi dalam Pembelajaran Matematika di SD ini diharapkan dapat memenuhi harapan para guru dalam memenuhi kebutuhan sumber belajar, khususnya tentang bagaimana memotivasi siswa belajar matematika. Modul ini sekaligus dimaksudkan sebagai payung bagi modul lain yang ditulis dengan maksud yang sama dalam kajiankajian matematika tertentu.
B. Tujuan Setelah mempelajari modul ini para guru diharapkan memiliki kompetensi yang meningkat dibanding sebelumnya, khususnya terkait hal-hal sebagai berikut. 1.
Dapat menggunakan matematika rekreasi aspek bilangan untuk mengembangkan pembelajaran matematika yang dapat memberikan motivasi kepada siswa dalam belajar matematika aspek bilangan di SD.
2.
Dapat menggunakan matematika rekreasi aspek geometri dan pengukuran untuk mengembangkan pembelajaran matematika yang dapat memberikan motivasi kepada siswa dalam belajar matematika aspek geometri dan pengukuran di SD.
3.
Dapat menggunakan matematika rekreasi aspek pengolahan data untuk mengembangkan pembelajaran matematika yang dapat memberikan motivasi kepada siswa dalam belajar matematika aspek pengolahan data di SD.
C. Peta Kompetensi Pada Permendiknas Nomor 16 Tahun 2007 tentang Standar Kompetensi Guru dimuat daftar kompetensi yang harus dikuasai guru kelas dan guru mata pelajaran. Daftar kompetensi tersebut mencakup kompetensi pedagogik, kepribadian, sosial dan profesional. Berikut ini adalah kompetensi yang akan ditingkatkan melalui proses belajar dengan menggunakan modul ini.
3
Pendahuluan
Peta Kompetensi
Modul 1: PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK BILANGAN
6.1 Menyediakan berbagai kegiatan pembelajaran untuk mendorong peserta didik mencapai prestasi belajar secara optimal
Kompetensi Pedagogik 6.2. Menyediakan berbagai kegiatan pembelajaran untuk mengaktualisasian potensi peserta didik, termasuk
kreativitasnya
Modul 2: PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK GEOMETRI DAN PENGUKURAN
20.7 Menguasai pengetahuan konseptual dan prosedural serta keterkaitan keduanya dalam konteks materi aritmatika, aljabar, geometri, trigonometri, pengukuran, statistika, dan logika matematika
Kompetensi Profesional
20.8. Mampu menggunakan matematisasi horizontal dan vertikal untuk menyelesaikan masalah matematika dan masalah dalam dunia nyata
Modul 3: PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK PENGOLAHAN DATA
Modul
PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN MATEMATIKA DI SD
4
14.2 Bangga menjadi guru dan percaya pada diri sendiri
17.1 Berkomunikasi dengan teman sejawat dan komunitas ilmiah lainnya secara santun, empatik dan efektif
Kompetensi Kepribadian
Kompetensi Sosial
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
D. Ruang Lingkup Ruang
lingkup
modul
berjudul
Pemanfaatan
Matematika
Rekreasi
dalam
Pembelajaran Matematika di SD ini terdiri dari tiga bagian. Bagian pertama modul ini membahas tentang pemanfaatan matematika rekreasi dalam pembelajaran aspek bilangan. Bahasan pada bagian pertama ini akan dikemas menjadi dua kegiatan belajar yaitu kegiatan belajar tentang: (1) Sejarah matematika terkait bilangan, dan (2) Topik-topik matematika rekreasi tentang bilangan. Bagian kedua modul ini membahas tentang pemanfaatan matematika rekreasi dalam pembelajaran aspek geometri dan pengukuran. Bahasan pada bagian kedua ini akan dikemas menjadi dua kegiatan belajar yaitu kegiatan belajar tentang: (1) Sejarah matematika terkait geometri dan pengukuran, dan (2) Topik-topik matematika rekreasi tentang geometri dan pengukuran. Sedangkan Bagian ketiga modul ini membahas tentang pemanfaatan matematika rekreasi dalam pembelajaran aspek pengolahan data. Bahasan pada bagian ketiga ini akan dikemas menjadi tiga kegiatan belajar yaitu kegiatan belajar tentang: (1) Sejarah matematika terkait pengolahan data, (2) Topik-topik matematika rekreasi tentang pengolahan data, dan (3) Menggunakan sejarah matematika dan / atau topik-topik matematika rekreasi tentang pengolahan data untuk pembelajaran matematika aspek pengolahan data di SD.
E. Saran Cara Penggunaan Modul di KKG 1.
Modul ini dapat digunakan pada kegiatan-kegiatan di KKG melalui program BERMUTU atau di luar program BERMUTU.
2.
Modul ini dapat menjadi salah satu bahasan dalam kegiatan inservice training sebelum pertemuan-pertemuan kegiatan belajar di KKG melalui program BERMUTU dilaksanakan.
3.
Modul ini dapat dimanfaatkan sebagai bahan rujukan dalam menyelesaikan tugas terstruktur atau tugas mandiri pada 16 pertemuan KKG yang telah dijadwalkan dan dibiayai Dana Bantuan Langsung (DBL) BERMUTU atau dana pendamping dari Pemerintah Daerah.
5
Pendahuluan
4.
Modul ini digunakan sebagai referensi belajar secara pribadi atau dengan teman sejawat di sekolah atau di KKG, baik KKG yang dikelola oleh program BERMUTU maupun yang dikelola secara rutin dengan swadana atau bantuan berbagai pihak lain yang bukan program BERMUTU.
5.
Waktu yang diperlukan dalam mempelajari modul ini minimal 12 × 45 menit. Waktu tersebut di luar waktu menyelesaikan tugas pada tiap bagian yang bersifat praktek di kelas. Asumsi untuk alokasi waktu tersebut adalah 4 × 45 menit untuk mempelajari masing-masing bagian dalam modul.
6.
Bacalah masing-masing kegiatan belajar dalam masing-masing bagian modul dengan seksama agar dapat menyelesaikan latihan dalam modul dengan baik. Pada setiap kegiatan belajar diawali dengan pertanyaan yang dilanjutkan dengan uraian materi.
7.
Sebelum membaca uraian materi pada kegiatan belajar, Anda diharapkan terlebih dahulu mencermati dan mencoba untuk merenungkan jawaban dari pertanyaan yang terdapat pada awal kegiatan belajar. Selanjutnya barulah Anda membaca uraian materi ini sebagai tambahan referensi dalam memperoleh jawaban.
8.
Setelah Anda merasa cukup memahami isi uraian materi, jawablah latihan yang terdapat pada akhir setiap bagian modul.
9.
Untuk mengetahui pencapaian pemahaman Anda terhadap uraian materi pada masing-masing kegiatan belajar, Anda dapat mencocokkan dengan kunci jawaban individual atau kelompok.
10. Modul ini dapat diakses pada situs PPPPTK Matematika dengan alamat www.p4tkmatematika.org. Bila ada permasalahan yang belum dapat diselesaikan dalam proses mempelajari modul ini atau ada hal yang akan dikomunikasikan kepada penulis, Anda dapat menghubungi alamat: PPPPTK Matematika, Jl. Kaliurang Km 6 Sambisari Condongcatur, Depok, Sleman, DIY, Kotak Pos 31 Yk-Bs 55281. Telpon: (0274) 881717, 885725. Fax: (0274) 885752, atau alamat email:
[email protected],
[email protected].
6
[email protected],
dan
I PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK BILANGAN
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
I. PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK BILANGAN
Kompetensi guru yang akan ditingkatkan melalui proses belajar dengan menggunakan modul ini adalah: (1) Menyediakan berbagai kegiatan pembelajaran untuk mendorong peserta didik mencapai prestasi belajar secara optimal (6.1), (2) Menyediakan berbagai kegiatan pembelajaran untuk mengaktualisasikan potensi peserta didik, termasuk kreativitasnya (6.2), (3) Mampu menggunakan matematisasi horizontal dan vertikal untuk menyelesaikan masalah matematika dan masalah dalam dunia nyata (20.8), (4) Bangga menjadi guru dan percaya pada diri sendiri (14.2), dan (5) Berkomunikasi dengan teman sejawat dan komunitas ilmiah lainnya secara santun, empatik dan efektif (17.1).
Perkembangan
matematika
didasarkan
pada
kebutuhan
perhitungan
dalam
perdagangan, pengukuran tanah dan memprediksi peristiwa dalam astronomi. Ketiga kebutuhan ini secara umum berkaitan dengan ketiga pembagian umum bidang matematika: studi tentang struktur, ruang dan perubahan. Pelajaran tentang struktur dimulai dengan bilangan asli dan operasi aritmetikanya, yang semuanya itu dijabarkan dalam aljabar dasar. Sifat bilangan yang lebih mendalam dipelajari dalam teori bilangan. Investigasi metode-metode untuk memecahkan persamaan matematika dipelajari dalam aljabar abstrak, yang antara lain, mempelajari tentang ring dan field, struktur yang menggeneralisasi sifat-sifat yang umumnya dimiliki bilangan. Untuk itu pembelajaran matematika terkait materi bilangan menjadi sangat penting, mengingat kompetensi siswa tentang bilangan sangat diperlukan untuk mempelajari struktur matematika.
9
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Pembelajaran bilangan kepada siswa dimulai dari membilang banyak benda, mengurutkan banyak benda, serta mengaitkan objek/anggota suatu himpunan dengan angka. Dengan ini, siswa memahami angka sebagai lambang bilangan. Sebagai lambang bilangan, angka-angka yang sama akan bermakna berbeda apabila menempati nilai tempat yang berbeda. Kedua angka “5” pada bilangan 515, berbeda maknanya. Angka “5” yang menempati nilai ratusan melambangkan bilangan 500, sedangkan angka “5” pada satuan melambangkan bilangan 5. Dengan memahami nilai tempat ini siswa diajak memahami sistem bilangan yang digunakan. Sistem bilangan yang kita gunakan adalah sistem bilangan berbasis sepuluh. Setelah pemahaman konsep angka sebagai lambang bilangan dan sistem bilangan dicapai maka siswa belajar operasi bilangan. Kebosanan siswa belajar bilangan kadang-kadang disebabkan oleh angka-angka dan prosedur-prosedur operasi bilangan yang terisolasi dari realitas kehidupan sehari-hari. Hal ini menyebabkan siswa tidak merasakan manfaat belajar bilangan dan tidak dapat menghubungkannya dengan pengetahuan yang sudah ada di dalam pikirannya. Pembelajaran yang tidak bisa mengaitkan pengetahuan baru dengan pengetahuan lama yang sudah dimiliki siswa ini menjadi pembelajaran yang tidak bermakna. Motivasi belajar siswa bisa dibangkitkan dengan memberikan kegiatan belajar yang memberikan pengalaman pribadi bagi siswa, bahwa memang benar matematika bermanfaat bagi dirinya. Motivasi belajar dapat juga dibangkitkan dengan memberi inspirasi kepada siswa dengan menghadirkan kisah-kisah nyata yang menggambarkan bahwa matematika dapat menyederhanakan masalah yang sulit, dan yang tak kalah penting adalah kisah-kisah tersebut membuat siswa merasakan bahwa berpikir matematis yang merupakan usaha-usaha untuk memecahkan masalah dapat dilakukan oleh siapa saja. Dengan kisah-kisah ini diharapkan siswa memahami bahwa matematika dapat dipelajari oleh semua orang, dengan modal ketekunan. Selain dilakukan dengan menginspirasi dan menunjukkan manfaat matematika, usaha meningkatkan gairah belajar matematika dapat dilakukan dengan memberikan tantangan-tantangan baru bagi siswa. Tantangan dapat berupa masalah-masalah matematika yang mengundang minat siswa untuk memecahkannya.
10
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Mengingat hal-hal tersebut maka Modul I ini membahas pemanfaatan matematika rekreasi dalam pembelajaran aspek bilangan. Setelah mempelajari modul ini Anda diharapkan mampu : 1.
Menyusun bahan penugasan matematika untuk siswa SD terkait dengan sejarah matematika aspek bilangan.
2.
Mengidentifikasi topik-topik matematika rekreasi tentang bilangan untuk pembelajaran matematika di SD.
3.
Menggunakan sejarah matematika dan/atau matematika rekreasi tentang bilangan untuk pembelajaran matematika aspek bilangan di SD
Untuk membantu Anda agar menguasai kemampuan tersebut, dalam Modul I ini disajikan
pembahasan yang dikemas dalam dua kegiatan belajar (KB) sebagai
berikut. Kegiatan Belajar 1
: Sejarah matematika terkait bilangan.
Kegiatan Belajar 2
: Topik-topik matematika rekreasi tentang bilangan.
A. Kegiatan Belajar 1: Sejarah Matematika Terkait Bilangan
Pada suatu kelas matematika guru mengajukan pertanyaan kepada siswa sebagai berikut; “Anak-anak coba kalian sebutkan bilangan prima antara 1 sampai dengan 100” Biasanya hanya beberapa siswa yang mampu menyebutkan semua bilangan prima antara 1 sampai dengan 100 dengan cepat, meskipun pengertian bilangan prima sudah diketahui. Hal ini mungkin disebabkan siswa hanya menghafal beberapa bilangan prima. Bagaimanakah cara mengidentifikasi bilangan prima antara 1 sampai dengan 100?
11
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Beragam strategi dapat dipilih untuk membangkitkan antusiasme siswa untuk belajar aspek bilangan. Pada awal belajar suatu aspek bilangan, guru dapat memotivasi siswa melalui cerita-cerita sejarah yang terkait bilangan. Cerita ini dapat berisi tentang kegigihan tokoh dalam memecahkan masalah dengan menggunakan matematika, cara-cara jitu yang diajukan matematikawan, sejarah sistem bilangan beserta kapan digunakan, mengapa dan kemudahan/manfaat yang diakibatkan oleh penggunaan sistem bilangan tersebut. Guru juga dapat menceritakan kisah matematikawan yang sudah lazim dikenal, atau kisah-kisah selain matematikawan misalnya seorang presiden, penyanyi, atlet, dan profesi lain yang ternyata tokoh tersebut menggemari atau berkonstribusi dalam kemajuan matematika. Kisah ini diharapkan dapat memotivasi
siswa, karena siswa memahami bahwa matematika tidak hanya
merupakan ilmu yang bersifat deduktif, tetapi matematika adalah suatu proses yang manusiawi. Matematika ternyata dapat dipelajari oleh siapapun. Matematika ternyata disenangi oleh banyak orang. Berikut ini beberapa sejarah berkaitan dengan bilangan yang dapat dimanfaatkan dalam pembelajaran. 1.
Sejarah Sistem Bilangan
a.
