Část A
Návrh Standardního projektu (dále návrh projektu) Datum podání návrhu projektu:
Číslo panelu(ů):
Registrační číslo:
totožné s datem odeslání návrhu projektu prostřednictvím ISDS
P209
14-14356S
Uchazeč a navrhovatel
Uchazeč:
Astronomický ústav AV ČR, v.v.i.
IČ:
67985815
Sídlo:
Fričova 298, Ondřejov
Navrhovatel:
Mgr. David Čapek Ph.D.
Datum narození/rodné číslo:
1977-06-09 770609/3340
Telefon:
323620252
Fax:
[email protected]
E-mail:
Název projektu česky: Rotace meteoroidů
Název projektu anglicky: Rotation of meteoroids
Klíčová slova česky: meteoroid, meteor, bolid, rotace, flickering, 3D skenování, tvar
Klíčová slova anglicky: meteoroid, meteor, fireball, rotation, flickering, 3D scanning, shape
Datum zahájení:
2014-01-01
Doba řešení (v letech):
3
1
Část A
14-14356S Zařazení do číselníku CEP:
BN
Podáním návrhu projektu uchazeč stvrzuje, že: a) navrhovatel je v pracovněprávním poměru k uchazeči nebo tento vztah vznikne nejpozději ke dni zahájení řešení grantového projektu; b) zajistí, aby navrhovatel po přijetí grantového projektu k řešení plnil všechny povinnosti řešitele vyplývající ze zákona č. 130/2002 Sb., této zadávací dokumentace a uzavřené smlouvy nebo vydaného rozhodnutí o poskytnutí podpory; c) se seznámil se zadávací dokumentací a zavazuje se dodržovat její ustanovení; d) všechny údaje uvedené v návrhu projektu jsou pravdivé, úplné a nezkreslené a jsou totožné s údaji vloženými do návrhu projektu pomocí aplikace, a že návrh projektu byl vypracován v souladu se zadávací dokumentací; e) všichni spoluuchazeči, navrhovatel, spolunavrhovatelé a spolupracovníci uvedení v návrhu projektu byli seznámeni s věcným obsahem návrhu projektu i s finančními požadavky v něm uvedenými a se zadávací dokumentací; f) před podáním návrhu projektu zajistil souhlas výše uvedených osob s účastí na řešení grantového projektu uvedeného v návrhu projektu; g) na jiný projekt s totožnou nebo obdobnou problematikou nepřijal, nepřijímá a nepřijme podporu z jiného zdroje; h) navržené rozsahy prací umožní navrhovateli i spolunavrhovateli řešit všechny projekty, na nichž se podílí; i) souhlasí, aby údaje uvedené v návrhu projektu byly použity pro vnitřní informační systém poskytovatele a uveřejněny v rozsahu stanoveném zákonem č. 130/2002 Sb. a zadávací dokumentací; j) v případě uzavření smlouvy nebo vydání rozhodnutí o poskytnutí podpory na řešení grantového projektu se bude při jeho řešení řídit zásadami pro řešení uvedenými v Příloze 4 zadávací dokumentace. Kopie speciálních oprávnění podle zvláštního právního předpisu (viz § 18 odst. (2) písm. b) zákona č. 130/2002 Sb.) jsou přiloženy, zahrnuje-li grantový projekt činnosti je vyžadující. Uchazeč potvrzuje, že byla zkontrolována úplnost a správnost údajů.
Statutární zástupce uchazeče
2
Část Abstrakt a Cíle projektu
Navrhovatel:
Registrační číslo:
Název projektu:
Mgr. David Čapek Ph.D.
14-14356S
Rotace meteoroidů
Abstrakt - česky Projekt je zaměřen na teoretický popis rotace meteoroidů od jejich vzniku až po průlet atmosférou a následné ověření teoretických předpovědí pomocí napozorovaných dat. V rámci projektu budou (i) vytvořeny digitální tvary meteoroidů pomocí 3D skenování vhodných úlomků pozemských hornin. Následně bude studována (ii) rotace meteoroidů při jejich vyvržení z jádra mateřské komety, (iii) vývoj rotace v meziplanetárním prostoru, zejména vlivem windmill efektu, předpověď preatmosferické rotace meteoroidů a srovnání s pozorovanými daty, (iv) vliv rotace a tvarů meteoroidů na jejich interakci se zemskou atmosférou, vliv na počátek ablace a původ rychlých variací ve světelných křivkách bolidů. Témata (i) a (ii) nebyla doposud zkoumána, body (iii) a (iv) byly studovány s použitím nerealistických předpokladů a potřebují revidovat. Znalost tvaru a rotace meteoroidů bude důležitá pro související témata jako rotační štěpení meteoroidů v meziplanetárním prostoru a v atmosféře, destrukce vlivem tepelných napětí a určování stáří rojů meteoroidů. cíle projektu - česky (Tento text bude v případě udělení grantu uveden ve smlouvě o řešení projektu.) Cílem projektu je vytvořit ucelený teoretický popis rotace meteoroidů od okamžiku jejich vzniku po jejich případný průlet atmosférou s použitím realistických 3D modelů tvaru, ověřit teoretické předpovědi pomocí pozorování a provést revizi výsledků starších prací. Abstrakt - anglicky The aim of the project is a theoretical study of the rotation of meteoroids from the moment of their birth to their eventual flight through the atmosphere and a comparison of the theoretical predictions with observations. At first (i) digital shape models will be constructed by 3D scanning of an appropriate rock fragments. Then (ii) the meteoroid rotation caused by gas drag during their ejection from an active cometary nucleus will be described. (iii) evolution of rotation in the interplanetary space (especially due to windmill effect) and preatmospheric spin will be predicted and compared with the observations. Finally, (iv) the influence of meteoroid rotation on its interaction with the atmosphere, on the beginning of the ablation and the origin of the fast variations in the fireball light curves will be studied. The topics (i) and (ii) have not been studied yet, (iii) and (iv) need revision. The knowledge of the spin and shape of meteoroids will be useful for the related topics like rotational bursting, destruction by thermal stresses and the determination of the shower age. cíle projektu - anglicky The aim is to develop a theoretical description of the rotation of meteoroids from the moment of their birth to their eventual flight through the atmosphere using realistic 3D shape models, to compare the theoretical predictions with observations and to revise the results of earlier works.
3
Část B - finanční prostředky celkem
Uchazeč:
Astronomický ústav AV ČR, v.v.i.
Navrhovatel:
Mgr. David Čapek Ph.D.
