ANNE GEENE
NIEUWE FEITEN WAARNEMINGEN UIT HET DIEREN- EN PLANTENRIJK EN HET HEELAL IN HET ALGEMEEN MET 74 AFBEELDINGEN IN KLEUR
ingeleid door
KEES MOELIKER © 2012 Anne Geene/ Uitgeverij De Hef Publishers ISBN: 978-90-6906-044-6 Druk- en bindwerk: Albani Drukkers, Den Haag Fotografie en tekst: Anne Geene Inleiding: Kees Moeliker Annotaties: Paul Bogaers Vormgeving: Vincent van Baar & Anne Geene Deze publicatie is mede mogelijk gemaakt door: BredaPhoto
geannoteerd door
PAUL BOGAERS
Speciale Dank: BredaPhoto, Vincent van Baar, Anne Mieke Backer, Arij de Boode, Paul Bogaers, Sanne Boogerd, Johan de Brouwer, Erick Geene, Eva Geene, Susan Meiselas, Kees Moeliker, Marjet Rens, Kevin Rooney, Paul O’Sullivan, Marc Tinnemans, Verbeke Foundation (Geert Verbeke, Carla Verbeke, Simon Delobel), Helen Westgeest, René Zagers en: Arjan de Nooy Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elketronisch, mechanisch, door fotokopieën, opnamen, of enige andere manier, zonder toestemming van de maker.
uitgeverij de
HEF
publishers--
MMXII
VERANTWOORDING
W
at wij weten is een oneindig klein gedeelte van wat wij niet weten. Bijna niets is ons volkomen bekend. Het is moeilijk te zeggen welke wetenschap het meest voor ons gedaan heeft, maar onmiskenbaar heeft de fotografie de wetenschap een grote stap voorwaarts geholpen in het kennen, herkennen en doorgeven van kennis. De Franse astronoom Gérard de Vaucouleurs zei in zijn voorwoord van ‘Astronomical Photography’ zelfs: “De fotografie alleen heeft ervoor gezorgd dat de astronomie de grootste obstakels in haar ontwikkeling heeft overwonnen: het oneindig aantal sterren en de zwakte van het licht dat we van hen ontvangen. Het feit dat al onze ideeën over de aard en het lot van de sterren radicaal zijn veranderd en dat de weidsheid van het heelal honderden miljoenen keren is vergroot in één enkele eeuw is ongetwijfeld doordat de lichtgevoelige plaat, zeker in de astronomie, heeft gefunctioneerd als het netvlies van de wetenschapper.” Ook in andere wetenschappelijke disciplines zoals de biologie heeft fotografie een belangrijke rol gespeeld. Waar bijvoorbeeld een tekening van een biologisch fenomeen (bijvoorbeeld de ontdekking van een nieuwe soort) voorheen altijd onderhevig was aan de interpretatie van de wetenschapper toont een foto de werkelijkheid zeer specifiek. Prof. dr. Paul Bogaers (zie hieronder) geeft nog een ander argument:
Het spreekt dan ook voor zich dat ik in deze uitgave heb gekozen om gebruik te maken van het medium fotografie om mijn bevindingen te tonen. Het laat de realiteit intact en is door haar mechanische karakter vrij van iedere interpretatie. Voorliggende publicatie is een presentatie van nieuwe feiten en bijzondere waarnemingen uit de wetenschap. Hoe meer we de levende natuur onderzoeken, des te volmaakter wordt onze kennis. Echter, onderzoeksresultaten worden steeds bevraagd, opnieuw onderzocht en in de meeste gevallen vervangen door nieuwe inzichten. Ik ben mij ervan bewust dat veel wetenschappelijk succes slechts van korte duur is, maar dit mag het plezier en de noodzakelijkheid van onderzoek natuurlijk niet in de weg staan. Ik mag mij wellicht ook verontschuldigen voor het feit dat veel wetenswaardigheden niet in dit werk te vinden zijn. Ik kan slechts aanvoeren dat simpelweg niet alles even interessant is en dat de omvang van het boek ook in ogenschouw moet worden genomen. Meestal zijn de getoonde bevindingen door mijzelf onderzocht en verklaard, echter voor een aantal andere onderzoeken heb ik met genoegen geput uit het zeer complete werk van eerder genoemde prof. dr. P. Bogaers