Sistem Bilangan Hindu-Arab
Sistem bilangan yang digunakan saat ini merupakan sistem bilangan basis sepuluh. Semua bilangan dilambangkan dengan kombinasi angka-angka 1, 2, 3, 4, 5, 6, 7, 8, 9, dan 0. Angka-angka ini diperkenalkan di Eropa di abad XII oleh Leonardo Pisano (alias Fibonacci), seorang matematikawan Italia yang pernah belajar ke Afrika Utara. Di Afrika Utara inilah dia belajar sistem bilangan dari orang-orang Arab. Orang Arab mengembangkan sistem bilangan ini setelah mempelajarinya dari kebudayaan Hindu di India. Sistem bilangan modern yang digunakan sekarang ini berakar dari sistem bilangan Brahmi yang mengenal angka-angka 1 sampai dengan 9. Sistem bilangan Brahmi kemudian berkembang menjadi sistem bilangan Hindu dengan ditemukannya bilangan nol. Sistem bilangan Hindu inilah yang diadopsi masyarakat Arab dan selanjutnya menyebar ke Eropa. Berikut ini ilustrasi penyebaran dan perkembangan sistem bilangan Hindu-Arab.
12
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Sumber: http://www.archimedes-lab.org/numeral.html
Gambar 1.1 Perkembangan Sistem Bilangan
b. Sistem Bilangan Romawi Sebelum mengadopsi sistem bilangan Hindu-Arab, masyarakat Eropa menggunakan sistem bilangan Romawi. Dalam sistem bilangan romawi, satu, dua, tiga, dan empat semula dilambangkan dengan I, II, III, dan IIII. Dalam perkembangan lebih lanjut empat dilambangkan dengan IV. Sedangkan lima dilambangkan dengan V. Pelambangan atau penyimbolan ini diperoleh dari bentuk jari-jari kita. Berikut ilustrasi hubungan angka-angka Romawi dengan jari-jari manusia.
Sumber: http://www.archimedes-lab.org/numeral.html
Gambar 1.2 Sistem Bilangan Romawi c.
Sistem Bilangan Bangsa Maya
Bangsa Maya di Benua Amerika menggunakan sistem bilangan basis dua puluh dengan lambang bilangan yang terdiri atas titik dan garis.
13
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Sumber: http://www.archimedes-lab.org/numeral.html
Gambar 1.3 Sistem Bilangan Bangsa Maya
2.
Saringan Eratosthenes
Sejarah tentang teknik yang ditemukan Eratosthenes dapat digunakan sebagai pengantar pembelajaran kompetensi dasar “Menggunakan faktor prima untuk menentukan KPK dan FPB” di kelas V. Eratosthenes adalah salah seorang matematikawan yang hidup sekitar tahun 200 sebelum masehi. Dia lahir di Cyrene, Libya Afrika Utara. Eratosthenes pernah menjadi pustakawan di Perpustakaan Alexandria. Salah satu tulisannya berisi tentang teknik/cara mengidentifikasi bilangan prima.
Bilangan prima adalah bilangan asli selain 1 yang tepat mempunyai dua faktor yaitu 1 dan dirinya sendiri. Dengan kata lain, setiap bilangan prima tidak dapat dibagi dengan hasil bulat kecuali pembaginya adalah 1 atau bilangan prima sendiri.
14
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Berdasarkan
pengertian
ini,
Eratosthenes
menyusun
langkah-langkah
mengidentifikasi bilangan prima sebagai berikut. Dimulai dengan menuliskan semua bilangan asli dari 1 sampai dengan 100, seperti tabel berikut.
Bilangan 1 dicoret, karena jelas 1 bukan merupakan bilangan prima. Selanjutnya ditinjau bilangan 2. Lingkarilah bilangan 2, dan coret semua bilangan kelipatan 2, karena semua bilangan kelipatan 2 pasti dapat dibagi 2. Sehingga semua bilangan kelipatan 2 bukan bilangan prima. Cara tersebut dilanjutkan untuk bilangan 3, sehingga diperoleh tabel seperti berikut.
15
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Setelah semua kelipatan 3 dicoret, lanjutkan dengan menyelidiki bilangan setelah 3 yang belum dicoret apakah prima atau bukan. Jika prima lingkarilah bilangan tersebut kemudian coretlah semua bilangan kelipatan bilangan tersebut. Lakukan sampai semua bilangan antara 1 dan 100 tersebut dilingkari atau dicoret. Hasil akhir dari proses di atas adalah sebagai berikut. Bilangan dalam tanda lingkaran merupakan bilangan prima.
Cara ini dikenal dengan nama “Saringan Eratosthenes”. Ada banyak sejarah matematika dapat digunakan sebagai sumber belajar yang dapat menginspirasi siswa belajar aspek bilangan. Salah satunya adalah sejarah tentang bagaimana Gauss menyelesaikan soal dari gurunya, yaitu “Berapa jumlah bilangan antara 1 sampai dengan 100?”. Sejarah tentang bagaimana Gauss menyelesaikannya dapat Anda peroleh di dalam berbagai literatur baik berupa buku maupun dari website.
Bagaimana
mencari
sumber-sumber
belajar
matematika
dengan
memanfaatkan internet dapat Anda pelajari di Modul Pemanfaatan Internet sebagai Media Pencari dan Publikasi Konten Pembelajaran Matematika SD/SMP.
16
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
B. Kegiatan Belajar 2: Topik-topik Matematika Rekreasi tentang Bilangan Dalam suatu kegiatan belajar, guru sudah mengisahkan cerita-cerita inspiratif dan menunjukkan manfaat mempelajari topik yang dipelajari. Proses pembelajaran pun berlangsung, dan Guru menggunakan LCD proyektor dengan program presentasi yang
bagus
untuk
memaparkan
penjelasannya.
Siswa
terlihat
antusias
mendengarkan penjelasan guru. Tetapi seiring waktu, perlahan-lahan terlihat beberapa siswa mulai kelihatan tidak konsentrasi, walau tidak gaduh beberapa siswa asyik dengan aktifitasnya sendiri, dan hanya sebagian kecil yang masih memperhatikan penjelasan guru. Mengapa kondisi seperti ini bisa terjadi? Ada apa dengan siswa-siswa ini? Bagaimana cara membuat mereka untuk tetap terus bersemangat dalam belajar?
Kondisi siswa menjadi bosan sering terjadi dalam proses pembelajaran, bahkan ketika guru sudah memanfaatkan program komputer untuk media memberi penjelasan. Mendengarkan penjelasan dengan melihat paparan, pada awalnya memang menarik, tetapi kebosanan bisa saja segera menjangkiti siswa. Kebosanan dapat disebabkan karena siswa kurang menemukan tantangan. Siswa bisa diberikan tantangan sesuai dengan tingkat kemampuan siswa bersangkutan. Salah satu strategi untuk mengatasi hal ini adalah dengan mendesain pembelajaran yang melibatkan siswa melakukan kegiatan berpikir yang terpadu dengan keterampilan psikomotoriknya, seperti kegiatan mendesain dan membuat sesuatu. Kegiatan melakukan eksplorasi fakta-fakta yang menarik tentang bilangan, permainan bilangan, dan penggunaan alat peraga merupakan cara-cara yang bisa digunakan agar siswa terlibat aktif dalam pembelajara, dengan mengintegrasikan kegiatan berpikir dengan keterampilan psikomotoriknya. Kegiatan ini juga dapat dimanfaatkan untuk memberi tantangan kepada siswa. 1.
Permainan Mengurutkan Bilangan.
Permainan ini dapat digunakan dalam pembelajaran untuk mencapai kompetensi dasar “Menentukan letak bilangan pada garis bilangan”.
17
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Langkah-langkah permainan: (1) Berdasarkan tanggal lahir masing-masing, siswa diminta menghitung umurnya, yaitu berapa tahun dan berapa bulan lebihnya. (2) Setiap siswa menuliskan umurnya di selembar kertas, (3) Guru meminta siswa maju satu per satu dengan membawa kertas bertuliskan umur masing-masing. Siswa yang bilangan tahunnya lebih besar, berdiri di sebelah kanan. Sebaliknya, apabila bilangan tahunnya lebih kecil maka berdiri di sebelah kiri siswa sebelumnya, apabila bilangan tahunnya sama maka dilihat bilangan bulannya. (4) Satu persatu siswa maju dan menempatkan diri. (5) Guru mengatakan semakin ke kanan bilangan semakin besar itu artinya semakin di kanan siswa berdiri, siswa tersebut lebih tua umurnya. Semakin ke kiri ditempati siswa yang lebih muda. Besaran yang dihitung dapat diganti dengan tinggi tubuh, berat badan, banyak uang saku yang dimiliki, jumlah saudara di rumah dan lain sebagainya. Selanjutnya permainan dilanjutkan dengan alat bantu. Guru menyiapkan potonganpotongan kertas bertuliskan bilangan 1 sampai dengan 30. Satu per satu, siswa mengambil dengan acak dan menempelkannya di papan tulis. Biarkan siswa memilih menempel di sebelah kiri atau kanan bilangan sebelumnya berdasarkan bilangan yang ia peroleh. Kegiatan menentukan letak bilangan pada garis bilangan dapat dikemas dalam suatu permainan dengan langkah-langkah berikut. (1) Beritahukan kepada siswa bahwa di sudut kiri depan kelas terletak bilangan 1 dan di sudut kanan terletak bilangan 20. Bayangkan ini sebagai garis bilangan, (2) Dipilih salah seorang siswa untuk maju ke depan dan ditempeli salah satu bilangan antara 1 sampai dengan 20 di punggungnya. Siswa tersebut tidak tahu bilangan yang ditempel di punggungnya, (3) Siswa lain membantu menempatkan bilangan yang ditempel di punggung siswa pada garis bilangan dengan cara memberi aba-aba “geser ke kiri/kanan” berapa langkah sampai pada posisi yang sesuai dengan bilangan yang tertempel di punggung, (4) Apabila siswa sudah berada pada posisi yang tepat, siswa terpilih tersebut menebak bilangan yang tertempel di punggungnya.
18
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
2.
Permainan “Sumbangkan Bilanganmu”
Permainan ini dapat digunakan untuk pembelajaran kompetensi dasar “Melakukan operasi hitung campuran” di kelas III. Permainan “sumbangkan bilanganmu” dapat dimainkan secara kompetisi dalam satu kelompok yang terdiri dari tiga, empat atau lima siswa. Misalkan permainan ini dimainkan oleh lima siswa. Empat siswa masingmasing menyebutkan sebuah bilangan satuan. Pemain ke lima menyebutkan sebuah bilangan. Pemain ke lima bertugas mengoperasikan bilangan yang disebutkan oleh keempat temannya agar menghasilkan bilangan yang ia sebutkan. Apabila siswa tersebut tidak bisa, dia diberi nilai 0, dan diberi nilai 1 apabila mampu dengan benar menjawabnya. Para pemain bergiliran sebagai pemain kelima. Tingkat kesulitan permainan ini dapat ditingkatkan misalnya dengan aturan urutan bilangannya tidak boleh diubah seperti contoh berikut ini. Contoh Pemain pertama sampai dengan ke empat berturut-turut memilih bilangan-bilangan 9, 2, 7, 4. Pemain ke lima memilih 100. Pemain ke lima menuliskan (9 × 2 + 7 ) × 4 = 100
3.
Fakta Seputar Bilangan 9
Beberapa fakta tentang bilangan 9 terlihat unik dan menarik. Hal ini terjadi sebagai akibat sistem bilangan berbasis sepuluh yang digunakan. Perkalian dengan 9 Perhatikan pola berikut: 9 × 2 = 18 9 × 3 = 27 9 × 4 = 36 9 × 5 = 45 9 × 6 = 54 9 × 7 = 63 9 × 8 = 72 9 × 9 = 81
19
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Perhatikan hasil perkalian di atas. Perhatikan bilangan yang menempati puluhan dari atas ke bawah dan bilangan satuan dari bawah ke atas. Perhatikan jumlah kedua bilangan tersebut. Ternyata jumlahnya selalu sama dengan 9. Jadi dapat ditunjukkan bahwa setiap bilangan kelipatan sembilan, apabila bilangan penyusunnya dijumlahkan hasilnya adalah 9 atau kelipatan 9. Contoh Bilangan 18 tersusun atas angka 1 dan 8. 1+ 8 = 9
Bilangan 945 tersusun atas angka 9, 4, dan 5. 9 + 4 + 5 = 18
Fakta menarik lain yang dapat ditunjukkan dari bilangan 9 adalah “setiap bilangan apabila dikurangi
jumlah bilangan penyusunnya hasilnya merupakan bilangan
kelipatan 9”. Contoh Bilangan 24 angka penyusunnya adalah angka 2 dan 4. 24 − (2 + 4 ) = 18
18 merupakan bilangan kelipatan 9 Bilangan 225 tersusun atas angaka-angka 2,2, dan 5. 225 − (2 + 2 + 5) = 216
216 merupakan kelipatan 9 ditunjukkan dengan 216 dibagi 9 hasilnya bilangan bulat, yaitu 24.
20
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
4.
Pola Penjumlahan yang Menarik
Perhatikan pola berikut 1=1 1+ 2 +1 = 2 + 2 1+ 2 + 3 + 2 +1 = 3 + 3 + 3 1+ 2 + 3 + 4 + 3 + 2 +1 = 4 + 4 + 4 + 4 1+ 2 + 3 + 4 + 5 + 4 + 3 + 2 +1 = 5 + 5 + 5 + 5 + 5 1+ 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 +1 = 6 + 6 + 6 + 6 + 6 + 6 1+ 2 + 3 + 4 + 5 + 6 + 7 + 6 + 5 + 4 + 3 + 2 +1 = 7 + 7 + 7 + 7 + 7 + 7 + 7 1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 7 + 6 + 5 + 4 + 3 + 2 +1 = 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 +1 = 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9
Eksplorasi lebih lanjut dari pola di atas dapat dilakukan dengan cara membawa hasil di kanan ke dalam bentuk perkalian, sehingga diperoleh pola baru sebagai berikut 1=1 1+ 2 +1= 2× 2 1+ 2 + 3 + 2 +1= 3× 3 1+ 2 + 3 + 4 + 3 + 2 +1= 4× 4 1+ 2 + 3 + 4 + 5 + 4 + 3 + 2 +1= 5×5 1+ 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 +1= 6× 6 1+ 2 + 3 + 4 + 5 + 6 + 7 + 6 + 5 + 4 + 3 + 2 +1= 7× 7 1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 7 + 6 + 5 + 4 + 3 + 2 +1= 8×8 1+ 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 +1= 9×9
5.
Bilangan Palindromik
Perhatikan pola berikut
1× 1 = 1 11× 11 = 121 111 × 111 = 12321 1111 × 1111 = 1234321 11111 × 11111 = 123454321 111111 × 111111 = 1234565432 1 1111111 × 1111111 = 1234567654 321
11111111 × 11111111 = 1234567876 54321 111111111 × 111111111 = 1234567898 7654321
21
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Bilangan hasil perkaliannya, urutan digit bilangan tersebut apabila dibaca dari kanan ke kiri dan dari kiri ke kanan akan sama. Bilangan semacam ini disebut bilangan palindromik. Bilangan palindromik dapat dibentuk dengan melibatkan operasi penjumlahan. Kegiatan membentuk bilangan palindromik dapat diberikan kepada siswa untuk melatih kemampuan operasi aritmatika. Prosedur membentuk bilangan palindromik: (1) Pilih sembarang bilangan yang terdiri atas dua digit atau lebih, (2) Susun bilangan baru dengan cara membalik susunan bilangan awal, (3) Jumlahkan kedua bilangan, (4) Periksa hasil penjumlahannya. Apakah hasilnya bilangan palindromik? (5) Apabila hasilnya bukan bilangan palindromik, ulangi proses nomor (2). Dengan bilangan awal bilangan hasil penjumlahannya. Contoh. Dipilih bilangan 16 Dibalik, menghasilkan bilangan 61 Dijumlahkan. 16 + 61 = 77 77 merupakan bilangan palindromik. Contoh. Dipilih bilangan 94 Dibalik, menghasilkan bilangan 49 Dijumlahkan. 94 + 49 = 143 143 bukan merupakan bilangan palindromik. Bilangan 143 dibalik cara penulisannya, menghasilkan 341. Dijumlahkan. 143 + 341 = 484 484 merupakan bilangan palindromik. Kegiatan membentuk bilangan palindromik dapat dimanfaatkan dalam pembelajaran kompetensi dasar “Melakukan penjumlahan dan pengurangan bilangan sampai 500” di kelas II.
