IDENTIFIKASI FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP BANYAKNYA KEJAHATAN DENGAN PENDEKATAN ANALISIS SPASIAL (Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011)
DE BUDI SUDARSONO
DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012
RINGKASAN DE BUDI SUDARSONO. Identifikasi Faktor-Faktor yang Berpengaruh terhadap Banyaknya Kejahatan dengan Pendekatan Analisis Spasial (Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011). Dibimbing oleh ANIK DJURAIDAH dan YENNI ANGRAINI. Jakarta adalah ibukota negara yang memiliki aktifitas kegiatan yang tinggi. Namun Jakarta menyimpan berbagai masalah yang kompleks. Salah satu dampak yang ditimbulkan adalah kriminalitas. Beberapa faktor pendorong kriminalitas adalah kepadatan penduduk, latar belakang pendidikan yang tidak memadai, dan angka pengangguran yang terus melonjak. Kedekatan antar lokasi diduga berpengaruh terhadap terjadinya kriminalitas. Penelitian ini bertujuan untuk mengidentifikasi lokasi yang menjadi hotspot dan menentukan faktor-faktor yang mempengaruhi banyaknya kejahatan di Jakarta. Data yang digunakan terdiri dari data tindak pidana dari lima Polres di DKI Jakarta dan data PODES dari BPS tahun 2011, yang mencangkup 42 kecamatan. Metode yang digunakan adalah analisis asosiasi spasial, analisis regresi klasik, analisis regresi kekar, dan analisis regresi spasial. Hasil penelitian menunjukkan wilayah hotspot di DKI Jakarta adalah Cilincing, Koja, Sawah Besar, Tamansari, dan Tanjung Priok. Wilayah tersebut mampu memberikan dampak buruk (rawan kejahatan) terhadap wilayah tetangganya. Sedangkan wilayah coldspotnya adalah Cilandak, Mampang Prapatan, dan Pasar Minggu. Wilayah tersebut berpotensi dipengaruhi kejahatan oleh wilayah tetangganya. Secara eksplorasi pada regresi klasik dan kekar terjadi pelanggaran asumsi kehomogenan ragam. Untuk mengatasinya ditambahkan pembobot spasial ke dalam model regresi. Model regresi spasial terbaik adalah Model Galat Spasial (SEM). Faktor-faktor yang berpengaruh terhadap banyaknya kejahatan di DKI Jakarta adalah keberadaan tempat prostitusi, rasio industri terhadap banyaknya kelurahan, persentase penerima jamkesda, rasio restoran terhadap banyaknya kelurahan dan rasio tempat berkumpulnya anak jalanan terhadap banyaknya kelurahan. Kata kunci: Kriminalitas, Asosiasi Spasial, Regresi Klasik, Regresi Spasial, Hotspot, SEM
IDENTIFIKASI FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP BANYAKNYA KEJAHATAN DENGAN PENDEKATAN ANALISIS SPASIAL (Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011)
DE BUDI SUDARSONO
Skripsi Sebagai salah satu syarat untuk memperoleh gelar Sarjana Statistika pada Departemen Statistika
DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012
Judul Skripsi :
Nama NRP
: :
Identifikasi Faktor-Faktor yang Berpengaruh terhadap Banyaknya Kejahatan dengan Pendekatan Analisis Spasial (Studi Kasus: 42 Kecamatan di DKI Jakarta Tahun 2011) De Budi Sudarsono G14080076
Disetujui Pembimbing 1
Pembimbing 2
Dr. Ir. Anik Djuraidah, MS. NIP. 196305151987032002
Yenni Angraini, S.Si, M.Si NIP. 197805112007012001
Diketahui Ketua Departemen Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor
Dr. Ir. Hari Wijayanto, MS. NIP. 196504211990021001
Tanggal Lulus:
KATA PENGANTAR Alhamdulillahi Robbil ‘Aalamiin, segala puji dan syukur penulis panjatkan kepada Allah SWT karena atas rahmat dan segala limpahan nikmat dari-Nya karya ilmiah ini berhasil diselesaikan. Shalawat serta salam selalu tercurah kepada junjungan besar Rasulullah Muhammad SAW beserta keluarga, sahabat dan umatnya hingga akhir zaman. Karya ilmiah ini merupakan hasil penelitian penulis dalam rangka memenuhi tugas akhir yang merupakan salah satu syarat untuk memperoleh gelar Sarjana Statistika pada Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Semoga karya ilmiah ini dapat memperkaya pengetahuan pada bidang statistika. Terima kasih penulis ucapkan kepada: 1. Ibu Dr. Ir. Anik Djuraidah, MS. dan Ibu Yenni Angraini, S.Si, M.Si selaku pembimbing yang dengan sabar memberikan bimbingan, saran, ilmu serta motivasi kepada penulis. 2. Bapak Dr. Ir. I Made Sumertajaya, M.Si selaku penguji luar yang telah memberikan wawasan statistika kepada penulis. 3. Mama, Bapak dan Dewi yang selalu mengirimkan doa disetiap solatnya serta pengorbanan dan kasih sayangnya kepada penulis. 4. Seluruh Dosen dan Staf Pengajar Departemen Statistika atas segala ilmu yang diberikan. 5. Kapolda dan jajaran Polda Metro Jaya atas masukkan dan izin menggunakan data kepada penulis. 6. Badan Pusat Statistik (BPS) Indonesia atas izin menggunakan data kepada penulis. 7. Bu Mar dan Bu Tri yang telah sabar melayani penulis membuat berbagai surat pengantar dari awal penelitian hingga sidang. 8. Teman-teman satu pembimbing skripsi, Andra, Fatulloh, Hendra dan Silvi yang telah berjuang bersama dari nol. 9. Freddy Yakob dan Ramdhanul Fajri yang selalu memberikan inspirasi dan arti sahabat kepada penulis. 10. Andzar, Fey, Aji, Seftian, Ibay, Wisnu, Agus, Ferdian, Rizal, Yogi, Nuril, Riza, dan Denny atas kehangatan sebuah pertemanan. 11. Keluarga besar Statistika 45 atas dukungan dan kebersamaannya selama ini. Penulis memohon maaf atas segala kekurangan dalam karya ilmiah ini. Semoga karya ilmiah ini dapat memberikan manfaat yang baik bagi setiap pembacanya.