‘Abnormen’, door ingewijden geroemd om zijn veelzijdigheid maar slechts in kleine kringen bekend geworden. Het werk is zo omvangrijk dat het voor de hand lag daarvan in ruime mate gebruik te maken. Bogaers was zijn tijd ver vooruit: niet alleen behandelt hij zeer diverse wetenschappelijke onderwerpen (baanbrekend is zijn onderzoek naar de communicatie van planten en dieren maar ook vraagstukken uit o.a. scheikunde, wiskunde, biologie etc. komen aan bod), daarnaast legt hij dwarsverbanden tussen deze verschillende gebieden en plaatst het bevindingen uit verleden en heden in een nieuw perspectief:
Bogaers bevraagt ieder onderwerp opnieuw op de karakteristieke wijze van het gedurfd associëren met en het combineren van eigen onderzoek en bestaande onderzoeken. Door zijn ontvankelijke blik ontstaan nieuwe inzichten en worden bestaande scheidslijnen doorbroken. Kenmerkend is vooral zijn visie op het begrip ‘feit’ en ‘objectiviteit’. Waar de traditionele wetenschap zich vooral baseert op moderne waardes en codes zoals het streven naar volledige uitschakeling van de interventie en interpretatie van de wetenschapper teneinde een zo ‘schoon’ mogelijk resultaat te bereiken, sluit Bogaers juist niets a priori uit. Het is dan ook niet gek dat we hier en daar zelfs wat occulte invloeden tegenkomen. Zijn visie op de wetenschap is buitengewoon origineel en sommigen vermoeden dat zijn relatieve onbekendheid ook kan worden vertaald als opzettelijke uitsluiting van de reguliere wetenschap. Ik hoop dat het gebruik van zijn teksten een nieuw licht op zijn werk werpt en dat wederom nieuwe inzichten ontstaan. Het is mijn streven geweest om algemeen bevattelijk te schrijven, maar het is onvermijdelijk dat bij de lezer enige (zoölogische, botanische, chemische etc.) kennis moet worden voorondersteld. Het is een bezwaar dat alle werken die voor ruimere kringen dan de vakgeleerden bedoeld zijn, eigen is. Maar daar tegenover staat dat de talrijke afbeeldingen dit ongemak grotendeels zullen neutraliseren (hoewel men idealiter meer belangstelling zou moeten hebben voor het nut van een foto, dan voor haar schoonheid). Anne Geene
P L AT E N
Schadebeeld Mineervlieg 05.2012
001
Mineervliegen zijn vooral in de ochtend actief. De imago’s zijn klein, de lengte meestal zo’n 2 tot 3 millimeter tot een maximum van 6,5 millimeter.
Biofilms op ramen 2011 - 2012 Seizoensmetingen appendix A.001
van
Gebroken tak (hop) 002 algengroei.
17.02.2012 Zie
003
Röntgenfoto (mammografie) na breuktest voor maximale buigkracht.
Myodes glareolus
Microtus agrestis
Microtus oeconomus
Microtus arvalis
Mus musculus
Sorex minutus
Crocidura leucodon
Sorex araneus
Muizenholen 03.2012
Stippen op gevlekte rupsklaver 004
Op de foto’s is de karakteristieke vorm van het hol per muizensoort te zien.
07.2012
005
Alle stippen van 1 exemplaar. Prof. dr. P. Bogaers relateerde de vorm van deze stippen aan communicatieve vaardigehden van de plant. Zie appendix A.002
Cytoplasma van een prokaryoot 03.01.2012
006
Meestal zijn prokaryoten (organismen zonder celkern) zeer klein. Dit exemplaar is uitzonderlijk groot: schaal cm 1 : 4
Wolkenstudies jan. tot aug. 2011
007
Voorstel voor het voorspellen van het weer aan de hand van wolkenvormen. Zie appendix A.003
Naaktslak op raam
Waterlelie hartvormig 07.07.2012
008
Psychologisch fenomeen uit het plantenrijk. Zie appendix A.004
06.07.2012
Psychologisch fenomeen uit het dierenrijk. Zie appendix A.005
009
Onbekende levensvormen 2012
018
Vormen insectenvraat 2012
Bloemhoofdjes van 1 kaasjeskruidplant 038
Aan de vorm van de gaten is de insectensoort eenvoudig te herkennen. Hierboven het werk van het schuimbeestje. Zie appendix B
19.07.2012
039
Bloemhoofdjesdichtheid ligt lager in weides waar paarden grazen, dan in weides waar runderen grazen: paarden zijn beweeglijker en vertrappen meer planten.