Registrační číslo:
14-14356S
1. Celkové předpokládané uznané náklady na řešení projektu ze všech zdrojů financování na jednotlivé roky jeho řešení (finanční údaje se uvádějí jako celočíselné hodnoty v tisících Kč)
Náklady ze všech zdrojů financování
1.rok
2.rok
3.rok
4.rok
5.rok
Celkem
1261
1061
1061
0
0
3383
2. Celkové předpokládané uznané náklady na řešení projektu z jednotlivých zdrojů za celou dobu jeho řešení
(finanční údaje se uvádějí jako celočíselné hodnoty v tisících Kč) tis. Kč
Jednotlivé zdroje finančních prostředků na řešení projektu Celkové grantové prostředky požadované od GA ČR
3383
Podpora z jiných tuzemských veřejných zdrojů (z jiné kapitoly státního rozpočtu nebo rozpočtů územních celků), pokud existuje
0
Podpora z ostatních veřejných zdrojů (nepatřících do státního rozpočtu nebo rozpočtů územních správních celků), pokud existuje. (veřejné zdroje v ČR i v zahraničí)
0
Podpora z neveřejných zdrojů (zahraniční zdroje, neveřejné tuzemské zdroje, vlastní neveřejné zdroje), pokud existuje
0
Celkem
3383
Míra podpory
100 % 3. Celkové náklady na řešení projektu požadované od GA ČR (finanční údaje se uvádějí jako celočíselné hodnoty v tisících Kč) 1.rok
2.rok
3.rok
4.rok
5.rok
Ostatní provozní náklady celkem
547
347
347
0
0
Osobní náklady celkem
714
714
714
0
0
1261
1061
1061
0
0
Náklady na řešení projektu celkem
4
Část B - rozpis finančních položek
Uchazeč:
Astronomický ústav AV ČR, v.v.i.
Navrhovatel:
Mgr. David Čapek Ph.D.
Registrační číslo:
14-14356S
Finanční prostředky požadované od GA ČR pro uchazeče (finanční údaje se uvádějí jako celočíselné hodnoty v tisících Kč) 1. rok
2.rok
3.rok
4.rok
5.rok
Materiální náklady
30
10
10
0
0
Cestovní náklady
150
100
100
0
0
Náklady na ostatní služby a nemateriální náklady
115
25
25
0
0
Doplňkové (režijní) náklady
252
212
212
0
0
Ostatní provozní náklady celkem
547
347
347
0
0
Ostatní provozní náklady
(finanční údaje se uvádějí jako celočíselné hodnoty v tisících Kč) 1. rok
2.rok
3.rok
4.rok
5.rok
525
525
525
0
0
Mzdy technických a administrativních pracovníků
0
0
0
0
0
Ostatní osobní náklady (celkem)
0
0
0
0
0
189
189
189
0
0
714
714
714
0
0
Osobní náklady
(Podrobný rozpis v části B - osobní náklady)
Mzdy navrhovatele a spolupracovníků
Sociální a zdravotní pojištění a SF (FKSP)
Osobní náklady celkem
(finanční údaje se uvádějí jako celočíselné hodnoty v tisících Kč)
Náklady celkem
1. rok
2.rok
3.rok
4.rok
5.rok
1261
1061
1061
0
0
Náklady z dalších zdrojů předpokládané za celou dobu řešení projektu
(finanční údaje se uvádějí jako celočíselné hodnoty v tisících Kč) 1. rok
2.rok
3.rok
4.rok
5.rok
Účelová podpora - dotace z jiných tuzemských veřejných zdrojů (z jiné kapitoly státního rozpočtu nebo z rozpočtů územních správních celků)
0
0
0
0
0
Podpora z ostatních tuzemských veřejných zdrojů (nepatřících do státního rozpočtu nebo z rozpočtů územních správních celků)
0
0
0
0
0
5
Část B - rozpis finančních položek
14-14356S
Podpora z neveřejných zdrojů
0
0
0
0
0
100 %
Míra podpory
6
Část B - zdůvodnění finančních položek
Uchazeč: Navrhovatel: Registrační číslo:
Astronomický ústav AV ČR, v.v.i. Mgr. David Čapek Ph.D. 14-14356S
Specifikace a zdůvodnění nákladů pro 1. rok řešení Část B - zdůvodnění finančních položek je nedílnou součástí návrhu projektu a obsahuje v souladu s ustanovením Zadávací dokumentace čl. 3.2. specifikaci a zdůvodnění všech požadovaných nákladů ze všech zdrojů
Materiální náklady: Materiální náklady 30 000 Kč: Předpokládám náklady na pořízení a uchování vhodných vzorků pro digitalizaci tvarů meteoroidů, přípravek na uchycení vzorků pro 3D skenování a spotřební materiál.
Cestovní náklady: Cestovní náklady 150 000 Kč: Předpokládám nejméně 5 zahraničních cest. David Čapek plánuje navštívit konference Modra 2014 na Slovensku a ACM 2014 v Helsinkách, kde představí výsledky 3D skenování úlomku hornin (které proběhne na počátku roku 2014 v rámci první etapy řešení projektu) a poukáže na jejich použitelnost pro aproximaci tvarů meteoroidů. Dále plánuje studium celotvarů meteoritů v zahraničních sbírkách (např. Museum für Naturkunde, Berlín). Pavel Koten plánuje účast na konferencích Modra 2014 na Slovensku a ACM 2014 v Helsinkách, kde bude prezentovat observační část řešení projektu, která bude probíhat od počátku roku 2014 do ukončení projektu.
Náklady na ostatní služby a nemateriální náklady: Náklady na ostatní služby a nemateriální náklady 115 000 Kč: Digitalizace tvarů vhodných úlomků hornin pomocí 3D skenování firmou SolidVision s.r.o. Tato firma byla vybrána ze tří kandidátů (INNOMIA a.s., MCAE Systems s.r.o. a SolidVision s.r.o.) na základě ceny, přesnosti a kapacity skenování. Cena za skenování jednoho vzorku se pohybuje okolo 800 Kč. Předpokládám skenování 100-120 vzorků, celkem 100 000 Kč. Údržba a provoz pozorovací techniky (především dvojstaniční pozorování meteorů Ondřejov - Kunžak): 15 000 Kč.
