„IQmulus” projekt: a téradatok felhasználásának új dimenziója – magyar részvétellel Dr. Kristóf Dániel
09_05_18_Vorlage.ppt
FP7 Információs Nap, Nemzeti Innovációs Hivatal, 2012.09.17.
TÉKA Tájérték Kataszter Rendszer, szakmai műhelyvita Földmérési és Távérzékelési Intézet Budapesti Corvinus Egyetem, 2012. szeptember 15.
© 2012 SINTEF
1
09_05_18_Vorlage.ppt
Előzmények • A Földmérési és Távérzékelési Intézet (FÖMI) a kormányzat térinformatikai háttérintézménye, jogelődje 1967-ben jött létre, a Vidékfejlesztési Minisztérium irányításával működik • Aktívan és sikeresen részt veszünk nemzetközi K+F+I pályázatokban a térinformatika, távérzékelés és téradatinfrastruktúrák területén • Közvetlen előzmény: HUMBOLDT projekt (FP6 IP, 20062011) • Az akkori konzorcium-vezető intézmény (Fraunhofer IGD) kereste meg Intézetünket az új pályázat ötletével IQmulus: a téradatok felhasználásának új dimenziója FP7 Információs Nap NIH, Budapest, 2012. szeptember 17.
2 © 2012 SINTEF
2
09_05_18_Vorlage.ppt
Előkészítés • A pályázat nyers ötletét először 2011. áprilisában vetették fel, a FÖMI-t a kezdetektől bevonták az előkészítésbe • Az ötlet alapján szakmai-ismeretségi alapon, a pályázati téma és elvárások figyelembevételével indult meg a konzorcium-építés, az ötlet finomítása • Email- és telefon-kommunikáció, majd 2011. novemberében többnapos, intenzív műhelymunka során épült és finomodott a pályázati elképzelés • Határidő: 2012. január 17, 17:00 – intenzív online munka és telefonos kapcsolat • Pályázat beadva: 2012. január 17, 16:48:59… • Bizottsági meghallgatás: 2012. március 22. • Tárgyalási meghívás: 2012. május 3. • Első tárgyalási nap: 2012. május 24. IQmulus: a téradatok felhasználásának új dimenziója FP7 Információs Nap NIH, Budapest, 2012. szeptember 17.
3 © 2012 SINTEF
3
Jelenlegi helyzet
09_05_18_Vorlage.ppt
• A tárgyalási szakasz véget ért • A Bizottság előzetesen jóváhagyta a munkatervet és a támogatási megállapodást (Grant Agreement) • A konzorciumi megállapodás (Consortium Agreement) partnerek között egyeztetett verziója kész • Várhatóan néhány héten belül aláírják a támogatási szerződést • Kezdődátum: 2012. november 1., végdátum: 2016. október 31.
IQmulus: a téradatok felhasználásának új dimenziója FP7 Információs Nap NIH, Budapest, 2012. szeptember 17.
4 © 2012 SINTEF
4
09_05_18_Vorlage.ppt
Jelenlegi helyzet
IQmulus: a téradatok felhasználásának új dimenziója FP7 Információs Nap NIH, Budapest, 2012. szeptember 17.
5 © 2012 SINTEF
5
09_05_18_Vorlage.ppt
: A High-volume Fusion and Analysis Platform for Geospatial Point Clouds, Coverages and Volumetric Data Sets
IQmulus will leverage the information hidden in large heterogeneous geospatial data sets and make them a practical choice to support reliable decision making
© 2012 SINTEF
6
Scenario and motivation Current situation
Information in large geospatial datasets exists but is not integrated in the decision process Often only accessed for damage assessment, „what went wrong?” analysis
Objectives
Two test cases
09_05_18_Vorlage.ppt
Make information from large geospatial datasets available on time, at the relevant/right level of decision making
Flood Management and Marine Spatial Planning Economic and social importance to EU
Ajka, October 2010 © 2012 SINTEF
7
IQmulus empowers users
SONAR Seamless DEM
LIDAR
09_05_18_Vorlage.ppt
Overlaping datasets in time and space
Point cloud data 5 data users
+ Intelligent Processing =500 User Information data users
These numbers based on HR Wallingford operating data for the SeaZone business in UK © 2012 SINTEF
8
The Core Innovation New methodology for fusion and analysis of geospatial data: Independent of data modelling paradigm
Not bound to predefined data partitioning
Allows expressing basic correlation patterns, advanced analysis and knowledge discovery algorithms
Managing uncertainty
Requires a new technical approach to the definition, configuration and deployment of functional spatial processing services Independent of data size and execution architecture
09_05_18_Vorlage.ppt
Distributed processing of heterogeneous geospatial data
Allows new organisational processes taking into account archive and current in-situ data to cope with extraordinary scenarios
© 2012 SINTEF
9
Architecture and Scalability Challenges
WP2, WP3
Vertical Scalability:
Partitioning Data Reduction
09_05_18_Vorlage.ppt
Horizontal Scalability: Distribution
© 2012 SINTEF
10
Data processing: challenges & approach WP4: core reserach High degree of heterogeneity: multi-source data, raw data, spatial and/or temporal resolution, spectral dimension, dimensionality, ...