APPENDIX A
Teksten uit ‘Abnormen’, Prof. Dr. P. Bogaers
A.001
A.006
A.002
A.007
A.003
A.004
A.008
A.005
A.009
A.013
A.010
A.011
A.012
A.014
translated texts FOREWORD – The mini-booted eagle of Anne Geene – When in 1997 Michael Berry and Andre Geim succeeded in levitating a frog in a magnetic field, they illustrated their scientific publication on the subject (European Journal of Physics 18: 307-313) with a series of tables and graphs but also with a photo of the frog in full flight. Despite it being vague and blurry, the picture tells us much more than the elaborate mathematical formulas and diagrams that explain the experiment in detail. The image—the photographic evidence—is more convincing than the description. Scientists who are skilled in photography and photographers who are active in science, add value to their field. It is therefore particularly gratifying that photographer Anne Geene presents her new book ‘New Facts’ from the animal and plant kingdom. In the book she combines the curiosity of a scientist with the sharp eye of a photographer. The results are amazing. I was fortunate to preview the content of the book and I request your attention for two zoological novelties disclosed therein. On page 14 under the title ‘Mice Holes’ you can find eight images of the holes of eight different species of rodents and insectivores. Pay particular attention to the lair of Sorex minutus, the pygmy shrew: this creature usually builds nests above the ground and only uses the corridors of other diggers. In conclusion: truly a new fact. An undisputed highlight of this book is the record on page 29, ‘Unknown life 1)
forms’. Here we clearly see fossilized organisms of which I officially describe the silhouette of the bird depicted in Figure 1 (top left), as Hieraaetus pennatus annegeenei subs. nov.1, the mini-booted eagle of Anne Geene, most likely in its dark phase. I describe this new subspecies in the manner of the forgotten Japanese palaeontologist Chonosuke Okamura, who, in the 425 million year old limestone formations of the Nagaiwa Mountains, found evidence that all currently known vertebrates originate from (miniature) organisms that look exactly the same as their current successors, but are not bigger than a few millimeters in dimension. In a series of publications entitled “Original Report of the Okamura Fossil Laboratory” he described for example fossilized mini gorillas, mini camels, mini fish, mini dogs, mini ducks, not to mention the mini-human. Altogether more than 90 new subspecies. In his description of the Japanese mini-human (Homo sapiens minilorientalis) he reports: “There have been no changes in the bodies of humans since the Silurian period, except for a growth in stature from 3.5 mm to 1700 mm.” The disturbing picture of “the head of a mini-human in the digestive tract of a dragon” shows that the dangers to which the mini-humans were exposed are not inferior to those of today. It will not surprise you that Okamura illustrated his publications with thousands of images—photographic evidence of his discoveries. The last “Original Report of the Okamura Fossil Laboratory” appeared in 1987
The holotype of Hieraaetus pennatus annegeenei subs. nov. (page 29, Fig.1 [reproduced here]; type locality: Rijsbergen, Noord-Brabant, The Netherlands) is kept in the collection of Anne Geene, The Hague, The Netherlands. Derivatio nominis: named after Anne Geene, who discovered and photographed the type (and only) specimen.
28
and nothing was heard from Chonosuke Okamura thereafter. With her natural curiosity and her photographer’s eye Anne Geene can effortlessly take over from Okamura. – Kees Moeliker – Curator, Natural History Museum Rotterdam – Chief, European Bureau, Annals of Improbable Research
PREFACE – What we know is an infinitesimal part of what we do not know. Almost nothing is known to us completely. It is difficult to say which of the sciences has done the most for us. But it is unmistakable that photography has helped science a great deal in the process of knowing, recognizing and transmitting knowledge. The French astronomer Gerard de Vaucouleurs, in his preface to “Astronomical Photography”, even said: “Photography alone has enabled astronomy to overcome the major obstacles to its progress: the sheer number of the stars, and the faintness of the light we receive of them. The fact that all our ideas on the nature and destiny of the stars have been radically altered and the depth of cosmic soundings increased a hundred million times in a single century is unquestionably due to the use of the photographic plate, in astronomy above all, as the scientist’s retina.” In other scientific disciplines such as biology, photography has played an important role. Where a drawing of a biological phenomenon has always been a subject for the interpretation of the scientist (e.g. the discovery of a new species), a photograph shows reality in its specificity. Prof. Dr. Paul Bogaers (he’ll be introduced later on) gives another argument: […] (text not translated) It goes without saying that I have chosen to make use of the medium of photography 29
to show my findings. Photography leaves reality intact and is, due to its mechanical nature, free from any interpretation. This publication is a presentation of new scientific facts and rare observations. The more we examine living nature, the more perfect becomes our knowledge. However, it is generally known that much scientific success is short-lived. Scientific outcome is questioned, re-examined and, in most cases, eventually replaced by new insights. This may not obstruct us in seeing the pleasure and necessity of research. It may also be excused that many phenomena were not selected for this book. Not everything is equally interesting and the size of the book should be considered a constraint. For the most part, the material was examined and explained by myself. However, for a number of other studies, I had the genuine pleasure of drawing from the very complete work of the aforementioned Prof. Dr. P. Bogaers’ ‘Abnormen’, which despite being praised for its versatility is unfortunately known to only a handful of insiders. The work is extensive in such a way that quoting from it becomes almost unavoidable. It was ahead of its time: not only in addressing diverse scientific topics (his research on communication of plants and animals was groundbreaking, while he also touches on issues from chemistry, mathematics, biology, etc.). Further, a new interrelation of the different topics is made via arranging research from past and present in a new perspective: […] (text not translated) Bogaers questions anew every subject in a manner that became typical of his work: audacious associations while combining his own research with existing studies. Due to his receptive attitude, he gives new insights and breaks with existing boundaries.