Zdůvodnění osobních nákladů pro jednotlivé osoby: Mzdy navrhovatele a spolupracovníků 525 000 Kč: David Čapek: Předpokládám pracovní kapacitu na grant 70%, tarifní měsíční mzdu dle vnitřního mzdového předpisu 30 870 Kč. Výplata hrazená měsíčně z grantových prostředků bez pojištění pak bude dle vnitřního předpisu AsÚ AVČR: 30 870 Kč x 0.910 = 28 092 Kč (zaokrouhleno nahoru). Výplata hrazená za první rok řešení projektu (2014) z grantových prostředků bez pojištění je: 28 092 Kč x 12 = 337 104 Kč. S ohledem na možný vznik vyšších nákladů na mzdu, např. během proplácení dovolené, navyšuji tuto částku na 345 000 Kč. (Při 100% úvazku by to odpovídalo částce 41 071 Kč měsíčně, což je v souladu se zadávací dokumentací GAČR, kde výše měsíčních nákladů pro řešitele nesmí přesáhnout 63 000Kč při úvazku 100%.) Sociální a zdravotní pojištění a SF (FKSP) tvoří 36% mzdy, tedy 345 000 Kč x 0.36 = 124 200 Kč. Pavel Koten: Předpokládám pracovní kapacitu na grant 25% a výplatu hrazenou měsíčně z grantových prostředků bez pojištění ve výši 9 500 Kč. Výplata hrazená za první rok řešení projektu (2014) z grantových prostředků bez pojištění je: 9 500 Kč x 12 = 114 000 Kč. S ohledem na možný vznik vyšších nákladů na mzdu, např. během proplácení dovolené, navyšuji tuto částku na 116 000 Kč. (Při 100% úvazku by to odpovídalo částce 38 667 Kč měsíčně, což je v souladu se zadávací dokumentací GAČR, kde výše měsíčních nákladů pro člena týmu v kategorii B nesmí přesáhnout 39 000Kč při úvazku 100%.) Sociální a zdravotní pojištění a SF (FKSP) tvoří 36% mzdy, tedy 116 000 Kč x 0.36 = 41 760 Kč. Pavel Spurný: Předpokládám pracovní kapacitu na grant 10% a výplatu hrazenou měsíčně z grantových prostředků bez pojištění ve výši 5 200 Kč. Výplata hrazená za první rok řešení projektu (2014) z grantových prostředků bez pojištění je: 5 200 Kč x 12 = 62 400 Kč. S ohledem na možný vznik vyšších nákladů na mzdu, např. během proplácení dovolené, navyšuji tuto částku na 64 000 Kč. (Při 100% úvazku by to odpovídalo částce 53 333 Kč měsíčně, což je v souladu se zadávací dokumentací GAČR, kde výše měsíčních nákladů pro člena týmu v kategorii A nesmí přesáhnout 54 000 Kč při úvazku 100%.) Sociální a zdravotní pojištění a SF (FKSP) tvoří 36% mzdy, tedy 64 000 Kč x 0.36 = 23 040 Kč. Mzdy celkem za první rok řešení 345 000 Kč + 116 000 Kč + 64 000 Kč = 525 000 Kč. Pro další roky řešení tuto částku zachovávám. Sociální a zdravotní pojištění a SK (FKSP) celkem za první rok řešení: 124 200 Kč + 41 760 Kč + 23 040 Kč = 189 000 Kč.
7
Část B - osobní náklady
Uchazeč:
Astronomický ústav AV ČR, v.v.i.
Navrhovatel:
Mgr. David Čapek Ph.D.
Registrační číslo:
14-14356S
Osobní náklady pro uchazeče pro první rok řešení
Mzdy odborných pracovníků Jméno
Příjmení
Pracovní úvazek na řešení (v % úvazku)
Požadavky na mzdy od GA ČR
David
Čapek
70 %
345
Pavel
Koten
25 %
116
Pavel
Spurný
10 %
64
Mzdy technických a administrativních pracovníků Souhrný pracovní úvazek technických a administrativních pracovníků (v % úvazku)
Požadavky na mzdy od GA ČR
0
Ostatní osobní náklady
0
(na základě dohod o provedení práce nebo dohod o provedení činnosti)
Jméno, příjmení, případně označení (s) u studenta
Požadavky od GA ČR
8
Část D2 - bibliografie
Uchazeč: Navrhovatel: Registrační číslo:
Astronomický ústav AV ČR, v.v.i. Mgr. David Čapek Ph.D. 14-14356S
Úplné bibliografické údaje o osmi nejvýznamnějších výsledcích vědecké a výzkumné činnosti definovaných v aktuálně platné Metodice hodnocení výsledků výzkumu a vývoje
Výsledek
kód druhu výsledku
Počet citací (bez autocitací) podle WOS
Impaktní faktor časopisu nebo kategorie ERIH
1
Vokrouhlicky, D., Čapek, D. (2002). YORP-induced long-term evolution of the spin state of small asteroids and meteoroids: Rubincam's approximation. ICARUS, 159, 449-467
J imp
82
3.385
2
Čapek, D., Vokrouhlický, D. (2004). The YORP effect with finite thermal conductivity. ICARUS, 172, 526-536
J imp
67
3.385
3
Chesley, S.R., Ostro, S.J., Vokrouhlický, D., Čapek, D., Giorgini, J.D., Nolan, M.C., Margot, J.L., Hine, A.A., Benner, L.A.M., Chamberlin, A.B. (2003). Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka. SCIENCE, 302, 1739-1742
J imp
57
31.201
4
Vokrouhlický, D., Čapek, D., Kaasalainen, M., Ostro, S.J. (2004). Detectability of YORP rotational slowing of asteroid 25143 Itokawa. ASTRONOMY & ASTROPHYSICS, 414, L21-L24
J imp
11
4.587
5
Vokrouhlický, D., Čapek, D., Chesley, S.R., Ostro, S.J. (2005). Yarkovsky detection opportunities. I. Solitary asteroids. ICARUS, 173, 166-184
J imp
11
3.385
6
Vokrouhlický, D., Čapek, D., Chesley, S.R., Ostro, S.J. (2005). Yarkovsky detection opportunities - II. Binary systems. ICARUS, 179, 128-138
J imp
9
3.385
7
Čapek, D., Borovička, J. (2009). Quantitative model of the release of sodium from meteoroids in the vicinity of the Sun: Application to Geminids. ICARUS, 202, 361370
J imp
3
3.385
8
Čapek, D., Vokrouhlický, D. (2010). Thermal stresses in small meteoroids. ASTRONOMY & ASTROPHYSICS, 519, A75
J imp
2
4.587
Počet citací v oborech Časopis je zařazen NRRE v databázi SCOPUS
Celkové počty výsledků definovaných v aktuálně platné Metodice hodnocení výsledků výzkumu a vývoje za posledních 5 let
1a. článek v odborném periodiku impaktovaném (druh výsledku Jimp)
4
1b. článek v odborném periodiku neimpaktovaném (druh výsledku Jneimp)
0
1c. článek v českém odborném recenzovaném časopise (druh výsledku Jrec)
0
2a. odborná kniha (druh výsledku B)
0
2b. kapitola v odborné knize (druh výsledku C)
0
3. článek ve sborníku (druh výsledku D)
1
4. patent (druh výsledku P)
0 9
Část D2 - bibliografie
14-14356S
5. užitný nebo průmyslový vzor (druh výsledku F)
0
6. poloprovoz, ověřená technologie, odrůda, plemeno (druh výsledku Z)
0
7. prototyp, funkční vzorek (druh výsledku G)
0
8. poskytovatelem realizovaný výsledek (druh v výsledku H)
0
9. specializovaná mapa (druh výsledku L)
0
10. certifikovaná metodika a postup (druh výsledku N)
0
11. software (druh výsledku R)
0
12. výzkumná zpráva obsahující utajované informace podle zvláštního právního předpisu (druh výsledku V)
0
Celkový počet citací včetně autocitací na všechny práce podle Web of Science H-index podle Web of Science
259 6
10
Část E
Uchazeč: Navrhovatel: Registrační číslo:
Astronomický ústav AV ČR, v.v.i. Mgr. David Čapek Ph.D. 14-14356S
Údaje o běžících, navrhovaných a ukončených projektech navrhovatele V současné době nejsou žádné projekty podporované