Bogor, Desember 2012
De Budi Sudarsono
RIWAYAT HIDUP Penulis dilahirkan di Jakarta pada tanggal 22 Maret 1990 dari pasangan Bapak Radjijo dan Ibu Suwarti. Penulis merupakan anak pertama dari dua bersaudara. Penulis menyelesaikan pendidikan dasar di SDS Barunawati II Jakarta pada tahun 2002. Kemudian menyelesaikan pendidikan menengah pertama pada tahun 2005 di SMPN 88 Jakarta. Tahun 2008 penulis lulus dari SMA Negeri 65 Jakarta dan pada tahun yang sama lulus seleksi masuk IPB pada program studi mayor Statistika melalui jalur SNMPTN. Penulis memilih minor Ekonomi Pertanian sebagai ilmu penunjang. Selama menjadi mahasiswa aktif, penulis pernah menjadi asisten mata kuliah Metode Statistika pada semester pendek tahun ajaran 2009/2010, semester ganjil tahun ajaran 2010/2011 dan semester pendek tahun ajaran 2011/2012. Penulis juga menjadi asisten mata kuliah Analisis Data Kategorik pada semester ganjil tahun ajaran 2011/2012. Penulis mengikuti praktek lapang di PATIR-BATAN Jakarta pada periode bulan Februari-April 2012. Selain itu, penulis aktif berorganisasi di LDK Al-Hurriyyah 2008/2009, BEM KM IPB 2009/2010 Kabinet Generasi Inspirasi, BEM FMIPA 2010/2011 Kabinet Sahabat Scientist dan BEM KM IPB 2011/2012 Kabinet IPB Berkarya. Penulis juga aktif dalam berbagai kepanitiaan Nasional seperti Statistika Ria 2009 dan 2010, dan menjadi ketua pelaksana Pesta Sains Nasional 2011. Penulis menerima beasiswa Peningkatan Prestasi Akademik tahun 2009-2012.
DAFTAR ISI Halaman DAFTAR TABEL ............................................................................................................... vii DAFTAR GAMBAR ........................................................................................................... vii DAFTAR LAMPIRAN ........................................................................................................ vii PENDAHULUAN ............................................................................................................... Latar Belakang ............................................................................................................... Tujuan ...........................................................................................................................
1 1 1
TINJAUAN PUSTAKA ...................................................................................................... Analisis Data Spasial ........................................................................................................ Asosiasi Spasial ......................................................................................................... Indikator Lokal dari Asosiasi Spasial .......................................................................... Regresi Spasial................................................................................................................. Model Regresi Spasial ............................................................................................... Pengujian Efek Spasial................................................................................................
2 2 2 2 4 4 5
METODOLOGI .................................................................................................................. Data ............................................................................................................................... Metode Analisis .............................................................................................................
5 5 6
HASIL DAN PEMBAHASAN ............................................................................................ Eksplorasi Data ............................................................................................................... Penggabungan Respon ..................................................................................................... Asosiasi Spasial ............................................................................................................... Indeks Moran Global dan Lokal ................................................................................. Plot Pencaran Moran dan Peta Tematik ...................................................................... Analisis Regresi Berganda ................................................................................................ Model Regresi Klasik ................................................................................................. Model Regresi Kekar ................................................................................................. Ukuran Kebaikan Model Regresi Berganda ................................................................ Pengujian Efek Spasial ..................................................................................................... Analisis Regresi Spasial ................................................................................................... Model Regresi Otoregresif Spasial ............................................................................ Model Galat Spasial ................................................................................................... Model Spasial Umum ................................................................................................. Ukuran Kebaikan Model Regresi Spasial .................................................................... Interpretasi Faktor yang Berpengaruh .........................................................................
6 6 7 7 7 8 9 9 10 10 11 11 11 11 12 13 13
KESIMPULAN DAN SARAN ............................................................................................ Kesimpulan ......................................................................................................................... Saran ...................................................................................................................................