22
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
6.
Bilangan Sempurna
Bilangan sempurna adalah bilangan yang dapat dinyatakan sebagai jumlah semua bilangan faktornya yang bukan dirinya sendiri. Contoh Faktor-faktor dari 6 adalah 1, 2, 3, dan 6. Karena 6 = 1 + 2 + 3 , yaitu jumlah semua bilangan faktornya selain dirinya sendiri, jadi 6 merupakan bilangan sempurna. Contoh 28 merupakan bilangan sempurna. Faktor-faktor dari 28 adalah 1, 2, 4, 7, 14, dan 28. Jumlah dari faktor-faktor 28 selain 28 adalah 1 + 3 + 4 + 7 + 14 = 28
Jadi 28 adalah bilangan sempurna. Kegiatan mencari bilangan sempurna, bisa dijadikan kegiatan yang menantang bagi siswa. Kegiatan ini dapat digunakan untuk pembelajaran pada kompetensi dasar ”Menentukan kelipatan dan faktor bilangan” di kelas IV. Selain beberapa kegiatan yang dapat dilakukan oleh siswa di atas, dalam beberapa keadaan guru dituntut untuk memberikan sesuatu yang unik. Sesuatu yang unik tersenut dapat berupa beberapa permainan yang dapat dibuat sendiri oleh guru dengan melibatkan operasi-operasi aritmatika sederhana dan beberapa sifat yang disebabkan oleh nilai tempat pada sistem bilangan basis sepuluh yang digunakan. Permainan bilangan ini dapat diberikan dalam kemasan tebak-tebakan dengan guru sebagai penebak. Di bawah ini disajikan contoh permainan bilangan beserta penjelasannya. 7.
Bilangan 22
Bilangan 22 dapat dibentuk dengan cara yang unik. Caranya adalah sebagai berikut. (1) Pilih sembarang tiga angka. Tiga angka tersebut melambangkan tiga buah bilangan satuan, jumlahkan ketiganya (2) Bentuklah semua bilangan puluhan yang bisa terbentuk dari angka-angka yang telah dipilih. Terbentuk enam bilangan puluhan, jumlahkan keenamnya, (3) Bagilah hasil penjumlahan pada langkah ke dua dengan
23
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
hasil penjumlahan pada langkah pertama.
Berapapun angka yang dipilih pada
langkah 1, hasil akhirnya adalah 22. Contoh. Siswa memilih bilangan 1, 3 dan 6. Jumlahnya 1 + 3 + 6 = 10
Bilangan yang dapat disusun dari angka-angka 1, 3, dan 6 adalah bilangan 13, 16, 31, 36, 61, dan 63. Jumlahnya 13 + 16 + 31 + 36 + 61 + 63 = 220
Hasil pembagian langkah ke 2 dengan langkah pertama. 220 : 10 = 22
Penjelasan Ambil sebarang tiga bilangan satuan, misalkan a , b , dan c . Jumlahnya a + b + c . Bilangan yang dapat dibentuk dari a,b, dan c adalah ab , ac , ba , bc , ca , dan cb . Bilangan-bilangan puluhan yang terbentuk dapat ditulis sebagai berikut. ab = 10 a + b ac = 10a + c ba = 10b + a bc = 10b + c ca = 10c + a cb = 10c + b
Apabila enam bilangan tersebut dijumlahkan
(10a + b ) + (10a + c ) + (10b + a ) + (10b + c ) + (10c + a ) + (10c + b ) = 22a + 22b + 22c = 22(a + b + c ) Hasil baginya 22(a + b + c ) : (a + b + c ) = 22
24
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
8.
Bilangan 1089
Bilangan 1089 dapat dibentuk dengan cara yang unik. Berikut ini cara membentuknya. (1) Pilih sebarang bilangan ratusan, (2) Balik urutan penulisan bilangan yang telah dipilih sehingga menghasilkan bilangan baru. Bilangan baru dibentuk dengan menempatkan angka pada satuan menjadi angka pada posisi ratusan, dan angka pada satuan menempati ratusan. (3) Hitung selisih kedua bilangan yang diperoleh, (4) Balik urutan penulisan bilangan hasil langkah ke-(3), sehingga menghasilkan bilangan baru, (5) Jumlahkan bilangan hasil langkah ke-(3) dengan bilangan hasil langkah ke-(4). Berapapun bilangan awal yang dipilih, hasil akhirnya adalah 1089. Contoh Dipilih bilangan 247. Dibalik penulisannya 742. Dihitung selisihnya. 742 − 247 = 495 . Hasil langkah 4, dibalik penulisannya menghasilkan bilangan 594. Jumlah bilangan hasil langkah 3 dan langkah 4. 495 + 594 = 1089
Penjelasan
Misalkan bilangan yang dipilih rps . Bilangan rps dapat ditulis sebagai
100r +10 p + s . Bilangan baru yang dibentuk dengan cara membalik urutan penulisannya adalah spr , dan dapat ditulis sebagai 100s +10 p + r .
100r + 10 p + s = 100r − 100 + 10 p + 90 + s + 10 = 100(r − 1) + 10( p + 9) + (s + 10)
100(r − 1) + 10( p + 9) + (s + 10) 100s + 10 p +r 100(r − s − 1) + 10(9 ) + (s − r + 10 )
25
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Bilangan hasil pengurangan 100(r − s − 1) + 10(9 ) + (s − r + 10 ) disusun terbalik satuan dan ratusannya, membentuk bilangan 100(r − s + 10 ) + 10(9 ) + (r − s − 1) . Kedua bilangan dijumlahkan 100(r − s − 1) + 10(9 ) + (s − r + 10 ) + 100(r − s + 10 ) + 10(9 ) + (r − s − 1)
100(r − s − 1) + 10(9) + (s − r + 10) 100(r − s + 10) + 10(9) + (r − s − 1) 100r − 100 s − 100 + 100r − 100 s + 1000 + 10(9 ) + 10(9 ) + s − r + 10 + r − s − 1 = 1000 − 100 + 10(18) + 10 − 1
= 1000 − 100 + 10(10 ) + 10(8) + 9 = 1000 − 100 + 100 + 10(8) + 9
= 1000(1) + 100(0 ) + 10(8) + 9 = 1089
9. Tebak Mata Dadu Beberapa permainan menebak angka dapat dibuat dengan menggunakan trik yang
melibatkan operasi bilangan. Agar lebih menarik permainan bisa didesain dengan menggunakan alat bantu, misalnya dadu. Berikut langkah-langkah permainan “tebak bilangan mata dadu”. Permainan dilakukan dengan langkah-langkah (1) Siapkan tiga buah dadu, dengan warna berbeda. Misalnya hitam, putih, dan biru, (2) Seorang sukarelawan melemparkan 3 buah dadu, dan mencatat bilangan yang dinyatakan oleh mata dadu yang keluar. Mata dadu ini harus dirahasiakan, (3) Penebak memberi perintah kepada sukarelawan agar bilangan yang ditunjukkan oleh mata dadu hitam dikalikan dengan 2, (4) Tambah hasil pada langkah ke-(3) dengan 5, (5) Kemudian kalikan dengan 5 hasil pada langkah ke-(4), (6) Hasil langkah ke-(5) ditambah dengan bilangan yang ditunjukkan oleh mata dadu biru, (7) Kalikan hasil pada langkah ke-(6) dengan 10, (8) Tambahkan hasil pada langkah ke-(7) dengan bilangan yang ditunjukkan oleh mata dadu putih, (9) Sukarelawan menyebutkan angka total yang ia peroleh, (10) penebak bertugas menebak bilangan yang keluar dari tiga dadu yang dilempar.
26
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Contoh Misalkan mata dadu yang keluar adalah 5 untuk dadu hitam, 3 untuk dadu biru, dan 1 untuk dadu putih. Bedasarkan perintah dari penebak, sukarelawan melakukan perhitungan sebagai berikut. (1) Mengalikan dadu hitam dengan 2. 2 × 5 = 10
(2) Menambahkan hasil langkah (1) dengan 5. 10 + 5 = 15
(3) Mengalikan hasil langkah (2) dengan 5. 15 × 5 = 75
(4) Menambahkan hasil langkah (3) dengan dadu biru. 75 + 3 = 78
(5) Mengalikan hasil langkah (4) dengan 10. 78 × 10 = 780
(6) Menambaihkan hasil langkah (6) dengan dadu putih. 78 + 1 = 781
Cara menebak, penebak mengurangi hasil perhitungan terakhir dengan 250, hasilnya 531. 781 − 250 = 531
Digit/angka pada nilai ratusan merupakan mata dadu hitam, puluhan merupakan dadu biru, dan satuan merupakan dadu putih. Penjelasan
Sukarelawan melemparkan 3 buah dadu. Misalkan mata dadu yang keluar adalah h , b , dan p .
Bilangan yang ditunjukkan oleh mata dadu hitam dikalikan dengan 2, menghasilkan 2h . Tambah hasilnya dengan 5, hasilnya adalah 2h + 5 , kemudian kalikan dengan 5. 5(2h + 5) = 10h + 25
Hasil pada langkah ke- (4) ditambah dengan bilangan yang ditunjukkan oleh mata dadu biru. 10h + 25 + b
27
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
Kalikan hasilnya dengan 10. 10(10h + 25 + b ) = 100h + 250 + 10b
Tambahkan dengan bilangan yang ditunjukkan oleh mata dadu putih. 100h + 250 + 10b + p dapat ditulis 100h + 10b + p + 250 . Hasil akhir perhitungan ini diberitahukan kepada penebak. Sukarelawan menyebutkan hasil akhir yang ia peroleh. Agar dapat menebak dengan tepat, yang harus dilakukan oleh penebak adalah mengurangi bilangan hasil dengan 250.
100h + 10b + p + 250 − 250 = 100h + 10b + p 10. Permainan 50 Permainan 50 dapat digunakan untuk mengembangkan kemampuan siswa
memecahkan masalah. Permainan ini dimainkan oleh dua kubu pemain, dapat dimainkan oleh dua orang atau dua kelompok. Dengan bilangan 1, 2, 3, 4, 5, dan 6 kedua pihak memilih bilangan secara bergantian dan menjumlahkan secara kumulatif sampai mencapai 50. Pemain terakhir yang memilih bilangan sehingga jumlahnya mencapai 50 dinyatakan sebagai pemenang. Contoh. Pemain I
Pemain II
3
3 6
1
2
4
19 23
6 6
29 35
5 1
40 41
4
28
15 17
2
Pemain pertama menjadi pemenang
9 10
5
5
Jumlah
45 50
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
11. Memanfaatkan Lipat Kertas dalam Belajar Perkalian Pecahan
Perkalian 3 dengan 5, biasa diperagakan dengan menghitung banyak buah apel dalam 3 keranjang yang masing-masing berisi 5 buah apel. Lalu bagaimana peragaan apabila akan dilakukan operasi
1 1 × ? 2 2
Alat bantu menjelaskan konsep operasi perkalian pecahan dapat didesain sendiri oleh guru secara sederhana dengan memanfaatkan bahan-bahan yang murah. Diharapkan dengan alat bantu ini kegiatan belajar siswa menjadi menyenangkan. Salah satu alat bantu yang bisa dibuat adalah dengan kegiatan melipat kertas. Siswa harus sudah memahami konsep pecahan. Dengan kata lain, siswa harus sudah mengerti bahwa bilangan
1 1 adalah satu adalah satu (suatu benda/himpunan) yang dibagi 2 atau 2 2
bagian dari dua bagian yang sama. Demikian juga dengan tiga
bagian yang sama, demikian juga dengan
1 , adalah satu bagian dari 3
1 dan seterusnya. Alat yang 4
diperlukan dalam kegiatan ini adalah beberapa lembar kertas. Contoh. Perkalian
1 1 × . 2 2
Sediakan selembar kertas. Bilangan
1 dapat diperagakan dengan melipat kertas 2
menjadi dua bagian yang sama.
29
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
1 1 × diperagakan dengan melipat setengah kertas hasil lipatan di atas 2 2 menjadi dua bagian yang sama. Kemudian permukaannya diarsir.
Perkalian
Untuk menunjukkan hasilnya, lipatan kertas tadi dibuka, maka akan terlihat pola seperti berikut ini.
atau
Terlihat daerah yang diarsir mempunyai luas seperempat luas kertas. 1 1 1 × = 2 2 4
C. Ringkasan
1.
Maksud rekreasi matematika pada aspek bilangan adalah kegiatan menyenangkan yang membangkitkan minat dan mendorong siswa untuk belajar aspek bilangan.
2.
Kegiatan menyenangkan dapat dilakukan dengan mempelajari latar belakang sejarah baik dari penemuan konsep maupun penemu konsep tersebut, eksplorasi
30
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
fakta-fakta yang menarik tentang bilangan, permainan bilangan, dan penggunaan alat peraga. 3.
Kegiatan melakukan eksplorasi fakta-fakta yang menarik tentang bilangan, permainan bilangan, dan penggunaan alat peraga merupakan cara-cara agar siswa terlibat aktif dalam pembelajaran untuk mengintegrasikan kegiatan berpikir dengan keterampilan psikomotoriknya. Kegiatan ini juga dapat dimanfaatkan untuk memberikan sesuatu yang menantang bagi siswa.
4.
Pemanfaatan matematika rekreasi dalam proses pembelajaran dapat dipakai pada saat membuka pembelajaran dengan memberikan motivasi pembelajaran, melakukan eksplorasi dan elaborasi pada kegiatan inti pembelajaran, maupun memberi tindak lanjut pada kegiatan menutup pelajaran.
D. Latihan/Tugas
1.
Coba Anda cari/ciptakan permainan matematika yang bisa digunakan dalam pembelajaran aspek bilangan.
2.
Coba Anda identifikasi entitas/perihal lokal di daerah Anda yang bisa dimanfaatkan untuk pembelajaran bilangan. Entitas lokal dapat berupa permainan rakyat/tradisional Nusantara, sistem kalender, sistem satuan yang berlaku lokal, dan lain sebagainya.
3.
Temukan strategi agar selalu memenangi permainan 50.
4.
Dengan memanfaatkan sifat-sifat unik bilangan 9, coba Anda ciptakan suatu permainan bilangan.
5.