V současné době nejsou žádné projekty navrhované
Přehled hodnocení grantových projektů GA ČR ukončených v posledních třech letech, u kterých byl navrhovatel řešitelem nebo spoluřešitelem: Registrační číslo
Hodnocení
205/09/P455
splněno
11
Czech Science Foundation - Part D1 Applicant and Co-applicants ˇ Applicant: RNDr. David Capek, Ph.D. General informations Name: Date of birth: Nationality: Professional address:
Home address: Marital state: Religion: Degrees:
ˇ David Capek June 9, 1977 Czech Astronomical Institute of the Academy of Sciences, Friˇcova 298, CZ-25165, Ondˇrejov, e-mail:
[email protected] Pichlova 2534, Pardubice, CZ-53002, Czech Republic married Christianity, Brethren church Ph.D., 2007
Professional informations Education: 2000–2007: PhD study, Institute of Astronomy, Charles University, Prague 2001–2007: Faculty of Science, Charles University, Prague specialization: geology degree: MSc. 1995–2000: Faculty of Mathematics and Physics, Charles University, Prague specialization: astronomy degree: MSc. 1991–1995: High School of Engineering, Chrudim Work experiences: 2008–now: Astronomical Institute of the Academy of Sciences, Ondˇrejov 2004–2005: Czech Geological Survey (part–time job) Main fields of interest: Heat diffusion problem, thermal stress, physics of meteoroids, Yarkovsky effect, YORP effect, numerical methods Grant projects: ˇ no. 205/09/P455: Thermal stress and destruction of meteoroids in the space GACR and in the atmosphere. (Finished in 2011.)
Czech Science Foundation - Part C Project Description ˇ Applicant: RNDr. David Capek, Ph.D. Name of the project: Rotation of meteoroids Introduction - modifications of the previous project Because of positive reviews1 of project no. 13-24332S, which was submitted a year ago but it was rejected for financial reasons, we decided to submit it again with the following minor modifications: • We add Fig.1 which shows the meteoroid shape model obtained by 3D scanning, Fig.2, which shows preliminary results of spin rates after ejection of meteoroids from the cometary nucleus, and Fig.3, which shows the high resolution light curve of a fireball. • In response to the comment of referee no. 2 concerning the quantification of the outcomes from the project, we add a paragraph describing the expected numbers of publications and presentations of results on scientific meetings (see Sec. 2., the paragraph before the description of the Task A). • In response to the comment of referee no. 3 concerning the unclear specification of the potential collaboration with colleagues from abroad, we add a short comment in the beginning of Sec. 4. • Due to the reduction of the maximal duration of the project by Czech Science Foundation from five to three years we had to shorten the schedule of the project. We will be able to manage the same amount of the research in a shorter time through the following facts: (i) The workload of ˇ David Capek on the project increases from 50% to 70% and that of Pavel Koten increases from 15% to 25%. (ii) Some work has been already done - the methodology of the 3D scanning of small rock samples, and basic codes processing the 3D models. (iii) Some codes are currently being developed - numerical methods of evaluation of net forces and torques caused by the radiation and by the flow of rarefied gas and the integration of equations of motion (see Fig.2).
1
Rotation of meteoroids - present state of the problem
The knowledge of the evolution of meteoroid rotation is important for understanding many facts in the physics of the small solar system bodies. For example, the rotational bursting is probably dominant mechanism of fragmentation of small meteoroids and dust particles. The spin rate and spin axis orientation affects Jarkovsky effect and possible destruction of meteoroids by the thermal stress. The knowledge of preatmospheric rotation of parent bodies of meteors and bolides may affects the explanation of some features of their luminous path through the atmosphere.
1.1
Rotation of meteoroids according to their origin
Initial rotation state depends on process of meteoroid’s birth. Asteroidal meteoroids originate as debris from collisions of asteroids in the Main Belt. Their formation was studied by catastrophic fragmentation experiments (e.g. Fujiwara et al. 1989; Martelli et al. 1994; Giblin et al. 1998). The majority of fragments which formed during these experiments with sizes of 1-10 cm had spin frequencies of several tens rotations per second (Giblin et al. 1998). Smaller bodies tend to rotate faster than larger ones, and most of them rotate without observable tumbling (Giblin & Farinella 1997). 1
ˇ The reviews can be downloaded from David Capek’s personal page: http://www.asu.cas.cz/~capek/
Shower meteoroids can be released from parent cometary nucleus during its breakup or during regular activity of comet by gas drag (e.g. Jenniskens & Vaubaillon 2007). The gas drag mechanism is connected with sublimation of water ice at the surface of the nucleus and acceleration of embedded dust and pebbles by gas flow away from the comet. If the meteoroid has irregular shape with some degree of windmill asymmetry, the gas may also accelerate its rotation - similarly as in simple experiment of Paddack (1969). Although many authors studied the ejection process and terminal velocity of meteoroids (e.g. Whipple 1951; Olsson-Steel 1987; Crifo 1995; Jones 1995; Crifo & Rodionov 1997), the rotation of meteoroids caused by gas drag have not been studied yet. Watanabe et al. (2003) observed short duration outbursts during Leonid activity in 1997 and 2001. The most probable explanation for these phenomena is breakup of parent meteoroid several days before encounter with Earth. The determination of relative velocity of meteoroids from each outburst was based on assumption that parent meteoroid rotates. The spin rate was deduced from energy distribution between rotational and translational energy from catastrophic fragmentation experiments (Fujiwara et al. 1989). Similar assumption was made by Hapgood & Rothwell (1981) who observed group of three Perseids in 1.3 seconds. Since the parent meteoroids were released from cometary nucleus by gas drag and not by collision, the model of initial rotation of cometary meteoroids is necessary for similar studies.