today: heterogeneity is handled on few of these aspects only
IQmulus: handling several aspects at the same time (uni-variate and multivariate data sets); matching of semantic information at different scales to drive iterative data fusion/integration
Uncertainty and its management: noise, incompleteness, instrument precision, processing/approximation errors
today: global accuracy information, “simple” confidence maps
IQmulus: provenance and thourough quality documentation; fuzzy/probabilistic methods for associating confidence values to integrated data; robust classifiers
09_05_18_Vorlage.ppt
Large data volumes
algorithmic alternatives for the same task to exploit different parallel architectures
© 2012 SINTEF
11
Data processing: evaluation measures
WP4 Core research
Uncertainty management, quantitative/qualitative measures
metadata for the documentation of lineage and reliability of data and integrated models classification performances cross-validation, auto-qualification of generated data, in-situ validation Comparing formal errors (from error propagation) User satisfaction in the visualization of uncertainty in decision making
Processing tools, quantitative performance measures: benchmark
09_05_18_Vorlage.ppt
definition for the evaluation of
gain in processing time, both in theory (complexity) and in practice (execution time)
robustness: how do the results change if (artificial) outliers are added
sensitivity: how do the results change if the settings/control parameters are modified
© 2012 SINTEF
12
Processing and Human Intervention
Consolidating and harmonizing input data
09_05_18_Vorlage.ppt
WP4
exploitation of semantic information to reduce the need of expert parameter setting to harmonize data sets
Semantic enrichment
automatic extraction of high-level information by segmentation or classification processes
automatic detection and characterization of changes and dynamic events, for instance, sand dunes and landslides
Methods
geometry-oriented methods: exploit shape analysis techniques for point clouds (eg, fitting primitives, variational analysis)
machine learning and statistical analysis
combined reasoning to extract features according to rules and context
© 2012 SINTEF
13
Interactive Visual Decision Support
WP5 Visualization
Leveraging modern GPU features on graphics machines and web-clients single common view for 2D / 3D / nD vector and 2D raster data
enabling visual communication on large heterogeneous geospatial and temporal data sets
deferred mapping and deferred fetching
better visual quality, faster display
direct manipulation based on data from "deferred processing“
joy of use, improved interactivity: speed-up factor ~ 20 on avg.
09_05_18_Vorlage.ppt
3D-Web-based visualization (decision makers, laypersons)
dedicated apps (ease of use) / device independence / on-site presentation
hybrid rendering, compression and streaming: up to a factor of 30
visualization-driven data formats
research, analysis and design of optimally tailored data formats for GPU-based interactive visualization -> future standardisation activities © 2012 SINTEF
14
User engagement
Expert users, decision makers
Evidence to address user needs
Users as partners
Core Users (per test bed: start with ca. 6
WP 1, 5, 7, 8
and go up to 20) – regular user workshops
User Group (approx. 500 persons) –
IQmulus workshops at international events
When users get access
09_05_18_Vorlage.ppt
involved right from the beginning in user requirement task (WP1) Evaluation of prototype components M13-M18 (WP7)
first user evaluation phase M25-M30 (WP7)
second user evaluation phase M43-M48 (WP7) © 2012 SINTEF
15
Markets & Impact
WP 9
Markets
09_05_18_Vorlage.ppt
Competitive Environment
Mainly US-based industries
Strengthening the role of European industry in the converging market of remote sensing and GIS © 2012 SINTEF
16
European Dimension & Impact IQmulus an Integrating European Project
Data providers / users represent diversity in Europe
Hand-picked experts / expertise for implementing the IQmulus infrastructure and services ...