Coba Anda desain pembelajaran aspek bilangan dengan memanfaatkan matematika rekreasi
E. Umpan Balik
Keberhasilan Anda dalam mempelajari modul ini dapat dilihat dari: sejauh mana keterampilan Anda mampu menyelesaikan dua dari 4 tugas/soal (nomor 1 s.d 4), dan,
31
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
sejauh mana Anda mampu menyelesaikan soal no 5 yaitu mendesain pembelajaran aspek bilangan
dengan memanfaatkan matematika rekreasi serta mendiskusikan
dengan teman sejawat di KKG. Apakah Anda sudah berhasil mengerjakan semuanya? Tentukan persentase kemampuan Anda menyelesaikan soal dengan pedoman sebagai berikut ini. Item soal
1
2
3
4
5
Persentase
0-10%
0-10%
0-10%
0-10%
0-60%
Apabila persentase anda menyelesaikan tugas dan latihan mencapai sekurangkurangnya 75%, anda telah berhasil mempelajari bagian 1 modul ini, dan Anda dapat melanjutkan mempelajari bagian selanjutnya dari modul ini. Apabila anda belum mencapai 75 %, baca dan pelajari kembali bagian 1 modul ini, dan coba kerjakan lagi tugas dan latihan tersebut serta mendiskusikan dengan teman sejawat di KKG. Apapun hasil latihan Anda, sebaiknya Anda selalu optimis dan mau terus mencoba mempraktekkan saran-saran yang perlu dilakukan dalam melaksanakan proses pembelajaran seperti pada pada Modul
ini. Jika Anda lakukan hal itu secara
konsisten, akhirnya Anda akan mendapati kembali ternyata diri Anda pantas dinyatakan sebagai guru yang professional. Anda akan dinyatakan professional tidak hanya dalam mengelola pembelajaran matematika yang bertujuan melatih siswa memahami konsep, namun juga mampu memotivasi siswa untuk belajar matematika. Selamat berkarya F. Daftar Pustaka
Bradley, Michael. J. 2006. The Birth of Mathematics: Ancient Time to 1300. New York: Chelsea House. Cooper, R.F. 1979. Recreational Mathematics. Quarry Bay Hongkong: Longman. Depdiknas. 2006. Standar Isi Depdiknas.
32
Mata Pelajaran Matematika SD/MI. Jakarta:
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Dantzig, Tobias. 2005. Number: The Language of Science. New York: Pearson education, Inc. Gregersen, Erik. 2011. The Britanica Guide to The History of Mathematics. New York: Encyclopedia Britanica, Inc. Hartojo. 1989. Matematika Rekreasi. Klaten: PT Intan Pariwara. Kennedy, Leonard M; Tipps, Steve; Johnson, Art. 2008. Guiding Children’s Learning of Mathematics. USA: Thomson Wadsworth. Posamentier, Alfred S. 2003. Math wonders to inspire teachers and students. Alexandria: ASCD. Reid, Gavin. 2007. Memotivasi Siswa di Kelas: Gagasan dan Strategi. Jakarta: PT. Indeks Puri Media. Salah Kaduri Haza’a; Dyastriningrum; Ibnu Ngathoillah. 2004. Sejarah Matematika Klasik dan Modern. Yogyakarta: UAD PRESS. Untung Trisna Suwaji. 2010. Bahan Ajar Diklat PPPPTK Matematika. Yogyakarta.
33
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Bilangan
34
II PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK GEOMETRI DAN PENGUKURAN
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
II. PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK GEOMETRI DAN PENGUKURAN
Kompetensi guru yang akan ditingkatkan melalui proses belajar dengan menggunakan modul ini adalah: (1) Menyediakan berbagai kegiatan pembelajaran untuk mendorong peserta didik mencapai prestasi belajar secara optimal (6.1), (2) Menyediakan berbagai kegiatan pembelajaran untuk mengaktualisasikan potensi peserta didik, termasuk kreativitasnya (6.2), (3) Bangga menjadi guru dan percaya pada diri sendiri (14.2), dan (4) Berkomunikasi dengan teman sejawat dan komunitas ilmiah lainnya secara santun, empatik dan efektif (17.1).
Geometri merupakan salah satu cabang matematika yang banyak digunakan dalam kehidupan. Salah satu kegunaan geometri permukaan datar adalah dalam menentukan luas dan keliling suatu daerah. Berpadu dengan seni dan ilmu arsitektur, geometri dan trigonometri digunakan dalam membuat bentuk-bentuk bangunan. Selain geometri pada bidang datar, terdapat kajian geometri pada bidang melengkung dikenal dengan geometri non-euclid. Geometri non-Euclid memainkan peran sentral dalam Teori Relativitas Umum yang merupakan kajian penting dalam Fisika untuk memahami alam semesta. Mengingat hal-hal tersebut maka Modul II ini membahas pemanfaatan matematika rekreasi dalam pembelajaran aspek geometri dan pengukuran. Setelah mempelajari modul ini Anda diharapkan mampu : 1.
Menyusun bahan penugasan matematika untuk siswa SD terkait dengan sejarah matematika aspek geometri dan pengukuran.
2.
Mendeskripsikan
fakta
unik
seputar
geometri
dan
pengukuran
dalam
pembelajaran matematika di SD.
35
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
3.
Mengidentifikasi topik-topik matematika rekreasi tentang geometri dan pengukuran untuk pembelajaran matematika di SD.
Untuk membantu Anda menguasai kemampuan tersebut, dalam Modul II ini disajikan pembahasan yang dikemas dalam dua kegiatan belajar (KB) sebagai berikut. Kegiatan Belajar 1 : Sejarah matematika terkait geometri dan pengukuran. Kegiatan Belajar 2 : Topik-topik
matematika
rekreasi
tentang
geometri
dan
pengukuran. A. Kegiatan Belajar 1: Sejarah Matematika Terkait Geometri dan Pengukuran Apakah Anda sering mendapati siswa Anda tidak antusias mengikuti pembelajaran, bahkan di awal-awal proses pembelajaran? Sesering apakah Anda menjumpai kesulitan mengawali pembelajaran geometri?
Pada awal pembelajaran siswa perlu dimotivasi agar terbangun sikap positif terhadap matematika khususnya terhadap topik yang akan dipelajari. Cerita-cerita sejarah yang berisi manfaat geometri dapat digunakan untuk membangkitkan minat siswa, karena siswa mengetahui manfaat mempelajari suatu topik geometri. Berikut ini beberapa sejarah terkait geometri. 1.
Geometri di Sungai Nil
Sejarah geometri berawal di Mesir. Pada zaman dahulu, Mesir merupakan daerah gurun yang kering dan tandus. Hanya sedikit wilayah yang bisa ditanami, salah satu wilayah yang bisa ditanami adalah wilayah di sepanjang lembah Sungai Nil. Di musim semi, terjadi banjir akibat hujan yang turun di hulu sungai yang terletak bermil-mil di bagian selatan. Banjir tahunan ini membawa lumpur yang menyuburkan, oleh karena itu Sungai Nil disebut “Hadiah bagi Mesir”. Tetapi sayangnya, banjir ini juga menghanyutkan batas-batas tanah pertanian para petani.
36
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Sehingga setiap tahun para petani harus merundingkan kembali batas-batas tanah mereka. Tak jarang hal ini menimbulkan sedikit perselisihan.
Gambar 2.1 Tali Pembuat Sudut Siku-siku Untuk mengatasi hal ini, kerajaan mempunyai suatu tim untuk menentukan kembali batas-batas tanah petani. Sesuai dengan namanya, “harpenodapta”, yang kurang lebih artinya adalah “orang-orang yang merentangkan tali”. Tim ini menggunakan seutas tali sebagai alat untuk menentukan batas tanah. Dengan seutas tali ini mereka bisa membuat sudut siku-siku, sehingga garis batas yang lurus dapat ditentukan. Dengan alat ini dapat dibuat segitiga siku-siku, yang apabila dilipatduakan akan tepat membentuk persegipanjang yang merupakan petak tanah pertanian. Demikianlah perkembangan geometri bermula dari kebutuhan mengukur tanah, oleh karena itu geometri berasal dari dua kata yaitu “geo” yang berarti “bumi” dan “metron” yang berarti “mengukur”. Geometri berkembang sebagai akibat dari permasalahan yang dihadapi manusia, kemudian manusia mencari pemecahannya. 2.
Thales
Pada zaman Yunani kuno, untuk memperkirakan jarak kapal dari pantai, para pegawai pelabuhan dan pelaut melakukannya dengan cara melihat besar-kecilnya kapal dilihat dari pantai. Para pelaut dan pegawai pelabuhan Yunani menginginkan cara yang tepat untuk mengukur jarak sebenarnya. Akhirnya mereka meminta Thales memberikan nasihat. Setelah berpikir beberapa saat, Thales pun mulai menjalankan strateginya. Mula-mula Thales meletakkan dua tanda di pantai (titik dan A dan B ). Ketika terlihat sebuah
37
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
kapal di laut, dia berdiri di tanda pertama ( A ) dan membuat garis lurus darinya sampai ke bibir pantai di mana kapal terlihat (garis AC ). Lalu dia melakukan hal serupa dari tanda kedua (garis BC ). Kemudian dia menarik garis ketiga yang tegak lurus dari garis pertama dan memotong garis kedua di D (garis AE ). Terakhir dia menarik garis keempat yang tegak lurus garis ketiga dan melalui tanda kedua (garis
EB ). kapal C
laut daratan
A
D E
B Setelah garis-garis dibuat, dia mulai mengukur. Dia tahu bahwa panjang BD dibanding panjang DC sama dengan panjang ED dibanding panjang DA sama dengan panjang BE dibanding panjang AC . Thales menggunakan sifat-sifat segitiga yang sebangun untuk memecahkan masalah ini. Sehingga dia dapatkan jarak kapal dari titik A adalah AC =
DA × BE DE
Bukan hanya mengukur jarak kapal dari pantai saja, dengan usaha yang cerdas dan dengan memanfaatkan geometri bahkan perhitungan jarak yang sangat jauh seperti keliling bumi pun dapat dilakukan.
38
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
3.
Eratosthenes
Berdasarkan tulisan para astronom sebelumnya, Eratosthenes tahu bahwa pada tanggal 21 Juni di tahun itu matahari akan terletak pada titik balik utara, yang 0 letaknya pada 23,5 lintang utara. Pada hari itu, semua sumur di Siena dapat dilihat
sampai ke dasarnya, tidak ada bagian yang gelap tertutup bayangan dinding sumur. Artinya di Siena saat itu, matahari benar-benar tegak-lurus dengan permukaan bumi. Sementara pada saat yang sama di Alexandria, bayangan tugu-tugu membentuk sudut
7,120 . Alexandria adalah kota yang terletak 5000 stadia (satuan jarak yang digunakan pada masa itu) di utara dan dalam garis bujur yang sama dengan Siena. Melihat fakta itu, Eratosthenes yakin bahwa bumi memang bulat. Sehingga dia memperoleh kesamaan.
Sudut juring yang dibentuk oleh Siena, pusat bumi, dan Alexandria dibanding sudut lingkaran sama dengan jarak Siena-Alexandria dibanding keliling bumi.
7,12
Alexandria
Siena 7,12
pusat bumi
7,12 5000 = 360 keliling bumi 5000 × 360 keliling bumi = 7,12 = 252809 Dengan konversi 1 stadia kurang
lebih sama dengan 185 meter, maka keliling bumi hasil perhitungan Eratosthenes adalah 46.769 kilometer. Hasil pengukuran manusia zaman sekarang menunjukkan panjang 40.041,47 kilometer. Bandingkan! Sejarah matematikawan lainnya dalam bidang geometri adalah kisah Archimedes menemukan nilai pi dengan pendekatan poligon dalam suatu lingkaran. Kisah-kisah tersebut banyak dimuat di website.
39
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
B. Kegiatan Belajar 2. Topik-topik Matematika Rekreasi tentang Geometri dan Pengukuran Di sekolah telah tersedia alat peraga matematika, tetapi jenis dan jumlahnya sangat terbatas. Lalu apa yang dapat dilakukan oleh guru, agar kelas geometrinya kembali bergairah dan siswa menuai sukses? Pembelajaran pengukuran di Sekolah Dasar dimulai dari pembelajaran mengenali kuantitas-kuantitas (besaran) yang ada di sekitar siswa, seperti berat dan panjang suatu benda, membandingkan dan mengukurnya. Pembelajaran geometri bangun datar, dimulai dengan mengelompokkan bangun datar, mengenal sisi dan sudut, dan menghitung keliling dan luasnya. Dalam pembelajaran konsep bangun datar, penggunaan alat peraga merupakan hal yang penting untuk dilakukan. Konstruksi pengetahuan siswa tentang bangun datar akan lebih cepat terbentuk dengan membawa siswa menyentuh dan mengamati bangun datar bersangkutan, daripada dengan melukiskan sketsa dan memberikan definisi kepada siswa. Dengan penggunaan alat peraga, diharapkan siswa akan lebih antusias belajar. Salah satu strategi untuk membangkitkan antusiasme siswa belajar geometri dapat dilakukan dengan cara-cara (1) Mendorong siswa untuk melihat sesuatu dari sisi geometris yang menguntungkan; (2) Menggunakan geometri sebagai sarana/alat untuk kegiatan pemecahan masalah; (3) Mengilustrasikan sifat-sifat geometri; dan (4) Menggunakan model-model untuk ilustrasi dan perbandingan; 1.
Kegiatan Belajar dengan Memanfaatkan Alat Peraga
Pengenalan terhadap bangun-bangun datar, dapat dilakukan dengan berbagai cara. Benda-benda yang dijumpai di sekitar kita dapat digunakan sebagai contoh dari bangun datar yang dimaksud. Misalnya, permukaan meja adalah bangun yang berbentuk persegi panjang, piring berbentuk lingkaran, kuda-kuda penyangga atap berbentuk segitiga, kaleng minuman berbentuk tabung, dan lain sebagainya. Kadangkadang benda-benda tersebut tidak benar-benar ideal, sebagai contoh konsep bangun yang dimaksud. Oleh karena itu perlu alat peraga yang memang dibuat dengan lebih
40
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
sempurna sebagai contoh model bangun geometri. Dengan meluangkan sedikit waktu, guru dapat membuat sendiri model-model bangun datar. a.
Model Bangun Datar
Satu set alat peraga model bangun datar berisi bangun-bangun berbentuk segiempat sembarang, jajargenjang, trapesium, persegi panjang, persegi, belah ketupat, layanglayang, segitiga sembarang, segitiga siku-siku, segitiga tumpul, segitiga lancip, segitiga sama kaki, segitiga sama sisi, dan lingkaran. Apabila diperlukan bisa dilengkapi dengan bangun datar sisi lengkung yang lain, yaitu ellips. Alat ini bisa dibuat sendiri oleh guru dengan bahan yang murah, misalnya dengan bahan kertas karton. Apabila tersedia cukup waktu dan dana, bisa digunakan bahan mika atau aklirik. Alat peraga buatan sendiri ini dapat dimanfaatkan pada pembelajaran untuk mencapai standar kompetensi “Mengenal unsur-unsur bangun datar sederhana” dan ”Memahami unsur dan sifat-sifat bangun datar sederhana”. b. Papan Berpaku Setelah siswa megenal bangun datar melalui model-model bangun datar, eksplorasi bangun datar lebih jauh dapat dilakukan dengan papan/kertas berpetak atau papan berpaku. Alat ini bisa dimanfaatkan sebagai “jembatan” bagi siswa untuk mensketsa/melukis bangun datar setelah mereka mengenal bangun datar secara fisik dengan alat peraga model bangun datar. Cara pembuatan papan berpaku sangat sederhana yaitu dengan menancapkan pakupaku pada pola petak-petak di papan kayu. Untuk melukis bangun datar di papan berpaku digunakan karet gelang, seperti pada gambar berikut.