1.2
Mechanisms affecting the rotation in the space
After meteoroid birth, the interaction with solar radiation field is the most important mechanism affecting its spin state in the interplanetary space (Olsson-Steel 1987). The “windmill effect” was proposed by Paddack (1969) to explain rotational bursting of tectites in the space. This phenomenon causes acceleration of rotation due to action of reflected radiation on irregularly shaped body with an amount of windmill asymmetry. Paddack carried out a simple experiment, whereat crushed stones (2.5-5.9 cm) were dropped into swimming poll. According to their motion, the value of effective moment arm for those bodies was determined as 0.02 mm. This corresponds to asymmetry parameter value 0.0005, which is equal to effective moment arm over body size. (A new value of asymmetry parameter 0.02-0.2 was experimentally determined by Abbas et al. (2004) for laboratory-prepared SiC analogs of cosmic dust with sizes ∼ 0.5 − 8 µm.) Finally he found that centimeter-sized tectites will reach bursting speed at 60 000 years. The windmill effect and Paddack’s value of asymmetry parameter have been widely used in literature as a basis for estimations of the rotation of meteoroids: Paddack & Rhee (1975) estimated that the rotation bursting lifetime of interplanetary dust particles is one order of magnitude shorter than that of Pointing-Robertson effect. Rotational bursting of the dust due to windmill effect, other spin-up mechanisms and formation of β-meteoroids was studied by Misconi (1993). Sekanina & Farrell (1980) and Sekanina & Pittichov´a (1997) assumed rotational bursting due to windmill effect as a main fragmentation mechanism of particles in cometary tail striae. Olsson-Steel (1987) studied the dispersal of Geminid stream by radiative forces and some attention paid to the spin rate of meteoroids, which was important for his calculations. He showed that windmill effect predominates over collisions with zodiacal dust or with other meteoroids and over the interaction with solar wind particles. He also found, that 1 mm meteoroid reaches rotation rate ∼ 10 000 rad/s within thousand years and 1 cm meteoroid reaches ∼ 100 rad/s within the same time interval. Beech & Brown (2000) studied fireball flickering (i.e. quasi-periodic changes in the light-curve) and found that windmill effect is inefficient for meteoroids larger than ∼ 10 cm and it is not able to explain higher spin rates for these bodies. They assumed that the rotation comes from collisional fragmentation of their parent bodies. Beech (2002) and Beech et al. (2003) used Geminid fireball flickering for determination of preatmospheric rotation rate of parent meteoroids. Assuming the spin rate acceleration due to windmill effect, the interval between meteoroid ejection from parent body and the atmospheric entry was determined. The age of the meteoroids nicely fall into the range determined by other techniques (e.g. Jones 1982; Gustafson 1989). On the other hand, the value of asymmetry parameter determined by Paddack (1969) was doubted by Sparrow (1975). He concluded that magnitude of rotational bursting is smaller than that of
Pointing-Robertson effect. Hawkes & Jones (1978) explained the radius of meteor trains by rapid rotation (∼ 5000 rad/s) of parent meteoroid. They pointed out that such spin rates can be caused by erosive collisions in interplanetary space. They suggested that space erosion changes the shape of meteoroids and consequently the windmill effect (which is otherwise faster) will change the rotation in a random fashion with time. The non-reflective irregularly shaped bodies may be also spun-up, due to emission of thermal radiation from the surface. This phenomenon is known as Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect (Rubincam 2000). This variant of windmill effect is important for long-scale evolution ˇ of small asteroids (e.g. Capek & Vokrouhlick´ y 2004). Its efficiency for rotation of meteoroids is doubtful due to small temperature differences on the surface of these bodies.
1.3
Interaction of rotating meteoroid with the atmosphere
If the meteoroid finally reaches the Earth, the rotation may affect the interaction with the atmosphere. The light-curves of some bright meteors show quasi-periodic brightness variations. This phenomenon, which is called “ flickering”, is sometimes interpreted as a result of rotation of non-symmetric meteoroid (e.g. Beech & Brown 2000; Spurn´ y & Boroviˇcka 2001). The air flow encounters the changing cross-section of rotating body, which causes periodical changes in amount of ablated material and therefore brightness variations. The frequency of these variations can be used for meteoroid spin rate determination. For example, Ceplecha (1996) and Ceplecha & Revelle (2005) determined initial rotation period of parent body of Lost City bolide by technique of Adolfsson as 3.3 ± 0.3 s. The meteoroid dimensions were estimated as 36 × 17 cm. Spurn´ y & Boroviˇcka (2001) interpreted periodic variations in Vimperk fireball light curve as a result of rotation of two fragments with initial spin frequencies 3 Hz and 5.5 Hz. Beech (2002) reported the preatmospheric angular velocity of three Geminid meteoroids as 700 rad/s for 14 mm body, 520 rad/s for 13 mm body and 250 rad/s for 18 mm body. Beech et al. (2003) studied flickering of bright Geminid fireball and determined the rotation frequency 6 Hz and dimensions ∼ 10 cm. Some authors doubted the explanation of flickering by meteoroid rotation and proposed other mechanisms. Babadzhanov & Konovalova (2004) studied flickering of three Geminid fireballs and pointed out that (i) the amplitude of brightness pulsations do not vary during penetration of meteoroids into the atmosphere and (ii) the pulsation occurred suddenly in the middle of the luminous trajectory. These phenomena do not correspond to theoretical predictions and the autofluctuation mechanism was suggested for explanation of flickering. Borovicka (2006) also tend to the opinion that the flickering is caused by autofluctuation mechanism. Spurn´ y & Ceplecha (2008) proposed the triboelectric charging and uncharging as a main process leading to fast variations in the fireball light curves. Spurn´ y et al. (2012) analyzed light curve of Bunburra Rockhole fireball and found, that the flickering frequency is higher than the rotational bursting limit according to relationships published by Paddack (1969) and Beech (2002). An another phenomenon connected with rotation is the heating of these bodies during flight through the atmosphere. The surface temperature depends on the amount of incoming energy. In case of rapid and random rotation, the energy flux will be homogeneously distributed over the whole surface, whereas in the case of non-rotating body, the leading side will receive much more energy and will have higher temperature than the rest of body. The beginning heights of meteors, which correspond to start of rapid evaporation, have usually been computed with assumption of fast and random rotation (e.g. Ceplecha & Padevˇet 1961; CampbellBrown & Koschny 2004). Adolfsson & Gustafson (1994) investigated the dependence of atmospheric entry heating and beginning height on meteoroid rotation. They assumed spherical shapes and three cases of rotation: (i) rapid and random rotation, (ii) rapid rotation with spin axis perpendicular to the velocity vector, and (iii) non-rotating. The effect of rotation is significant for bodies larger than 1 mm and the beginning heights vary by ∼ 10 km according to the rotation state. The meteoroid rotation plays also an important role in interpretation of non-linear meteor trails (Beech 1988), the initial radius of meteor trains (Hawkes & Jones 1978), or rotational bursting in the atmosphere (Beech & Brown 2000).