Characteristic is his point of view on the concept of ‘fact’ and ‘objectivity’. Where traditional knowledge is mainly based on modern values and codes (such as the pursuit of full elimination of intervention and interpretation of the scientist in order to achieve results which are as ‘clean’ as possible), Bogaers never excludes anything a priori. It is therefore not surprising that we can perceive some occult influences here and there. His vision on science is extremely original and some suspect that the fact that he is relatively unknown can also be translated as an intentional act on the part of mainstream scientists. I hope that quoting his work will shed new light on same and leads to fresh insights once again. My goal has been to write in a generally comprehensible fashion, but it is inevitable that some knowledge (zoological, botanical, chemical, etc.) must be presupposed. It is disadvantageous that all works are intended for wider circles than academics share. The numerous images should serve to largely neutralize this inconvenience, although in an ideal situation more attention should be paid to usefulness of a photograph rather than its beauty. – Anne Geene
APPENDIX B – The Scientist’s Retina Since the very beginning photography and science have been intimately linked. From international cloud atlases, asymmetrical bacteria colonies and never observed deep sky objects; science eagerly employed photography’s objective way of representing scientific output while photography appropriated the status of being science itself. Already in the first year of the invention
of photography, Henri Fox Talbot made photomicrographs of diatoms and Daguerre made the first telescopic daguerreotype of the moon. Speculations about the abilities and the applicabilities of the new medium were numerous: “This important discovery will be of great interest to science”, said Jacques Mandé Daguerre1, “Since the invention follows the laws of geometry, these designs (daguerreotypes) will excel the works of the most accomplished painters, in fidelity of detail and true reproduction of the local atmosphere”2, said François Arago. Through the years photography proved indeed an important medium for scientific representations. The issue of (visual) representation in science is a complex, multi-dimensional field. Scientific output can be translated and communicated in lots of different forms (numbers, graphs, images, etc.) and with different purposes (sharing among scientists or for a broad public). Each field of research has its own tradition of imaging and preferred and proved methods to transform information into analyzable data. Chemistry for example often uses highly schematized abstractions of molecules but when a biologist wants to show stridulating tones caused by a Myrmica ruginodis (a red ant), a graph can be the most appropriate choice to transfer this information (fig. 2). If he wants to register the stridulating tones of more ant species or more specimens of the same kind a tab may be more useful (fig. 3). Complex instruments and the sometimes even more complex data they produce but also simple observations have to be translated into palpable, readable diagrams, graphs, illustrations etc. to
Jacques Mandé Daguerre in: Alan Trachtenberg, Classic Essays on Photography (New Haven: Leete’s Island Books, 1980), p. 12. 2) François Arago in: Alan Trachtenberg, Classic Essays on Photography (New Haven: Leete’s Island Books, 1980), p.17. 1)
30
communicate the outcome. These visual representations encompass a large part of what science actually is, some would say that they actually create science as we know it. Photography constitutes an interesting but only small part of this endless source of visual scientific output. It holds a special place in science though, for they unmistakably share a relation with objectivity and a history of controversy about how to represent reality as it appears to us. Different techniques and strategies of visually representing scientific outcome are not the only variables in scientific images, there are also different kinds of referents. Each referent requires another visual approach. Luc Pauwels shows this very accurate in a scheme3 in which he places six different kinds of referents on a scale from material/physical to mental/conceptual. The first, most ‘material’ referents are the directly visually observable phenomena, followed by ‘visual phenomena ‘invisible’ without technical aid, non-visual phenomena, non-visual ‘data’ (based on observations/ measurements), postulated phenomena and conceptual constructions. These differences presume different choices when it comes to visualizing them. According to Pauwels there is some sort of connection between the nature of the referent and the process of its representation. Referents that are directly visible and the ones that are visible only with technical aid are for example most likely to be photographed. Also most of the nonvisual ones allow photographic visualization (magnetism, body heat etc.). When one wants to show something that exists only in the mind though, like the monster of Loch