41
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
Pemanfaatan lebih lanjut dari papan berpaku adalah untuk mengenalkan konsep luas daerah suatu bangun datar. Luas daerah suatu bangun datar ditunjukkan dengan banyaknya persegi satuan yang ada di dalam bangun datar. Pertama-tama siswa diperkenalkan persegi satuan, yaitu persegi yang dibatasi oleh karet dengan panjang sisi sama dengan 1 satuan. Kemudian dengan menggunakan karet, siswa diminta untuk membuat beberapa persegi panjang yang berbeda pada papan berpaku. Mungkin hasilnya seperti gambar berikut ini.
I
II
III
IV
Siswa diminta menghitung persegi satuan yang ada di dalam persegi panjang yang dibatasi karet, dan menuliskannya pada tabel. Hasilnya seperti tabel berikut. Panjang
Lebar
Banyaknya persegi satuan
Luas
di dalam karet
persegipanjang
Persegipanjang I
2
1
2
Persegipanjang II
6
4
24
Persegipanjang III
3
2
6
Persegipanjang IV
9
1
9
….
Papan berpaku juga dapat dimanfaatkan pada pembelajaran yang mengaitkan topik lain dengan aspek geometri. Contohnya pola bilangan kuadrat dapat ditunjukkan
42
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
dengan membuat persegi dengan panjang sisi 1, 2, 3, dan seterusnya, kemudian dihitung luasnya, sehingga ditemukan pola bilangan kuadrat yaitu 1, 4, 9, … . 2.
Kegiatan Mengonstruksi dengan Melipat Kertas
a.
Membuat Sudut
Kegiatan membuat sudut dengan melipat kertas dapat dimanfaatkan pada pembelajaran untuk kompetensi dasar “Menentukan besar sudut dengan satuan tidak baku dan satuan derajat”. 1) Sudut 90 o
Membuat sudut 90 o dilakukan dengan langkah-langkah sebagai berikut. (1) Sediakan selembar kertas, (2) Lipat dengan lipatan lurus secara sembarang, boleh secara horizontal, vertikal atau diagonal, (3) Lipat dengan lipatan yang tegak-lurus dengan lipatan sebelumnya dengan cara menghimpitkan sisi hasil lipatan sebelumnya.
90
2) Sudut 60 o
Membuat sudut 60 o dilakukan dengan langkah-langkah sebagai berikut. (1) Sediakan selembar kertas, (2) Lipat menjadi dua bagian yang sama luasnya, (3) Lipat lagi menjadi dua bagian yang sama, (4) Buka lipatan, sehingga di kertas terlihat bekas lipatan yang membagi kertas menjadi empat. Sisi kertas terbagi menjadi empat bagian yang sama panjang, (5) Lipat ujung kertas ke garis 3, lipat ujung satunya ke garis 1, (6) Hasil lipatan membentuk sudut 60 o .
43
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
60
1
2
3
1
2
3
1
2
3
Penjelasan Misalkan panjang kertas adalah 1 satuan. Panjang 1 1 AC = AB = 4 dan 2.
sin ABC =
AC AB
=
1 4 1 2
=
1 2
A
1/4
C
1/2
B
Sudut ABC = 30 o Perhatikan segitiga ABC siku-siku di C . Jadi sudut BAC = 60 o . 3) Sudut 108 o
Ambilah selembar kertas yang bentuknya memanjang seperti pada gambar. Talikan secarik kertas secara melingkar seperti pada gambar. Sudut yang terbentuk adalah sudut 108 o .
44
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
b. Membuat Bangun-Bangun Geometri
Sediakan selembar kertas berbentuk persegi, lakukan pelipatan sesuai gambar 1) Membuat Persegi
2) Membuat Persegipanjang
3) Membuat Segitiga Samakaki
45
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
4) Membuat Segitiga Siku-Siku
5) Membuat Segitiga Samasisi
Buka kembali lipatannya, lanjutkan dengan lipatan berikut.
46
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
3.
Tantangan Geometri
Salah satu cara membangkitkan antusiasme siswa adalah dengan memberi permasalahan yang menantang. Dengan diberikan tantangan, siswa dilatih untuk mencari solusi dengan beragam strategi, sehingga konsep, sifat-sifat dan prosedurprosedur yang sudah dikuasai lebih dipahami. Kemampuan matematika yang lain yang dapat dibina dengan memberikan tantangan adalah siswa diharapkan mampu mengkomunikasikan gagasannya selama proses diskusi dan berargumentasi dengan guru dan siswa lain. Setelah menemukan solusi dari tantangan yang dihadapinya diharapkan siswa memiliki sikap menghargai kegunaan matematika dalam kehidupan, yaitu memiliki rasa ingin tahu, perhatian, dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah. a.
Mengidentifikasi Bangun Datar
Setelah siswa dikenalkan dengan bangun-bangun datar dan ciri-cirinya, suatu kegiatan untuk melatih siswa mengidentifikasi bangun datar dengan mengenali ciricirinya bisa dikemas dalam sebuah permainan. Salah satunya adalah permainan “Tebaklah Aku”. Aturan permainan ini sederhana. Siswa harus menebak bangun datar yang dimaksud dan melukisnya. Guru membacakan petunjuk (clue) berisi ciri-ciri bangun datarnya. Berikut langkah-langkahnya: (1) guru membacakan satu per satu petunjuk, (2) setiap selesai membacakan satu petunjuk, sebaiknya ada jeda untuk memberi waktu siswa berpikir, (3) siswa menuliskan nama bangun setiap kali guru selesai membacakan satu petunjuk, (4) petunjuk dibaca sampai habis, dan siswa menebaknya. Contoh Petunjuk Aku mempunyai empat sisi
Jawaban Segi empat
Aku mempunyai sepasang sisi yang Persegi, persegipanjang, trapesium sejajar
Aku mempunyai sebuah sudut siku-siku
47
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
Diagonalku tidak sama panjang Gambar dan namai aku!
Trapesium!
b. Tangram
Tangram merupakan puzzle dari masa China Kuno yang menarik. Tangram dapat dibuat sendiri oleh guru. Alat ini dapat dibuat dengan bahan kertas. Sediakan kertas yang agak tebal, dan lukislah pada kertas tersebut dengan mengikuti langkah-langkah berikut: (1) Lukis persegi ABCD , (2) lukis titik M di tengah-tengah AB dan N di tengah-tengah AD , (3) lukis diagonal DB dan NM , (4) lukis garis CP tegak lurus
DB , (5) lukis PQ sejajar AB dan NR sejajar PC , (6) potonglah kertas berdasarkan pola garis yang terbentuk.
Dihasilkan tujuh potongan, yaitu 5 buah segitiga,
1
buah
persegi,
dan
1
buah
jajargenjang.
Tantangan untuk siswa adalah menyusun ketujuh potongan menjadi poligon konveks. Terdapat 13 bentuk poligon konveks yang mungkin, terdiri dari 1 buah segitiga, 2 buah segilima, 4 buah segienam, dan 6 buah segiempat. Dengan menganggap sisi persegi ABCD sama dengan satu satuan, tantangan selanjutnya untuk siswa adalah mencari keliling bangun-bangun yang terbentuk dari potongan-potongan.
48
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
c.
Tantangan dengan Soal-Soal Non Rutin
Siswa mempunyai tingkat kemampuan yang beragam. Ada siswa yang cepat menguasai materi pembelajaran, ada siswa yang sedang-sedang saja, dan ada siswa yang kurang cepat menguasai materi pembelajaran. Siswa yang berkemampuan lebih, kadang-kadang cepat menjadi bosan mengikuti pembelajaran disebabkan mereka tidak menemukan tantangan lagi. Untuk siswa seperti ini Anda dapat memberikan tantangan dengan meberikan soal-soal non rutin yang menarik. Untuk pembelajaran geometri, akan lebih baik jika anda mampu menghubungkannya dengan cerita-cerita atau bentuk-bentuk benda yang dapat dijumpai di sekitar kita. Contoh Misalnya siswa diberi tantangan untuk membagi lingkaran menjadi dua bagian yang sama luasnya, tetapi pemotongan lingkarannya tidak dengan garis lurus. Salah satu jawabannya adalah dengan seperti gambar di samping. Kemudian Anda dapat menceritakan bahwa lambang di samping merupakan lambang Yin-Yang dalam budaya Tionghoa yang salah satunya adalah lambang keselarasan alam. Aktifitas selanjutnya adalah kegiatan membuat garis pembagi lingkaran tersebut. Garis pembagi lingkaran tersebut dapat dibuat dengan membuat dua juring lingkaran kecil yang jari-jarinya setengah dari jari-jari lingkaran yang akan dibagi. Contoh Hitunglah luas daerah yang diarsir pada gambar berikut!
49
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
4.
Eksplorasi Hal-hal Menarik
Beberapa fakta yang unik dapat ditampilkan untuk membawa kegairahan belajar geometri. Kegairahan belajar mungkin disebabkan karena keunikan topik yang dipelajari, tetapi tidak menutup kemungkinan kegairahan belajar lebih lanjut disebabkan siswa menemukan manfaat dari keunikan-keunikan tersebut. a.
Rasio Emas pada Bangun Segilima
Pertama-tama setiap siswa diminta membuat segilima. Dengan selembar kertas panjang dengan lebar yang dipilih siswa sendiri, siswa diminta melipat kertas seperti pada gambar. Perhatikan hasil lipatannya. Terdapat sebuah pola bangun segilima yang terbentuk dari lipatan tersebut.
Gunakan pola segilima hasil lipatan untuk melukis segilima di kertas, kemudian lukis semua diagonal segilima. Perhatikan bahwa terbentuk bangun bintang lima di dalam segilima. Perhatikan di tengah-tengah bangun bintang lima terdapat segilima yang lebih kecil daripada segilima semula. Apabila dilukis semua diagonal dari segilima kecil ini akan terbentuk lagi bangun bintang lima yang lebih kecil daripada bangun bintang lima yang pertama. Tiap-tiap siswa melakukan kegiatan pengukuran pada segilima masing-masing. Seperti terlihat pada gambar, terdapat dua titik pada diagonal yang menyebabkan pada setiap diagonal terdapat beberapa ruas garis. Sebagai contoh pada diagonal EC terdapat ruas EI , IH , HC , CH , EH , dan CI . Untuk memudahkan pembahasan
50
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
lebih lanjut, ruas garis seperti EH dan CI dinamakan “ruas panjang” pada diagonal yang ditempatinya, EC . Jadi AG dan CF merupakan “ruas panjang”. Siswa mengukur “ruas panjang” dan diagonal yang bersesuaian, dan menuliskan hasilnya pada tabel berikut.
Panjang ruas panjang
Panjang diagonal
Perbandingan
( d )
d dan r
(r )
Perbandingan diagonal dengan panjang ruas panjangnya selalu bernilai tetap yaitu kurang lebih sebesar 1,6. Pada bangun bintang lima, rasio segmen garis panjang terhadap segmen garis yang pendek adalah 1,6. Nilai ini disebut Rasio Emas, lazim dinotasikan dengan ϕ . Sebagai contoh adalah pada diagonal AD ,
AI AD = ϕ dan =ϕ. AJ AI
Dalam 10 digit desimal ϕ = 1,6180339887. Karena konstruksi bintang lima memuat rasio emas inilah, maka bintang lima dipakai sebagai simbol-simbol yang berhubungan dengan ketuhanan. b. Rasio Emas pada Tubuh Manusia
Banyak dijumpai rasio emas pada benda-benda di sekitar kita, bahkan di tubuh kita. Salah satu rasio emas yang berkaitan dengan tubuh manusia adalah jika jarak antara pusar dan telapak kaki seseorang dianggap berjarak 1, maka tinggi seseorang kurang lebih setara dengan 1,6. Beberapa rasio emas lain yang berkaitan dengan tubuh manusia adalah (1) jarak antara ujung jari dan siku dibanding jarak antara
51
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
pergelangan tangan dan siku, (2) jarak antara garis bahu dan unjung atas kepala dibanding panjang kepala, (3) jarak antara pusar dan ujung atas kepala dibanding jarak antara garis bahu dan ujung atas kepala, (4) jarak antara pusar dan lutut dibanding jarak antara lutut dan telapak kaki, (5) jari-jari manusia memiliki tiga ruas. Perbandingan ukuran panjang dari dua ruas pertama terhadap ukuran panjang keseluruhan jari tersebut merupakan angka rasio emas, (6) lebar mulut dibanding lebar hidung, Kegiatan menunjukkan rasio emas yang berkaitan dengan tubuh manusia dapat dijadikan
kegiatan
yang
menyenangkan.
Banyak
kompetensi
yang
dapat
dikembangkan dari kegiatan ini. Selain keterampilan melakukan pengukuran dan melakukan operasi pembagian, lebih dari itu siswa diajak memahami bahwa terdapat matematika dalam penciptaan alam dan manusia. Dengan ini diharapkan terbangun sikap menghargai kegunaan matematika dalam kehidupan, memiliki rasa ingin tahu, memberi perhatian pada matematika, dan berminat mempelajari matematika. Salah satu manfaat dari pengetahuan tentang proporsi pada beberapa bagian tubuh manusia mengikuti rasio emas adalah mempermudah kita apabila kita akan melukis atau membuat patung manusia. Manfaat praktis lainnya adalah untuk mendesain bentuk-bentuk benda atau bangunan agar terlihat indah. Karena meyakini bahwa rasio emas ini adalah ukuran yang ideal sehingga benda-benda di alam terlihat indah, maka beberapa bagian bangunan zaman dahulu mempunyai perbandingan ukuran yang mengikuti rasio emas ini. C. Ringkasan
1.
Maksud matematika rekreasi pada aspek geometri dan pengukuran adalah kegiatan menyenangkan yang membangkitkan minat dan menginspirasi siswa untuk belajar geometri dan pengukuran.
2.
Salah satu strategi untuk membangkitkan antusiasme siswa belajar geometri dapat dilakukan dengan cara-cara: mendorong siswa untuk melihat sesuatu dari sisi geometris yang menguntungkan, menggunakan geometri sebagai sarana/alat
52
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
untuk kegiatan pemecahan masalah, mengilustrasikan sifat-sifat geometri, menggunakan model-model untuk ilustrasi dan perbandingan, menghadirkan sesuatu ke tangan siswa, dan menyajikan peragaan terbaik. 3.
Kegiatan menyenangkan dapat dilakukan dengan mempelajari sejarah, eksplorasi fakta-fakta yang menarik dalam geometri, kegiatan membuat bangun-bangun geometri, serta eksplorasi topik-topik geometri dengan memanfaatkan alat peraga.
4.