Figure 1: Example of the shape model, which was obtained by the 3D laser scanning by SolidVision, s.r.o. company. The picture shows the model of 5.7 g meteorite Bassikounou (H5) which consists from 42 450 surface triangular facets. Preatmospheric meteoroid shapes will be approximated by ∼100 digitized shapes of fractured terrestrial rocks with a similar spatial resolution.
2
Proposed project
We propose the solution of three main topics which have not been studied up to now, which need revision and which can be studied in more detail. The common approach to solution of these problems will be polyhedral description of meteoroid shapes, numerical evaluation of the forces and moments acting on it, and numerical solution of the heat diffusion equation and the equation of motion. The project is divided into three tasks. The key quantity affecting the rotation - the shape of meteoroids will be created during Task A. The initial rotation of cometary meteoroid and evolution of the rotation of both cometary and asteroidal meteoroids in space will be studied in Task B. The influence of the shape and rotation on meteor beginning heights and rotational and translational motion of meteoroid fragments and their spread across the strewn fields will be studied in Task C. The outcome of each task will be a publication of one or two papers in a scientific journal Astronomy and Astrophysics, Icarus, etc. The results will be also presented on several international meetings each year.
Task A: Shape models of meteoroids Up to now, in the meteoritic sciences, the meteoroids were usually approximated by simple shapes like spheres, ellipsoids or simple wedges. Such simplification however, is not applicable for studies of the meteoroid rotation, since the knowledge of precise shape is necessary for determination of the net torques caused by radiation or gas flow. Unfortunately, no shape models of meteoroids are available at present. The first task of our project is therefore to obtain appropriate shape models of meteoroids. The shapes of meteoroids in the space and during pre-ablation stage of the flight in the atmosphere will be approximated by a set of fractured terrestrial rock samples (Paddack 1969). The set of ∼100 meteoroid analogues will be digitized by 3D laser scanning. The shape of each sample will be represented by a polyhedron with several thousands of surface triangular facets and it will be stored in stl file format. The 3D scanning will be performed by company SolidVision, s.r.o. (http://www.solidvision.cz/), which was chosen from three candidates (INNOMIA a.s., MCAE Systems, s.r.o., and SolidVision, s.r.o.) on the basis of the price (∼ 800 CZK/sample), precision of scanning and scanning capacity. Three testing samples have been already digitized by the chosen company (see Fig.1). We have also developed the methodology of the 3D scanning of small rock samples and basic codes processing the 3D models. Expected results: The resulting set of shape models will be primarily used for the study of meteoroid rotation in the space (Task B) and in the atmosphere (Task C). The digitized shape models will be published together with statistical analysis of effective moment arm and asymmetry parameter for interaction with radiation field and gas flow. The possible effect
on older works assuming the values of these quantities from Paddack (1969) and Abbas et al. (2004) will be discussed. The shape models derived from rock fragments may be also compared with shape models of small ˇ NEAs and used for statistical study of the YORP effect on these bodies (e.g. Capek & Vokrouhlick´ y ˇ 2004; Vokrouhlick´ y & Capek 2002). The proposed high accuracy of the shape models allows a theoretical study of the dependence of the YORP effect on surface roughness (e.g. Rozitis & Green 2012) and on small-scale topography changes (e.g. Statler 2009) for monolithic bodies. The meteoroid shape models will represent a unique dataset which will be used in many applications, therefore I expect it will be highly cited results.
Task B: Rotation of meteoroids in interplanetary space and prediction of preatmospheric spin rates. The stations of the Czech part of the European Fireball Network are equipped with all-sky photoelectric radiometers (Spurn´ y et al. 2007) which produce high resolution light curves with 500 measurements per second and recently (2009-2010) these fast photometers were upgraded for 10× time resolution, i.e. 5000 samples per second (see Fig.1, right). The growing amount of fireball light curves showing flickering, captured by these instruments, need to be explained by appropriate physical phenomenon. The simplest explanation is the rotation of the parent meteoroid (e.g. Beech & Brown 2000; Spurn´ y et al. 2012) - see Sec.1.3. The theoretical prediction of the preatmospheric spin periods of the meteoroids of various sizes and origin (cometary and asteroidal) may determine if this process can be responsible for the observed flickering or not. Rotation of meteoroids caused by gas drag during the ejection from an active parent cometary nucleus. The initial rotation of asteroidal meteoroids is achieved during their birth by collisions of asteroids. Their initial spin state can be estimated from the catastrophic fragmentation experiments (e.g. Giblin et al. 1998). Cometary meteoroids are released from an active cometary nucleus by gas drag. The resulting force is able to accelerate the meteoroids embedded in the ice to ejection velocities according to their mass, size, parameters of the nucleus and heliocentric distance. The same force acts also on instantaneous moment arm, which depends on the size, shape and orientation of the meteoroid. The ejected meteoroids will thus also rotate. Rotation of meteoroids caused by gas drag during the ejection from an active parent cometary nucleus will be studied in the first part of the Task B. We plan to develop a numerical model, which will be able to predict the initial spin rate distribution (and distribution of other characteristics of meteoroids rotation) for any particular shower with known properties of the parent comet. The proposed model can be described as follows: The shapes of meteoroids will be approximated by polyhedrons with several thousand of surface triangular facets on the basis of 3D scanning of rock fragments (see Task A). For given orientation of meteoroid and its distance from the nucleus, the drag force and momentum will be determined separately for each facet and then they will be integrated over whole surface of meteoroid. The equations of translational and rotational motion will be solved numerically. Finally, the prediction of spin rates, angular momentum directions and other characteristics of rotation will be made for members of particular shower. The results will be the first estimate of the rotation of cometary meteoroids. They will be used as initial conditions for study of windmill effect, rotational bursting in the space and preatmospheric rotation rates of meteoroids (the second part of the Task B). Rotation of meteoroids in space, windmill effect. The second part of the Task B will be devoted to study of evolution of spin of cometary and asteroidal meteoroids in the interplanetary space and the prediction of preatmospheric spin rates. The windmill effect is assumed to be the main mechanism affecting rotation of meteoroids in space. Many authors used the asymmetry factor determined by Paddack (1969) by a simple hydrodynamic experiment. The asymmetry factor of Paddack was however determined (i) for interaction with a stream of fluid and (ii) for fluid motion in the direction which is parallel to the shortest axis of inertia