Ness (fig. 5) or any other sprout of the mind, representation techniques are limited. Pauwels’s scheme reveals the place and function that photography fulfills in science and its intentions and possibilities. The medium can depict existing phenomena, singular facts, but it cannot depict constructions. In the example of stridulating tones of red ants photography is restricted to the visual elements of the stridulating organ of an ant or how the organ is used (fig. 6 & 7). In other words, a photograph concentrates time and place of one singular event in an image. A graph or a tab is a collection of data gathered from different moments and different places, even different researchers. The visual representations of immaterial referents, as they are the result of multiple intentional acts, require a another production technique for this more intentional activity: “The involvement of the originator of the idea is paramount...Aspects or dimensions that cannot in any way be visualized or verbally described are in fact lost to science.”4 Pauwels makes a division between automatically generated images (algorithmic processes) and more manually and intentionally performed activities. Specially images drawn from the first category, to which photography most likely belongs, are the most straightforward and therefore all the more sensitive to overlooking artifacts of the instrumentation (objects and effects generated by the representational process).5 They therefore need careful consideration and a critical stand. Photography partly shares its abilities to represent the phenomenal world with drawing. Of course their range of field differs;
3) Luc Pauwels, Visual Culture of Science (Lebanon: Darthmouth College Press, 2006), p. 4. 4) Idem, p. 7. 5) Idem, p. 9.
31
as demonstrated before, not everything that can be photographed can be drawn (x-rays, deep sky objects etc.) and not everything that can be drawn can be photographed (concepts, composed or idealized images). Figure 8 shows how a drawing and a photograph of similar phenomena communicate in a whole different way. The drawing clearly shows a schematized, simplified image in which the round cropping suggests the scene having been observed through a microscope, whereas the picture shows how the round worm really looks like and how its size relates to its surroundings. Most of the time, the purposes (didactic, beauty, objectivity etc.) of an image facilitate the choice whether to draw or photograph an object or scene. A drawing is able to separate essential elements from inessential ones and a photograph would reproduce the object with all its specificities. Wilhelm His, a 19th century Leipzig based embryologist lays out his choice between drawings and photographs: “Drawing and photograph are complementary, without replacing one another. The advantages and disadvantages of every drawing in relation to a photograph lie in the subjective elements that are at work in its making. In every sensible drawing the essential is consciously separated from the inessential and the connection of the depicted forms is shown in the correct light, according to the view of the draftsman. The drawing is thus more or less an interpretation of the object, involving mental work for the draftsman and embodying this for the spectator, whereas the photograph reproduces the object with all its particularities, including those that are accidental, in a certain sense as raw material,
but which guarantees absolute fidelity.” 6 Notwithstanding this nuanced opinion there has been some discussion regarding this subject: “Drawing is involuntary already prepared in line with the subjective view of the author and the photograph could discipline the scientist to give repeatedly an accounting of the correctness of this observation”7, says Robert Koch, a 19th century bacteriologist. The influence of preconception to drawings is shown very clearly in an interesting example given by Peter Galison and Lorraine Daston of the scientific findings of Arthur Worthington.8 He examined the stages of the impact of a liquid drop splashing on different kinds of surfaces. To do this, Worthington used a powerful flashlight burning a latent image of the splashing drop in his eye, which he would immediately sketch. He repeated this process endlessly and concluded that the impact of liquid drops on a surface is ‘a physical system marked by the beauty of its perfect symmetry’. All hand-drawn sketches of the process show indeed perfectly symmetrical splashes. But, in 1894, he finally succeeded to record the event photographically. The photographs showed much more irregularities in the splashes than his sketches; Worthington realized he had been guided by his own idealized theory. All his drawings were useless; his photographs in contrary not only proved him wrong but they became documents of the event itself. Worthington was now able to examine the photographs again and again with different questions in mind and by means of reexamining he could reevaluate what was shown on the picture. But also other scientists who would see the photographs
could decide whether Worthington’s observations were correct. Where drawings can render out of date, superseded by new theories, photographs function as documents that can be consulted any time, any place, over and over again. – Anne Geene
6) Wilhelm His, Anatomie Menschlicher Embryonen (Leipzig: Vogel, 1880), p. 6.
7) Robert Koch, in: Lorraine Daston and Peter Galison, Objectivity (New York: Zone Books 2007), p. 166. 8) Arthur Worthington was a British physicist from the 19th century.
32
33
34