Sejarah geometri dapat ditinjau dari sisi sejarah penemuan konsep geometri, pemanfaatan geometri, maupun sejarah matematikawan
5.
Pemanfaatan matematika rekreasi dalam proses pembelajaran dapat dipakai pada saat membuka pembelajaran dengan memberikan motivasi pembelajaran, melakukan eksplorasi dan elaborasi pada kegiatan inti pembelajaran, maupun memberi tindak lanjut pada kegiatan menutup pelajaran.
D. Latihan/Latihan
1.
Carilah sejarah matematika terkait dengan aspek geometri.
2.
Coba Anda temukan benda di yang memuat rasio emas sekitar kita yang dapat digunakan untuk membangkitkan antusiasme siswa belajar geometri.
3.
Coba Anda desain kegiatan membuat konstruksi geometris dengan rasio emas.
4.
Berikut ini salah satu tantangan.
Coba konstruksi segitiga yang luasnya sama dengan trapesium di atas. 5.
Coba Anda desain pembelajaran Aspek Geometri dengan memanfaatkan matematika rekreasi.
53
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
E. Umpan Balik
Keberhasilan Anda dalam mempelajari modul ini dapat dilihat dari: 1. sejauh mana keterampilan Anda mampu menyelesaikan dua dari 4 tugas/soal (nomor 1 s.d 4), dan, 2. sejauh mana Anda mampu menyelesaikan soal no 5 yaitu mendesain pembelajaran aspek Geometri dengan memanfaatkan matematika rekreasi serta mendiskusikan dengan teman sejawat di KKG. Apakah Anda sudah berhasil mengerjakan semuanya? Tentukan persentase kemampuan Anda menyelesaikan soal dengan pedoman sebagai berikut ini. Item soal
1
2
3
4
5
Persentase
0-10%
0-10%
0-10%
0-10%
0-60%
Apabila persentase anda menyelesaikan tugas dan latihan mencapai sekurangkurangnya 75%, anda telah berhasil mempelajari Modul II ini, dan Anda dapat melanjutkan mempelajari bagian selanjutnya dari modul ini. Apabila anda belum mencapai 75 %, baca dan pelajari kembali Modul II ini, dan coba kerjakan lagi tugas dan latihan tersebut serta mendiskusikan dengan teman sejawat di KKG. Apapun hasil latihan Anda, sebaiknya Anda selalu optimis dan mau terus mencoba mempraktekkan saran-saran yang perlu dilakukan dalam melaksanakan proses pembelajaran seperti pada pada Modul
ini. Jika Anda lakukan hal itu secara
konsisten, akhirnya Anda akan mendapati kembali ternyata diri Anda pantas dinyatakan sebagai guru yang professional. Anda akan dinyatakan professional tidak hanya dalam mengelola pembelajaran matematika yang bertujuan melatih siswa memahami konsep, namun juga mampu memotivasi siswa untuk belajar matematika. Selamat berkarya
54
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
F. Daftar Pustaka
Bradley, Michael. J. 2006. The Birth of Mathematics: Ancient Time to 1300. New York: Chelsea House. Cooper, R.F. 1979. Recreational Mathematics. Quarry Bay Hongkong: Longman. Depdiknas. 2006. Standar Isi Depdiknas.
Mata Pelajaran Matematika SD/MI. Jakarta:
Ghyka Matila. 1977. The Geometry of Art and Life. New York: Dover Publications Inc. Gregersen, Erik. 2011. The Britanica Guide to The History of Mathematics. New York: Encyclopedia Britanica, Inc. Hartojo. 1989. Matematika Rekreasi. Klaten: PT Intan Pariwara. Holme, Audun. 2010. Geometry: Our Cultural Heritage. New York: Springer. Kawamura, Miyuki. 2001. Polyhedron Origami for Beginners. Tokyo: Nihon Vogue Co. Ltd. Kennedy, Leonard M; Tipps, Steve; Johnson, Art. 2008. Guiding Children’s Learning of Mathematics. USA: Thomson Wadsworth. Posamentier, Alfred S. 2003. Math wonders to inspire teachers and students. Alexandria: ASCD. Reid, Gavin. 2007. Memotivasi Siswa di Kelas: Gagasan dan Strategi. Jakarta: PT. Indeks Puri Media. Salah Kaduri Haza’a; Dyastriningrum; Ibnu Ngathoillah. 2004. Sejarah Matematika Klasik dan Modern. Yogyakarta: UAD PRESS. Untung Trisna Suwaji. 2010. Bahan Ajar Diklat PPPPTK Matematika. Yogyakarta.
55
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Geometri dan Pengukuran
56
III PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK PENGOLAHAN DATA
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
III. PEMANFAATAN MATEMATIKA REKREASI DALAM PEMBELAJARAN ASPEK PENGOLAHAN DATA
Kompetensi guru yang akan ditingkatkan melalui proses belajar dengan menggunakan modul ini adalah: (1) Menyediakan berbagai kegiatan pembelajaran untuk mendorong peserta didik mencapai prestasi belajar secara optimal (6.1), (2) Menyediakan berbagai kegiatan pembelajaran untuk mengaktualisasikan potensi peserta didik, termasuk kreativitasnya (6.2), (3) Mampu menggunakan matematisasi horizontal dan vertikal untuk menyelesaikan masalah matematika dan masalah dalam dunia nyata (20.8), (4) Bangga menjadi guru dan percaya pada diri sendiri (14.2), dan (5) Berkomunikasi dengan teman sejawat dan komunitas ilmiah lainnya secara santun, empatik dan efektif (17.1).
Data merupakan kumpulan fakta berupa bilangan atau segala sesuatu yang dapat dipercaya kebenarannya sehingga dapat digunakan sebagai dasar menarik suatu kesimpulan. Pertanyaan yang muncul dalam hal ini adalah: Apakah setiap bilangan dapat disebut data statistik? Jawabnya secara singkat tentu saja: tidak. Tidak semua bilangan dapat disebut data statistik, sebab untuk dapat disebut data statistik, bilangan harus memenuhi persyaratan tertentu, yaitu bilangan tadi haruslah menunjukkan suatu ciri dari suatu objek atau sekumpulan objek dan dikumpulkan secara sistematis. Pengumpulan data statistik dimaksudkan sebagai pencatatan peristiwa atau karakteristik dari sebagian atau seluruh elemen dari kumpulan objek yang diteliti. Data yang telah dikumpulkan kemudian diolah untuk memperoleh data ringkasan dari data mentah dengan menggunakan cara atau aturan tertentu. Data ringkasan yang diperoleh dari pengolahan data itu dapat berupa jumlah (total), rata-rata, persentase, dan sebagainya yang dapat disajikan dalam bentuk-bentuk tertentu seperti tabel, grafik, diagram, dan sebagainya. Mengingat pentingnya pengolahan data dalam kehidupan manusia, maka kompetensi siswa tentang pengolahan data perlu dikuasai
57
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Penolahan Data
sejak dini. Apa yang bisa dilakukan oleh guru agar siswa tertarik mempelajari materi pengolahan data dengan baik? Untuk memperjelas
hal-hal tersebut di atas maka modul III
ini membahas
pemanfaatan matematika rekreasi dalam pembelajaran aspek pengolahan data di SD. Setelah mempelajari modul ini Anda diharapkan mampu : 1.
Menyusun bahan penugasan matematika bagi siswa SD terkait dengan sejarah matematika dan / atau matematika rekreasi aspek pengolahan data.
2.
Mendeskripsikan topik-topik matematika rekreasi tentang pengolahan data untuk pembelajaran matematika di SD.
3.
Menggunakan sejarah matematika dan / atau matematika rekreasi tentang pengolahan data untuk pembelajaran matematika aspek pengolahan data di SD
Untuk membantu Anda menguasai kemampuan tersebut, maka di dalam modul III ini akan dibahas melalui tiga kegiatan belajar (KB) sebagai berikut. 1.
Kegiatan Belajar 1: Sejarah matematika terkait pengolahan data.
2.
Kegiatan Belajar 2: Topik-topik matematika rekreasi tentang pengolahan data.
3.
Kegiatan Belajar 3: Menggunakan sejarah matematika dan/atau matematika rekreasi tentang pengolahan data untuk pembelajaran matematika aspek pengolahan data di SD.
A. Kegiatan Belajar 1: Sejarah Matematika Terkait Pengolahan Data
58
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Dari fakta sejarah di atas, dapat dikatakan bahwa matematika berkembang dari aktifitas keseharian manusia. Aktifitas yang dilakukan tokoh yang satu ternyata bisa menjadi inspirasi bagi tokoh yang lain dan akhirnya berkembang menjadi suatu ilmu pengetahuan baru yang bermanfaat bagi manusia. Ketekunan seseorang untuk mengerjakan sesuatu dengan baik akan menghasilkan sesuatu yang berharga bagi umat manusia. Mari kita ingat kembali bagaimana cerita seorang bocah berusia 4 tahun, agak tuli dan bodoh di sekolah, pulang ke rumahnya membawa secarik kertas dari gurunya. Ibunya membaca kertas tersebut, "Tommy, anak Ibu, sangat bodoh. Kami minta Ibu untuk mengeluarkannya dari sekolah." Sang Ibu terhenyak membaca surat ini, namun ia mempunyai tekad yang teguh, "anak saya Tommy, bukan anak bodoh. Saya sendiri yang akan mendidik dan mengajar dia." Tommy bertumbuh menjadi Thomas Alpha Edison, salah satu penemu terbesar di dunia. Dia hanya bersekolah sekitar 3 bulan, dan secara fisik agak tuli, namun itu semua ternyata bukan penghalang untuk maju. Thomas Alpha Edison menjadi seorang penemu dengan 1.093 paten penemuan atas namanya. Siapa yang sebelumnya menyangka bahwa bocah tuli yang bodoh sampaisampai diminta keluar dari sekolah, akhirnya bisa menjadi seorang genius? Gambaran itulah yang bisa menginspirasi kita bahwa semua anak mempunyai potensi untuk dikembangkan. Siapa saja tokoh-tokoh yang sudah berjasa mengembangkan teori peluang dan statistika? Berikut ini beberapa tokoh yang mempunyai kontribusi besar terhadap perkembangan ilmu peluang dan statistik di dunia. Tokoh-tokoh yang lain dapat Anda cari dengan memanfaatkan internet atau buku sejarah matematika. Bagaimana cara mencari sumber-sumber belajar matematika dengan memanfaatkan internet dapat Anda pelajari pada Modul Penggunaan Internet dalam Pembelajaran Matematika di SD. Contoh 3.A Berikut ini disajikan contoh sejarah beberapa matematikawan dunia yang mempunyai kontribusi besar terhadap perkembangan statistika. Dengan membaca sejarah para matematikawan tersebut diharapkan dapat menambah wawasan Anda bahwa matematika berkembang dari kehidupan di sekitar kita. Sejarah para matematikawan
59
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Penolahan Data
juga dapat Anda gunakan untuk memotivasi siswa agar mau belajar matematika dengan baik, sehingga nantinya akan lahir matematikawan baru dari Indonesia. 1.
Karl Pearson
Karl Pearson (27 Maret 1857 – 27 April 1936) adalah kontributor utama perkembangan awal statistika hingga C.F.Gauss sebagai disiplin ilmu tersendiri. Ia mendirikan Departemen Statistika Terapan di University College London pada tahun 1911, yang merupakan jurusan statistika pertama kali untuk tingkat universitas di dunia. Hasil karya Pearson mencakup semua aplikasi yang luas dalam pengembangan statistik matematis, yaitu bidang biologi, epidemiologi, antropometri, obat-obatan dan sejarah sosial. Pada tahun 1901, dengan Weldon dan Galton, ia mendirikan jurnal Biometrika dimana objeknya adalah mengembangan teori statistik. Dia menjadi editor jurnal ini sampai kematiannya. Dia juga mendirikan jurnal Annals of Eugenics (sekarang Annals of Human Genetics) pada tahun 1925. Dia menerbitkan Drapers Company Research Memoirs sebagian besar untuk memberikan catatan output dari Departemen Statistik terapan dan tidak dipublikasikan di tempat lain. Buah pikiran Pearson banyak menopang metode statistik klasik yang umum digunakan sekarang ini. Contoh kontribusinya adalah: Koefisien korelasi, Metode momen, Sistem Pearson pada kurva kontinu, Chi Distance, P-value. teori tes hipotesis dan teori statistik keputusan, Pearson ChiSquare test, Principal componen analysis
2.
Sir Ronald Aylmer Fisher, FRS
Sir Ronald Aylmer Fisher, FRS (17 Februari 1890 – 29 Juli 1962) ahli statistik, evolusi biologi, dan genetika C.F.Gauss Inggris. Richard Dawkins menyebutnya “Pengganti Darwin terbesar”, dan ahli sejarah statistik Anders Hald menyebutkan “Fisher adalah seorang jenius yang dengan sendirian menciptakan dasar-dasar ilmu statistik modern”. Beberapa sumbangan Fisher pada dunia statistik adalah Prinsip disain eksperimen, maximum likelihood, sufficiency, ancilarity, Diskriminator linier Fisher, dan Fisher information. Dalam artikelnya tahun 1924 “On a distribution yielding the error functions of several well known statistics” diperkenalkan chi-square Karl Pearson dan t-student, hasil analisisnya yang lain adalah distribusi z (yang saat ini sangat dikenal bersama distribusi F). Kontribusi ini membuatnya menjadi tokoh utama statistika abad 20 B. Kegiatan Belajar 2 : Berbagai Topik Matematika Rekreasi Tentanf Pengolahan
60
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
B. Kegiatan Belajar 2 : Berbagai Topik Matematika Rekreasi Tentanf Pengolahan Data
Perhatikan apa yang disampaikan seorang siswa bernama Hafiz dengan temannya berikut ini. Setiap hari temanteman satu kelas pasti ada yang datang ke rumah saya. Pada minggu pertama bulan Januari 2011 saya menuliskan banyaknya teman yang datang sebagai berikut ini.
Data
X
X X
X X
X X X
X
X X X X
X X X X X
Senin Selasa Rabu Kamis Jumat Sabtu Minggu x : mewakili satu orang teman
Berdasar apa yang dituliskan Hafiz, renungkan pertanyaan berikut ini. Apa yang bisa dibaca dari tabel tersebut? Berapa banyaknya teman yang datang setiap harinya? Berapa rata-rata banyaknya teman Hafiz yang datang setiap hari? Berapa banyak teman Hafiz yang datang pada minggu tersebut? Dalam satu bulan kira-kira berapa banyak teman Hafiz yang datang? Berapa kira-kira banyaknya teman Hafiz yang datang setiap minggu selama satu bulan? Apakah data yang dituliskan Hafiz dapat disajikan dalam bentuk lain? Pertanyaan-pertanyaan tersebut dapat dikembangkan dengan mengambil topik-topik menarik di sekitar kita. Topik-topik tersebut antara lain sebagai berikut ini. 1.