Figure 2: Due to the reduction of the maximal duration of the project by Czech Science Foundation we had to shorten the schedule of the project. Therefore we already started with a software development to have some code prepared before the beginning of the project. The figure shows the result of the test of the code which computes the spin evolution during the ejection of the meteoroids from a comet. The plot represents the distribution of the spin rates of 10 mm meteoroids ejected from 2.5 km cometary nucleus in heliocentric distance of 0.14 AU. For the testing purpose, the meteoroids were represented by a set of Gaussian random spheres and the gas density and velocity were computed according to Jones (1995). tensor. The asymmetry factor may differ for reflection of light and impinging solar radiation comes from various directions, according to the orientation of the spin axis. The aim of proposed model is to determine the asymmetry factor suitable for meteoroids without simplifications (i) and (ii). We assume the following features: The shape models will be adopted from the Task A. The initial spin states will be adopted from the results of the first part of the Task B for cometary meteoroids or from studies dealing with catastrophic fragmentation experiments for asteroidal meteoroids (e.g. Giblin et al. 1998). The torque of reflected radiation will be computed for appropriate scattering law and it will be averaged over rotational and orbital period for various spin axes orientations. The mathematical approach will be similar to the case of YORP effect (e.g. ˇ ˇ Vokrouhlick´ y & Capek 2002; Capek & Vokrouhlick´ y 2004). The mean asymmetry factor (and its distribution) and the evolution of meteoroid rotation due to windmill effect will be determined. (The role of free precession of spin axes, damping mechanisms and the thermal emission from the surface will be discussed as well.) Thus we will obtain estimates of preatmospheric spin rates for various meteoroid streams and sporadic meteoroids. Finally, these estimates will be compared with observed flickering data. Expected results: The rotation of members of meteoroid streams and sporadic meteoroids in interplanetary space as a function of size, origin and time from their birth will be determined. It will represent the first estimate based on realistic assumptions about the shape and precise determining of the acting torques. The results will predict typical frequencies and amplitudes of variations in the beginning part of meteor and fireball lightcurves. This will be compared with fireball flickering data from the stations of the Czech part of the European Fireball Network and the rotation will be discussed as a possible cause of flickering. It may also stimulate the search of the expected frequencies in the lightcurves of fainter meteors. The results may refine the determination of the age of meteoroid showers on the basis of the spin rate measurements (e.g. Beech 2002) and it may be important for the revision of studies concerning the rotational bursting of meteoroids in the space (e.g. Olsson-Steel 1987).
Task C: Effect of meteoroid shape and rotation on the interaction with the atmosphere Meteoroid is heated by impinging molecules during the flight through the atmosphere. The surface temperature is affected by the spin rate and spin axis orientation with respect to the velocity vector.
As a result, various rotation modes may shift the meteor beginning heights. This phenomenon has been studied for spherical bodies with limited number of spin axis orientations (Adolfsson & Gustafson 1994). We propose a model describing this phenomenon in more detail which has not been considered until now - especially the irregular shape and arbitrary spin axis directions. The meteoroids will be represented as triangulated polyhedrons with shapes corresponding to rock fragments (the results from the Task A). The spin vector will have various sizes and directions with respect to the on-coming airflow. The results from Task B will be used for estimates of the preatmospheric rotational properties of meteoroids. The heat diffusion equation with an appropriate boundary condition will be solved for each surface facet. The on-coming energy will be balanced by heat conduction, thermal radiation (e.g. ˇ Capek & Vokrouhlick´ y 2004) and ablation/sputtering (e.g. Campbell-Brown & Koschny 2004; Popova 2004). Expected results: The temperature distribution on the surface of irregularly shaped meteoroid as a function of height (or time) will be determined. The effect of the rotation and irregular shapes of meteoroids on the meteor beginning height for various meteoroid streams will be discussed. The theoretical prediction will be compared with the observed beginning heights and their dispersion, which may represent an independent way to estimate preatmospheric spin rates.
3
Instruments and observations
Computing instruments The numerical codes will be written in Fortran90 language. The numerical computations will be executed either on PC and on computer cluster OCAS consisting from 16 two-processor nodes (2× 64bit AMD Opteron 252 CPUs (2.6 GHz), 4GB DDR400 ECC reg. RAM), 4 four-processor nodes, and 4 eight-processor nodes. Photometers Along with direct photographic recording each Automated Fireball Observatory (AFO) contains a fast linear photometer which records the total illumination of the sky with a rate of 5000 samples per second. The sensitivity of these photometers corresponds almost exactly to the photographic sensitivity of the imaging system. The original intention for the implementation of these instruments into automated observatories was to have an exact time for each photographed fireball. However these photometers have much wider utility. In addition to providing the exact time of the event we have a very precise and detailed light curve for each event which is bright enough to have a good s/n ratio. Thanks to these photometers we can record and study also fast variations on the light curves which is one of the main topics of the proposed project. Meteor video cameras. There are two different systems of the video cameras which are currently operated at the Ondrejov observatory. The older one still analogue system is in operation since 1998, when the double station experiment started. The second station is located in Kunzak observatory at distance of 92 km. Such configuration with almost south to north orientation is excellent platform for the double station experiment (e.g. Koten et al. 2004). Analogue cameras are equipped with 50mm lenses providing field-of-view of about 45 degrees in diameter. In connection with the second generation image intensifier they are able to record faint meteors up to +5.5 magnitude. The image rate is 25 frames per second. Recently developed system MAIA (Meteor Automatic Imager and Analyser) is based on the digital cameras JAI and the same kind of the image intensifier (Koten et al. 2011). Its characteristics are significantly better in comparison with older system. MAIA is working in automatic regime, what allows us to cover more nights and record higher number of the meteors. Another advantage against the older system is the frame rate 60/s, what is important for this proposed project since such frame rate is promising for detection of the periodic variations of the light curve. The double station data provides us with the atmospheric trajectories as well as the heliocentric orbits of the meteors. While the heliocentric orbit brings the information about the meteoroid origin, the atmospheric trajectory provides the key data for the modelling of the meteoroid interaction with the
Figure 3: An example of the high resolution light curve of fireball obtained by the fast all-sky photometer (see Sec. 3). The flickering (fast periodic changes of the brightness) can be clearly seen. Is it possible to explain it by rotation of the irregularly shaped meteoroid? The project results should also answer this question. atmosphere. Using meteor light curve we can also determine the photometric mass of the meteoroid, what is another important entry parameter for any model. Finally, we will also look for the cases of the meteors which occurred within very short time interval. Such pairs or groups of the meteors could be potential candidates for meteoroid pre-atmospheric breakup. We will investigate their trajectories and try to determine if such break-up could really occur.