...allowing European organisations to fully exploit data for commercial and political benefit
Impact on Europe
Increase Competitiveness of SME sized European geospatial industry; a single SME cannot provide a solution in sufficient time-to-market, but many can build on the IQmulus infrastructure.
“Because EU Policy makers at all levels (local to European) An operational IQmulus will supports EU Knowledge Economy, especially in sectors such marine and offshore engineering which the EUthat is a major world player. are convinced better IQmulus will support European policy implementation (e.g. SEIS, GMES, Floods decisions need better and Directive) by providing a homogeneous and transparent view on European topography more timely information” and its dynamics
09_05_18_Vorlage.ppt
Leveraging on EU track record in image and point cloud processing over 20 years
Basis for improved and advanced data licensing and re-use models under the „data as service‟ paradigm.
© 2012 SINTEF
17
The Consortium Basic research in geo-spatial information processing
University College London (UCL): research centre for photogrammetry, 3D imaging and metrology
TU Delft: Department of Earth and Climate Sciences, Man-Machine Interaction Group (usability)
Université de Brest (UBO): European Institute for Marine Studies)
Applied research
SINTEF - Institute of Information and Communications Technology: 3D information processing, heterogeneous computing and visualization:
CNR-IMATI - Institute of Applied Mathematics and Information Technologies of the National Research Council of Italy: semantic information enrichment
Fraunhofer - Institute for Computer Graphics Research: geo-information management, geo-data harmonization, interactive visualization and visual decision support
GIS industry (SME)
M.O.S.S. Computer Grafik Systeme (MOSS) : spatial-based information and technology solutions
09_05_18_Vorlage.ppt
National organizations
French National Mapping Agency (Institut national de l‟information géographique et forestière (IGN)
l‟Institut Francais de Recherche pour l´Exploitation de la Mer (Ifremer)
Hungarian National Mapping and Cadastral Agency (FOMI): Institute of Geodesy, Cartography and Remote Sensing
HR Wallingford (HRW):UK and worldwide customers)
Regional organization
Region of Liguria (Italy) © 2012 SINTEF
18
Institute of Geodesy, Cartography and Remote Sensing
Hungarian National Mapping and Cadastral Agency
Established in 1967
Provider and/or custodian of country-wide reference geodata
e.g.: orthoimagery, large-scale topography, cadastre, administrative units, land cover, land parcel identification
Geo-information hub of the Hungarian public sector
Strong professional links with governmental institutions
Involved in numerous national and international R&D projects and cooperations Leading several significant national geospatial R&D projects
Contributor in FP6-FP7 and eContent+ projects
Active participation in GMES and INSPIRE-related activities
09_05_18_Vorlage.ppt
© 2012 SINTEF
19
Institute of Geodesy, Cartography and Remote Sensing
Main role and tasks in IQmulus: „Data provider”, „data integrator”, „user” and „multiplier” at the same time Coordinating the „Land” application scenario
In cooperation with other partners involved in the scenario
By involving other public sector institutions as core users and in the user group
Lead of WP1 (Requirements)
Bringing in the user perspective from the beginning
Cooperating with scientific partners in the State of the Art analysis
09_05_18_Vorlage.ppt
Additional significant contributions
Processing (WP4)
Testing and validation (WP7)
Dissemination (WP8)
© 2012 SINTEF
20
09_05_18_Vorlage.ppt
The Work Package Structure
© 2012 SINTEF
21
© 2012 SINTEF 22
09_05_18_Vorlage.ppt
Köszönöm a figyelmet! További információ:
09_05_18_Vorlage.ppt
Dr. Kristóf Dániel osztályvezető Földmérési és Távérzékelési Intézet Térinformatikai Osztály 1149 Budapest, Bosnyák tér 5. telefon: (1) 460 4090 mobil: (20) 341 7079 e-mail:
[email protected] honlap: www.fomi.hu
IQmulus: a téradatok felhasználásának új dimenziója FP7 Információs Nap NIH, Budapest, 2012. szeptember 17.
28 © 2012 SINTEF
23