Hal yang Paling Disukai
Setiap siswa memiliki hal-hal yang paling disukai. Mereka mungkin menyukai buahbuahan, makanan, film, buku, acara TV, penyanyi, binatang piaraan, rasa es krim, atau apapun. Jika siswa dalam satu kelas ditanya tentang buah-buahan yang paling disukai, maka jawaban yang didapatkan akan beragam. Hal yang paling disukai ini dapat Anda gunakan untuk memberikan tugas kepada siswa kelas VI SD dalam mencapai standar kompetensi “Mengumpulkan dan mengolah data”. Tugas yang
61
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Penolahan Data
Anda berikan dapat berupa tugas mengumpulkan informasi dengan menanyakan sebuah pertanyaan atau beberapa pertanyaan kepada teman lain. Kegiatan mengumpulkan informasi dengan menanyakan sebuah pertanyaan atau beberapa pertanyaan kepada orang lain biasanya dikenal dengan nama survei. Untuk mencapai kompetensi dasar “ mengumpulkan dan membaca data, serta mengolah dan menyajikan data dalam bentuk tabel”, Anda dapat menugasi siswa untuk melakukan survei teman satu kelas untuk mencari tahu hal yang paling mereka sukai dalam beberapa kategori. Contoh 3.B.1. Menugasi siswa berkaitan dengan hal yang paling disukai Anda dapat menugasi siswa bekerja secara kelompok (satu kelompok paling banyak 4 orang) untuk mengumpulkan data melalui survei terhadap teman satu kelas tentang topik tertentu. Anda bisa memberi contoh kategori yang bisa dipilih siswa misalnya “buah yang paling disukai”. Anda kemudian memberi contoh jawaban survei yang mungkin, misalnya pisang, pepaya, nanas, durian, jeruk, manggis, dan apel. Tugas yang harus dikerjakan siswa adalah menanyai teman sekelasnya tentang buah yang paling disukai diantara pisang, pepaya, nanas, durian, jeruk, manggis, dan apel. Sebelum melakukan survei, masing-masing kelompok diminta membuat tabel frekuensi dan menentukan frekuensi dari respons dengan cara sebagai berikut ini. Buatlah tabel yang terdiri dari tiga kolom dengan rincian sebagi berikut: (1) Pada kolom pertama tulislah jawaban survei yaitu pisang pada baris pertama, kemudian pepaya pada baris kedua, nanas, durian, jeruk, manggis, apel, dan baris terakhir “buah lain”. (b) Pada kolom kedua tulislah banyaknya orang yang memilih tiap jawaban, dengan cara membuat batang hitungan (/) untuk tiap jawaban yang diberikan. Misalkan siswa Anda bertanya pada salah satu teman, dan teman tersebut menjawab buah yang paling disukai adalah apel, suruhlah siswa Anda membuat satu batang hitungan (/) pada baris yang tertulis apel. Apabila jawabannya bukan pisang, pepaya, nanas, durian, jeruk, manggis, dan apel suruhlah siswa Anda membuat satu batang hitungan (/) pada baris yang tertulis “buah lain”. (3) Pada kolom ketiga tulislah jumlah total batang hitungan (/) untuk tiap jawaban. Contoh tabel dapat dibuat seperti ini.
62
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Tabel Hasil Survei tentang Buah yang Paling Disukai Siswa Kelas VI Abimanyu SD Purwosari Jawaban Survei Pisang
Banyaknya Siswa yang Memilih //// /
Total 6
Pepaya ………. Buah lain
Setelah selesai melakukan survei Anda dapat meminta siswa menempelkan hasil pekerjaan kelompoknya di papan tulis. Kegiatan ini dapat Anda kembangkan dengan suruhan yang lain untuk membantu siswa mencapai kompetensi “menyajikan data ke bentuk tabel, diagram gambar, batang dan lingkaran” dan “menafsirkan sajian data”. 2.
Gambar, Teks, Grafik, dan Tabel tentang Suatu Fakta
Matematika terkait dengan semua bidang kehidupan kita. Dalam rutinitas keseharian kita bisa menemukan matematika di sekeliling kita baik itu berupa gambar, teks, grafik, maupun tabel. Dengan menggunakan gambar, teks, grafiks, dan tabel siswa dapat diberi tugas terkait dengan pengumpulan informasi atau data, pengolahan data, penyajian data, dan analisis data. a.
Gambar tentang Suatu Fakta
Suatu gambar dapat memberikan informasi tentang fakta tertentu. Sebagai contoh diberikan gambar yang menunjukkan fakta orang berbelanja sebagai berikut ini.
Sumber: http://www.shoppedornot.com/?p=2024
Gambar 3.1 Orang berbelanja
63
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Penolahan Data
Berdasar gambar tersebut, Anda dapat menugasi siswa untuk membantu siswa mencapai kompetensi “mengolah dan menyajikan data dalam bentuk tabel”. Anda dapat meminta siswa mengamati gambar tentang fakta orang berbelanja tersebut, kemudian diminta mengerjakan tugas penyajian data dari gambar yang diberikan. Adapun data yang disajikan dapat berupa banyaknya jenis belanjaan, harga barang, daftar barang pada setiap blok, dan sebagainya. Untuk pengembangan pembelajaran Anda dapat menugasi siswa mencari gambar yang menunjukkan fakta tertentu dari koran, majalah, atau foto, kemudian siswa diminta mengamati gambar, dan menyajikan data atau informasi dari gambar tersebut. b. Teks tentang Suatu Fakta
Menyiram Tanaman Aghnia dan Barizi setiap sore ditugasi untuk menyiram tanaman bunga di Rumah. Mereka membuat kesepakatan setiap awal bulan mereka melambungkan koin sebanyak hari dalam bulan itu. Jika muncul sisi bergambar burung garuda, maka Aghnia yang mengangkat ember dan jika muncul angka 100 Aghnia yang menyirami tanamannya.
Teks yang menyajikan fakta tertentu banyak berada disekitar kehidupan kita. Berdasar teks tersebut Anda dapat membantu siswa mencapai standar kompetensi “menyelesaikan masalah yang berkaitan dengan data”, dengan cara siswa berpasangan dengan teman sebangkunya ditugasi untuk mengumpulkan informasi dengan mencoba mempraktekkan proses melambungkan mata uang
untuk
menentukan banyaknya kegiatan mengangkat ember dan menyiram tanaman sebagaimana yang dilakukan Aghnia dan Barizi. Masing-masing pasangan diminta mengumpulkan data atau informasi terkait dengan banyaknya kegiatan mengangkat ember dan menyiram tanaman misalnya dalam kurun waktu tertentu (misal enam bulan). Setelah itu mereka juga dapat ditugasi untuk menganalisis data, dan menyajikan data tersebut.
64
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
c.
Grafik tentang Suatu Fakta
Grafik yang menyajikan fakta tertentu banyak ditemui di sekitar kehidupan kita.
Banyaknya Anak
Peringkat Penyakit Menular pada Anak Tahun 2010 70 60 50 40 30 20 10 0
Banyaknya
Jenis Penyakit
Grafik tersebut banyak terpampang di dinding-dinding ruangan di suatu kantor, atau
ada di majalah-majalah. Dengan aktifitas tetentu Anda dapat membantu siswa mencapai kompetensi dasar “menafsirkan hasil pengolahan data”, dengan cara menugasi siswa untuk mencari grafik di suatu kantor atau di majalah, kemudian dengan
suruhan
tertentu
Anda
dapat
meminta
siswa
menganalisis
dan
menginterpretasi grafik tersebut. Sebagai contoh di Puskesmas terdapat grafik tentang peringkat penyakit menular pada anak di tahun 2010. Berdasar grafik tersebut Anda dapat menugasi siswa untuk menganalisis data dengan mengajukan beberapa pertanyaan. Pertanyaan yang dapat Anda ajukan misalnya penyakit apa yang menempati peringkat tertinggi penyakit menular pada anak tahun 2010 menurut grafik di atas? Disamping itu berdasarkan grafik di atas Anda dapat menugasi siswa untuk mengkomunikasikan informasi tersebut dengan cara menyajikan data melalui diagram yang berbeda misalnya diagram lingkaran.
65
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Penolahan Data
66
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
d. Tabel tentang Suatu Fakta Banyak informasi dalam kehidupan keseharian yang disajikan dalam bentuk tabel. Sebagai contoh diberikan
tabel
tentang prestasi matematika siswa Indonesia
dibandingkan siswa dari negara lain sebagai berikut ini.
NO
Perbandingan Internasional Prestasi Matematika Indonesia
Sumber : Programm e for I nte rnational Student A ssessment (PISA ) 20 03
Berdasar
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
N eg ar a Ho ng k o ng- Ch ina J e pan g K or ea S el an di a B ar u F in lan di a Ca na da A us tr ali a I ng gri s S wi s s B el gi a P er an c is A us tr ia I s la nd ia De nm ark Li th ua ni a S we di a I rla nd ia No rwe gi a Ce k o A m e rik a S er ik a t J e rm an Hu ng ari a Ru s ia S pa ny o l P ol an di a La t v ia I ta li a P or tu ga l G ree c e Lu x em bo urg I s rae l T ha ila nd B ul ga ria A rg en ti na M e x ic o Ch il i M a c ed on ia A lb an ia I nd o n es i a B ra z ili a P er u
Ra ta- Ra ta Ni l ai 56 0 55 7 54 7 53 7 53 6 53 3 53 3 52 9 52 9 52 0 51 7 51 5 51 4 51 4 51 4 51 0 50 3 49 9 49 8 49 3 49 0 48 8 47 8 47 6 47 0 46 3 45 7 45 4 44 7 44 6 43 3 43 2 43 0 38 8 38 7 38 4 38 1 38 1 36 7 33 4 29 2
tabel tersebut Anda dapat menugasi siswa untuk membantu
mereka
mencapai kompetensi dasar “mengurutkan data termasuk menentukan nilai tertinggi dan terendah” serta “menafsirkan hasil pengolahan data”. Anda dapat menugasi mereka dengan mengajukan beberapa pertanyaan untuk menggali informasi seperti siapa yang menduduki peringkat tertinggi, peringkat terendah, yang termasuk 5 besar, menurut data pada tabel tersebut. Anda juga dapat menugasi siswa untuk membantu mereka mencapai kompetensi dasar “menyajikan data ke bentuk tabel, diagram gambar, batang, dan lingkaran”, misalnya dengan suruhan sajikan informasi yang ada pada tabel tersebut kedalam bentuk diagram batang .
67
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Penolahan Data
C. Kegiatan
Belajar
3:
Matematika Rekreasi
Menggunakan
Sejarah
Matematika
dan/atau
tentang Pengolahan Data untuk Pembelajaran
Matematika Aspek Pengolahan Data di SD
Seorang guru menyampaikan pada temannya sebagai berikut ini: Saya ingin membelajarkan materi aspek pengolahan data, dengan harapan siswa bisa senang dalam belajarnya, tetapi kompetensinya bisa tercapai, bagaimana caranya ya….?
Untuk membantu guru tersebut marilah kita mencoba telaah bagaimana menggunakan sejarah matematika dan/atau matematika rekreasi tentang pengolahan data untuk pembelajaran matematika aspek pengolahan data di SD. Sesuai dengan peraturan menteri pendidikan nasional Republik Indonesia nomor 41 tahun 2007 te n t a n g
standar proses untuk satuan pendidikan dasar dan menengah.
Pelaksanaan pembelajaran merupakan implementasi dari RPP yang meliputi: kegiatan pendahuluan, kegiatan inti, dan kegiatan penutup. Kegiatan pendahuluan diarahkan, antara lain untuk memberikan: (1) pemanasan berpikir, (2) apersepsi, dan (3) motivasi. Pelaksanaan kegiatan inti merupakan proses pembelajaran untuk mencapai KD yang dilakukan secara interaktif, inspiratif, menyenangkan, menantang, memotivasi siswa untuk berpartisipasi aktif, serta memberikan ruang yang cukup bagi prakarsa, kreativitas, dan kemandirian sesuai dengan bakat, minat, dan perkembangan fisik serta psikologis siswa. Sedangkan dalam kegiatan penutup, guru dapat bersamasama dengan siswa membuat rangkuman/simpulan pelajaran, melakukan penilaian dan/atau refleksi terhadap kegiatan yang sudah dilaksanakan secara konsisten dan terprogram, memberikan umpan balik terhadap proses dan hasil pembelajaran, merencanakan kegiatan tindak lanjut dalam bentuk pembelajaran remedi, program pengayaan, layanan konseling dan/atau memberikan tugas baik tugas individual
68
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
maupun kelompok sesuai dengan hasil belajar siswa, dan menyampaikan rencana pembelajaran pada pertemuan berikutnya. Misalkan Anda akan membelajarkan matematika agar siswa mencapai SK. 4 yaitu “mengumpulkan dan mengolah data”, dimana SK. 4 tersebut terdiri dari 3 KD yaitu: 4.1 Mengumpulkan dan membaca data, 4.2
Mengolah dan menyajikan data dalam
bentuk tabel, dan 4.3 Menafsirkan sajian data. Anda dapat melaksanakan pembelajaran untuk mencapai KD 4.1 dan 4.2 selama 3 jam pelajaran. Tujuan yang akan dicapai melalui pembelajaran ini adalah siswa dapat: (1) mengumpulkan data melalui survei, dan (2) membuat tabel frekuensi dan menentukan frekuensi data. Pada
pembelajaran sebelumnya Anda dapat
memberitahukan kepada siswa bahwa untuk pertemuan yang akan datang siswa diminta membawa penggaris, pensil warna, selotip, dan kertas gambar, untuk digunakan sebagai peralatan membuat tabel frekuensi yang akan di pajang di kelas. Pada saat pendahuluan Anda harus menyampaikan kegiatan pembelajaran yang akan Anda lakukan, misalnya Anda menyampaikan bahwa selama 3 x 35 menit, kalian akan bekerja berkelompok untuk mengumpulkan data atau informasi tentang apa yang paling banyak disukai oleh teman dalam satu kelas, berdasarkan kategori tertentu. Kategori tersebut bisa berupa Film, Acara TV, Binatang Piaraan, Novel, Penyanyi atau Kelompok Penyanyi, Buku Cerita, Mata Pelajaran Sekolah, Olah Raga, Makanan, Warna, Kegiatan Setelah Sekolah, dan Permainan. Untuk memberi motivasi siswa dalam mempelajari materi ini, Anda dapat menceritakan sejarah Thomas Alpha Edison, bahwa anak yang sekolahnya pada awalnya bodoh, karena mau berusaha dengan keras akhirnya dia bisa jadi terkenal. Anda mengingatkan bahwa semua pasti bisa melakukannya, harus sungguh sungguh, dan jangan pantang menyerah supaya bisa seperti yang diperlihatkan oleh Thomas Alpha Edison. Pada kegiatan inti Anda harus memberitahukan kepada siswa apa yang harus mereka lakukan, dan setelah mereka selesai mengerjakan tugas, hasil tugas apa yang harus mereka serahkan. Sebagai contoh Anda dapat menugasi siswa dengan suruhan sebagai berikut ini. (1) Buatlah kelompok yang terdiri dari 4 anggota, untuk mempermudah berkelompoklah dengan teman yang dekat dengan tempat duduk
69
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Penolahan Data
kalian, (2) Misalkan tugas yang Anda berikan adalah sebagai berikut . Kelompok kalian harus mencari hal-hal yang paling disukai teman sekelas kalian melalui survei.. Kalian harus memilih sebuah kategori, dan usahakan tiap kelompok kategorinya berbeda. (3) Setelah kelompok kalian memilih kategori tertentu, kalian harus mendiskusikan dengan kelompok kalian apa-apa yang terkait dengan kategori itu, untuk ditanyakan pada teman kalian. (4) Kalian harus melakukan survei terhadap teman kelas kalian. Mulailah survei kalian dengan menanyakan teman kelas kalian dengan pertanyaan sebagai berikut ini. Yang mana yang tertulis dalam tabel berikut merupakan yang paling kamu sukai? (5) Setelah selesai melakukan survei kalian harus membuat tabel frekuensi dan menentukan frekuensi dari respons, seperti tabel pada contoh 3.B.1 di atas. Pada kegiatan penutup Anda bisa meminta siswa memajang tabel di dinding kelas mereka. Untuk melatih siswa berkomunikasi dengan baik, Anda bisa menugasi mereka untuk mengungkapkan temuan mereka tentang hal yang paling disukai temanteman sekelasnya. Sebagai kegiatan tindak lanjut, Anda bisa menugasi kelompok tersebut melakukan survei terhadap siswa di lain kelas, kemudian mereka diminta membuat tabel baru menggunakan data baru itu, kemudian membandingkan dengan hasil yang sudah diperoleh dari kelasnya. D. Ringkasan 1. Rekreasi matematika aspek pengolahan data adalah kegiatan menyenangkan yang membangkitkan minat siswa mempelajari dan memahami konsep pengolahan data. 2. Matematika rekreasi aspek pengolahan data, adalah topik-topik atau fakta-fakta menarik yang ada di sekitar kehidupan, yang dapat digunakan sebagai wahana untuk melakukan kegiatan menyenangkan yang membangkitkan minat siswa mempelajari dan memahami konsep pengolahan data. 3. Topik-topik menarik yang dapat dimanfaatkan untuk membelajarkan aspek pengolahan data dapat berupa hal-hal yang paling disukai, dan hal yang ada disekir kita.