4
The team
We believe that our team is fully able to manage the problem. Cooperation with other colleagues from our department or with foreign colleagues is likely, but not necessary for mastering the goals of the project. ˇ David Capek is PI of the project. He has research experience in determination of weak nongravitational forces and torques acting on asteroids. It involves modelling of the shapes by polyhedrons with many triangular facets, numerical and analytical methods of solving the heat diffusion problem and the evaluation of forces and moments arising from interaction of radiation with asteroids. His major role in the project is the development of the theoretical models of the meteoroid rotation and, together with other team members, to compare the theoretical data with the observations. Pavel Koten will be responsible for the double station video data on the fainter meteors. His field of the scientific interest is in photometry of meteors, analysis of their light curves and atmospheric trajectories, computation of the heliocentric orbits, double station observations and image and data processing. Within the proposed project he will check the recorded data and select interesting cases for the project study. He is maintaining data base of the meteor atmospheric trajectories and orbits, which
will be major source of the data for this project. Data are based on the older analogue observational system as well as on the new digital MAIA system. In cooperation with other members of the team he will be comparing the results of the theoretical models with the real data. Pavel Spurn´ y will be responsible for the data about larger meteoroids recorded during their interaction with the Earth’s atmosphere by the European Fireball Network. His main field of interest is data acquisition and complex analysis of all fireballs recorded photographically (atmospheric trajectories and heliocentric orbits) and photoelectrically (detailed light curves) by Automated Fireball Observatories at all stations in the Czech Republic, Austria and Slovakia. Within the proposed project he will select those events which exhibit periodic variations on their light curves. For these particular fireballs he will compute atmospheric trajectories, heliocentric orbits and basic physical characteristics necessary for modelling of rotating meteoroid interacting with the atmosphere (task C of the proposed project).
5
Project schedule
2014 Determination of the shape models of meteoroid analogues by 3D scanning, statistical analysis of the resulting shape characteristics and publication of the results (Task A). 2014-15: Development of the model of cometary meteoroid rotation during the ejection from the core and publication of the results (the first part of the Task B). 2015: The theoretical study of the processes affecting the rotation of meteoroids in space, comparison of the results with observed fireball light curves and publication (the second part of the Task B). 2015-16: The study of the rotation of meteoroids during the flight through the atmosphere (Task C), publication of results and completing the project. The observation of meteors and fireballs by double station video cameras and by Automated Fireball Observatories will be performed continuously throughout the duration of the project 2014-2016.
References Abbas, M. M., Craven, P. D., Spann, J. F., et al. 2004, ApJ, 614, 781 Adolfsson, L. G. & Gustafson, B. A. S. 1994, Planet. Space Sci., 42, 593 Babadzhanov, P. B. & Konovalova, N. A. 2004, A&A, 428, 241 Beech, M. 1988, Earth Moon and Planets, 42, 185 Beech, M. 2002, MNRAS, 336, 559 Beech, M. & Brown, P. 2000, Planet. Space Sci., 48, 925 Beech, M., Illingworth, A., & Murray, I. S. 2003, Meteoritics and Planetary Science, 38, 1045 Borovicka, J. 2006, in IAU Symposium, Vol. 229, Asteroids, Comets, Meteors, ed. L. Daniela, M. Sylvio Ferraz, & F. J. Angel, 249–271 Campbell-Brown, M. D. & Koschny, D. 2004, A&A, 418, 751 ˇ Capek, D. & Vokrouhlick´ y, D. 2004, Icarus, 172, 526 Ceplecha, Z. 1996, A&A, 311, 329 Ceplecha, Z. & Padevˇet, T. 1961, Bulletin of the Astronomical Institutes of Czechoslovakia, 12, 191 Ceplecha, Z. & Revelle, D. O. 2005, Meteoritics and Planetary Science, 40, 35
Crifo, J. F. 1995, ApJ, 445, 470 Crifo, J. F. & Rodionov, A. V. 1997, Icarus, 127, 319 Fujiwara, A., Cerroni, P., Davis, D., Ryan, E., & di Martino, M. 1989, in Asteroids II, ed. R. P. Binzel, T. Gehrels, & M. S. Matthews, 240–265 Giblin, I. & Farinella, P. 1997, Icarus, 127, 424 Giblin, I., Martelli, G., Farinella, P., et al. 1998, Icarus, 134, 77 Gustafson, B. A. S. 1989, A&A, 225, 533 Hapgood, M. A. & Rothwell, P. 1981, Nature, 290, 384 Hawkes, R. L. & Jones, J. 1978, MNRAS, 185, 727 Jenniskens, P. & Vaubaillon, J. 2007, AJ, 134, 1037 Jones, J. 1982, MNRAS, 198, 23 Jones, J. 1995, MNRAS, 275, 773 Koten, P., Boroviˇcka, J., Spurn´ y, P., Betlem, H., & Evans, S. 2004, A&A, 428, 683 Koten, P., Fliegel, K., V´ıtek, S., & P´ ata, P. 2011, Earth Moon and Planets, 108, 69 Martelli, G., Ryan, E. V., Nakamura, A. M., & Giblin, I. 1994, Planet. Space Sci., 42, 1013 Misconi, N. Y. 1993, J. Geophys. Res., 98, 18951 Olsson-Steel, D. 1987, MNRAS, 226, 1 Paddack, S. J. 1969, J. Geophys. Res., 74, 4379 Paddack, S. J. & Rhee, J. W. 1975, Geophys. Res. Lett., 2, 365 Popova, O. 2004, Earth Moon and Planets, 95, 303 Rozitis, B. & Green, S. F. 2012, MNRAS, 423, 367 Rubincam, D. P. 2000, Icarus, 148, 2 Sekanina, Z. & Farrell, J. A. 1980, AJ, 85, 1538 Sekanina, Z. & Pittichov´a, J. 1997, Earth Moon and Planets, 78, 339 Sparrow, J. G. 1975, Geophys. Res. Lett., 2, 255 Spurn´ y, P., Bland, P. A., Shrben´ y, L., et al. 2012, Meteoritics and Planetary Science, 47, 163 Spurn´ y, P. & Boroviˇcka, J. 2001, in ESA Special Publication, Vol. 495, Meteoroids 2001 Conference, ed. B. Warmbein, 519–524 Spurn´ y, P., Boroviˇcka, J., & Shrben´ y, L. 2007, in IAU Symposium, Vol. 236, IAU Symposium, ed. G. B. Valsecchi, D. Vokrouhlick´ y, & A. Milani, 121–130 Spurn´ y, P. & Ceplecha, Z. 2008, A&A, 489, 449 Statler, T. S. 2009, Icarus, 202, 502 ˇ Vokrouhlick´ y, D. & Capek, D. 2002, Icarus, 159, 449 Watanabe, J., Tabe, I., Hasegawa, H., et al. 2003, Publ. Astron. Soc. Japan, 55, L23 Whipple, F. L. 1951, ApJ, 113, 464