70
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
4. Fakta-fakta menarik yang dapat digunakan untuk membelajarkan aspek pengolahan data dapat berupa fakta teks, fakta gambar, fakta tabel, dan fakta grafik. 5. Pemanfaatan matematika rekreasi dalam proses pembelajaran dapat digunakan pada saat membuka pembelajaran dengan tujuan memberi motivasi untuk belajar, melakukan eksplorasi dan elaborasi pada kegiatan inti pembelajaran, maupun memberi tindak lanjut pada kegiatan menutup pelajaran. E. Latihan/Tugas Setelah Anda mencermati maksud pemanfaatan matematika rekreasi dalam pembelajaran matematika aspek pengolahan data, kerjakan dan diskusikan dengan teman sejawat Anda soal-soal berikut ini. 1.
Cobalah anda melakukan pembelajaran seperti
kegiatan pembelajaran pada
bagian 3.C diatas. 2.
Carilah teks, tabel, gambar, atau grafik yang menyajikan fakta tertentu, kemudian berikan penjelasan teks, tabel, gambar, atau grafik dari fakta tersebut akan Anda gunakan untuk membelajarkan siswa di SD untuk mencapai KD yang mana.
3.
Misalkan Anda akan membelajarkan matematika pada siswa SD untuk mencapai SK 7 yaitu “Menyelesaikan masalah yang berkaitan dengan data”, dengan KD yaitu: 7.1 menyajikan data ke bentuk tabel dan diagram gambar, batang dan lingkaran. Buatlah rancangan kegiatan pembelajaran selama 3 jam pelajaran mulai dari kegiatan pendahuluan, kegiatan inti, dan kegiatan penutup dengan terlebih dahulu menentukan tujuan pembelajaran yang akan dicapai. Gunakan hal yang paling diatkuti untuk membelajarkan KD tersebut.
F. Umpan Balik Pada latihan dan tugas nomor 1 Anda dapat meminta teman Anda mengamati pembelajaran yang Anda lakukan. Kemudian diskusikan dengan teman Anda apakah
71
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Aspek Penolahan Data
dalam melakukan kegiatan pendahuluan, kegiatan inti, dan kegiatan penutup masing kurang sesuai dengan bagian 3C tersebut. Pada latihan dan tugas nomor 2, soal tersebut akan sangat membantu Anda mencari bahan untuk melakukan aktifitas kepada siswa untuk mencapai kompetensi tertentu. Soal tersebut sudah dibahas dan dipelajari prosedur penggunaanya dengan sangat jelas pada bagian 3.B.2. Materi tersebut dapat dicari dari koran , majalah, brosur, atau mencari sumber-sumber belajar matematika dengan memanfaatkan internet, dimana caranya dapat Anda pelajari di “Modul Pemanfaatan Internet sebagai Media Pencari dan Publikasi Konten Pembelajaran Matematika”. Pada latihan dan tugas nomor 3 Anda dapat mendiskusikan dengan teman Anda apakah rancangan yang anda buat dalam melakukan kegiatan pendahuluan, kegiatan inti, dan kegiatan penutup masing sudah sesuai dengan bagian 3C tersebut. Anda dapat mengecek kebenaran jawaban latihan no 1 dengan cara mengamati masukan teman sejawat atau fasilitator. Bila tingkat pelaksanaan kegiatan Anda sudah mencapai minimal 75% berarti Anda sudah memahami materi belajar dalam Modul ini. Bila tingkat kebenaran jawaban Anda belum mencapai minimal 75%, Anda dapat mencoba ulang kegiatan yang telah Anda lakukan dengan cara meminta saran secara tertulis atau lisan kepada teman sejawat atau kepada fasilitator. Bila tingkat kebenaran jawaban Anda menjawab no 2, dan 3 sudah mencapai minimal 75% berarti Anda sudah memahami materi belajar dalam Modul ini. Bila tingkat kebenaran jawaban Anda belum mencapai minimal 75%, jangan segan untuk membaca lagi uraian materi dalam Modul ini, atau bertanyalah kepada fasilitator atau sejawat Anda yang lebih memahami. Apapun hasil latihan Anda, sebaiknya Anda selalu optimis dan mau terus mencoba mempraktekkan saran-saran yang perlu dilakukan dalam melaksanakan proses pembelajaran seperti pada pada Modul
ini. Jika Anda lakukan hal itu secara
konsisten, akhirnya Anda akan mendapati kembali ternyata diri Anda pantas dinyatakan sebagai guru yang professional.
72
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
G. Daftar Pustaka Dadi Permana, dan Triyati. 2008. Bersahabat dengan Matematika 6. Jakarta: Pusat Perbukuan. Depdiknas. Holmes, Emma E. 1995. New Directions in Elementary School MathematicsInteractive Teaching and Learning. New Yersey: A Simon and Schuster Company. History of Mathematics Home Page Krulik, S; Rudnick, J.A; 1995. The New Sourcebook for Teaching Reasoning and Problem Solving in Elementary School. London: Allyn and Bacon Muschla, Judith, A, dan Muschla, Gary, R. 2009. Hands-On Math Projects with Real life Aplications, Grade 3-5. San Francisco: Jossey Bass. Posamentier, Alfred, S. 2003.. Math Wonder to Inspire Teachers and Students. Virginia, USA: ASCD. Wikipedia- Matematika: http://id.wikipedia.org/wiki/matematika
73
PENUTUP
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
PENUTUP A. Rangkuman Salah satu tujuan siswa belajar matematika adalah agar siswa mempunyai sikap positif terhadap matematika seperti menghargai kegunaan matematika dalam kehidupan, memiliki rasa ingin tahu, perhatian, dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah. Untuk mencapai tujuan ini, salah satu cara yang dapat dilakukan adalah dengan mengemas kegiatan pembelajaran sebagai sebuah kegiatan rekreasi matematika. Bagaimana rekreasi matematika dapat mendukung tercapainya tujuan di atas? Ada berapa penjelasan untuk hal ini. Pertama, cerita-cerita sejarah matematika dapat memberikan inspirasi kepada siswa bahwa matematika merupakan kegiatan yang manusiawi, dilakukan oleh semua bangsa di dunia dan dilakukan untuk menjawab permasalahan dalam hidup manusia. Kedua, beberapa topik matematika rekreasi seperti rasio emas- dapat digunakan untuk menunjukkan kepada siswa bahwa matematika ada di sekeliling kita dan berguna untuk mencipta keindahan. Ketiga, kadang-kadang kegiatan “main-main” dalam matematika rekreasi menjadi dasar suatu kajian matematika yang “serius” yang bermanfaat di kemudian hari. Contoh dari hal ini adalah permasalah jembatan Konigsberg yang pada akhirnya merupakan awal berkembangnya Teori Graf. Oleh karena itulah modul ini menghadirkan beberapa contoh topik matematika rekreasi agar dapat anda manfaatkan dalam pembelajaran. Hanya sedikit topik matematika rekreasi dalam modul ini. Anda harus memperkayanya dengan membaca berbagai literatur berupa buku maupun materi di internet dan saling bertukar pengetahuan dengan teman sejawat. Beberapa website yang memuat topik-topik matematika yang bisa dikunjungi antara lain http://www-history.mcs.st-and.ac.uk/, http://www.maths.tcd.ie/pub/HistMath/,
http://www.archimedes-lab.org/,
http://www.mathsisfun.com/, http://www.mathfun.com/, dan
73
Penutup
http://mathworld.wolfram.com/. Masih banyak lagi sumber-sumber belajar lain. Silakan Anda mencarinya.xz
Penilaian Untuk mengetahui sejauh mana penguasaan Anda dalam mempelajari modul ini, kerjakan tes berikut ini. 1.
Ibu Hasti akan membelajarkan matematika pada siswa SD kelas VI semester 1 pada SK 4. Mengumpulkan dan mengolah data, dengan KD. 4.3 Menafsirkan sajian data. Pada pertemuan sebelumnya Ibu Hasti menugasi siswanya untuk mencari apa-apa yang tertempel di dinding kantor yang menggambarkan data sesuatu. Masing–masing siswa harus membawa minimal satu hasil pencarían, untuk selanjutnya akan digunakan sebagai bahan diskusi pada pertemuan yang akan datang.
a.
Apakah Ibu Hasti sudah memanfaatkan matematika rekreasi dalam pembelajaran yang dilakukan? Jelaskan.
b.
Fakta menarik apa yang akan dipakai Ibu Hasti untuk membelajarkan materi tersebut?
c.
Buatlah tugas, langkah utama, dan saran yang dapat Anda berikan agar Ibu Hasti dapat melakukan pembelajaran dengan baik.
d.
Cobakan apa yang telah Anda rumuskan pada langkah 3 dalam pembelajaran di kelas, kemudian diskusikan dengan teman anda.
2.
Coba Anda rencanakan pembelajaran dalam salah satu aspek bilangan, geometri dan pengukuran atau data dan penyajiannnya dengan mengintegrasikan dengan isu-isu lingkungan atau pembangunan yang berkelanjutan.
Cobakan dalam pembelajaran, catatlah semua pembelajaran yang Anda lakukan dalam jurnal belajar Anda, serta diskusikan dengan teman sejawat Anda di KKG
74
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Keberhasilan Anda dalam mempelajari modul ini dapat dilihat dari sejauh mana keterampilan Anda mampu menyelesaikan dua soal (nomor 1 s.d 2), serta mendiskusikan dengan teman sejawat di KKG. Apakah Anda sudah berhasil mengerjakan semuanya? Tentukan persentase kemampuan Anda menyelesaikan soal dengan pedoman sebagai berikut ini. Item soal
1
2
3
4
5
Persentase
0-10%
0-10%
0-10%
0-10%
0-60%
Apabila persentase anda menyelesaikan tugas dan latihan mencapai sekurangkurangnya 75%, anda telah berhasil mempelajari modul ini. Apabila anda belum mencapai 75 %, baca dan pelajari kembali modul ini, dan coba kerjakan lagi tugas dan latihan tersebut serta mendiskusikan dengan teman sejawat di KKG. Apapun hasil latihan Anda, sebaiknya Anda selalu optimis dan mau terus mencoba mempraktekkan saran-saran yang perlu dilakukan dalam melaksanakan proses pembelajaran seperti pada pada Modul
ini. Jika Anda lakukan hal itu secara
konsisten, akhirnya Anda akan mendapati kembali ternyata diri Anda pantas dinyatakan sebagai guru yang professional. Anda akan dinyatakan professional tidak hanya dalam mengelola pembelajaran matematika yang bertujuan melatih siswa memahami konsep, namun juga mampu memotivasi siswa untuk belajar matematika. Selamat berkarya
75
Penutup
76
LAMPIRAN
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
LAMPIRAN Kunci Latihan/Tugas Modul I 1.
-
2.
-
3.
Usahakan Anda menjadi pemain pertama yang bermain. Usahakan mencapai jumlah 42 terlebih dahulu.
4.
Dengan memanfaatkan sifat semua bilangan apabila dikurang dengan jumlah bilangan penyusunnya hasilnya merupakan kelipatan 9, dapat dibuat suatu permainan tebak-tebakan.
Salah satu contoh permainan tebak angka. Langkah-langkahnya penebak memberi instruksi: •
Pilih sembarang bilangan ratusan.
•
Kurangi dengan bilangan-bilangan penyusunnya.
•
Sembunyikan salah satu angka penyusun bilangan hasil itu, katakana angka yang lain.
•
Akan ditebak angka yang disembunyikan.
5.
-
77
Lampiran
Kunci Latihan/Tugas Modul II 1.
Topik-topik sejarah matematika dapat dilihat di and.ac.uk/,
http://www-history.mcs.st-
http://www.maths.tcd.ie/pub/HistMath/,
http://library.thinkquest.org/22584/, http://www.math.tamu.edu/~dallen/masters/hist_frame.htm, atau sumber-sumber lain. 2.
Perhatikan gambar Galaksi, bunga matahari, dan daun paku berikut.
http://astyxasty.wordpress.com/reality/
http://www.harunyahya.com/indo/artikel/068.htm
Sumber: http://web.me.com/paulscott.info/fractals-innature/1/S6.spiral-fern.html
78
Pemanfaatan Matematika Rekreasi Dalam Pembelajaran Matematika SD
Pada benda-benda di atas terlihat pola spiral. Bentuk spiral merupakan bentuk yang memuat rasio emas.
3.
Persegi-persegi dengan sisi-sisi yang membentuk barisan fibonachi 1, 1, 2, 3, 5, 8, 13, … dapat digunakan untuk melukis spiral. Persegi-persegi tersebut disusun seperti pada gambar, kemudian busur lingkaran dilukis melalui titik-titik sudut persegi.
Coba Anda teruskan barisan bilangan Fibonachi di atas dan hitung rasio bilangan ke
n + 1 terhadap bilangan ke n .
4.
Salah satu solusinya adalah sebagai berikut.
79
Lampiran
80
PPPPTK MATEMATIKA Jl. Kaliurang Km. 6 Sambisari, Condongcatur, Depok, Sleman, Yogyakarta Kotak Pos 31 YKBS Yogyakarta 55281 Telp. (0274) 885752, 881717, 885725, Fax. (0274) 885752 Website: www.p4tkmatematika.org E-mail:
[email protected]