14 14 14
DAFTAR PUSTAKA ..........................................................................................................
14
LAMPIRAN ........................................................................................................................
15
vii
DAFTAR TABEL 1 2 3 4 5 6 7 8 9 10
Halaman Sebaran Tindak Kejahatan ................................................................................................. 7 Nilai Statistik Jumlah Tindak Pidana ................................................................................. 7 Penduga Parameter Regresi Klasik .................................................................................... 9 Deteksi Pencilan dengan Sisaan Terbakukan ..................................................................... 10 Penduga Parameter Regresi Kekar .................................................................................... 10 Nilai Kebaikan Model Beganda ........................................................................................ 11 Nilai Pengganda Lagrange ................................................................................................. 11 Penduga Parameter Model Spasial ..................................................................................... 12 Hasil Uji Asumsi Regresi Spasial........................................................................................ 12 Nilai Kebaikan Model Spasial............................................................................................. 13
DAFTAR GAMBAR 1 2 3 4 5 6
Halaman Penghitungan Matriks Pembobot Spasial dengan Langkah Ratu ........................................... 2 Kuadran Plot Pencaran Moran ............................................................................................. 3 Jumlah Kasus Tindak Pidana Berdasarkan Kotamadya ........................................................ 7 Peta Kelompok Banyaknya Kejahatan Tingkat Kecamatan .................................................. 8 Plot Pencaran Moran Banyaknya Kejahatan ........................................................................ 8 Peta Hotspot Banyaknya Kejahatan ...................................................................................... 9
DAFTAR LAMPIRAN 1 2 3 4 5 6 7 8 9 10
Halaman Peubah Penjelas yang digunakan dalam Analisis .............................................................. 16 Perhitungan Bobot setiap Tindak Pidana ........................................................................... 17 Perbandingan Kebaikan Model Pembobotan ..................................................................... 18 Indeks Moran Lokal ......................................................................................................... 19 Korelasi antar Peubah Penjelas Bertipe Rasio .................................................................... 20 Pemeriksaan Asumsi Regresi Klasik secara Eksplorasi ..................................................... 20 Pemeriksaan Asumsi Regresi Kekar secara Eksplorasi ...................................................... 21 Pemeriksaan Asumsi Model SAR secara Eksplorasi ......................................................... 21 Pemeriksaan Asumsi Model SEM secara Eksplorasi........................................................... 22 Pemeriksaan Asumsi Model GSM secara Eksplorasi .......................................................... 22
1
PENDAHULUAN Latar Belakang Ibu kota Jakarta adalah pusat peradaban yang menjadi tempat berkembangnya ilmu pengetahuan dan teknologi, ekonomi, politik, kesenian, hukum dan keadilan, etika, estetika, maupun moral. Jakarta telah berkembang sedemikian rupa karena fungsinya sebagai pusat industri dan pertumbuhan ekonomi pasar dalam program pembangunan nasional. Aktifitas industri serta ekonomi di Jakarta menjadikan Jakarta menjadi suatu wilayah yang memiliki tingkat konsentrasi penduduk yang cukup tinggi, salah satunya disebabkan oleh urbanisasi. BPS (2009) menyebutkan bahwa tingkat urbanisasi untuk DKI Jakarta telah mencapai 100% dan diprediksikan hingga 2025 tetap pada angka tersebut. Kondisi ini menyebabkan kepadatan populasi di Jakarta yang berdampak pada berbagai permasalahan yang harus dihadapi, seperti polusi, persampahan, trasportasi, kriminalitas, kelangkaan tanah untuk perumahan, dan sebagainya. Jakarta bukan saja sebagai pusat peradaban, lebih dari itu Jakarta telah berkembang menjadi sebuah ibukota negara dengan berbagai masalah sosial. Kondisi ini berdampak pada kerusakan peradaban dan derajat kemanusiaan manusia, kehancuran lingkungan, pemujaan terhadap uang secara berlebihan, dan kerakusan. Salah satu dampak dari permasalahan sosial dan ekonomi adalah kriminalitas. Pada tahun 2010 jumlah tindak pidana (crime total) di DKI Jakarta, Depok, Tangerang, dan Bekasi yang merupakan wilayah hukum Polda Metro Jaya mencapai 25239 kasus (Humas Polda Metro Jaya 2010). Dampak negatif dari adanya kriminalitas ini yaitu munculnya korban jiwa maupun kerugian benda atau materiil sehingga meresahkan dan menimbulkan trauma kepada masyarakat. Menurut Susanto (2010), kriminalitas dipengaruhi oleh faktor genetik, pendidikan, ekonomi, jenis kelamin, umur, kultur, status sosial dan urbanisasi. Sedangkan Yoga dan Pane (2006) menyebutkan bahwa meningkatnya kriminalitas di DKI Jakarta disebabkan oleh jumlah penduduk yang terus menerus meningkat, latar belakang pendidikan yang tidak memadai, dan angka pengangguran yang terus melonjak. Beberapa jenis kejahatan yang menjadi indeks kejahatan di Jakarta yakni pembunuhan, penganiayaan berat (anirat), pencurian dengan pemberatan (curat), pencurian dengan kekerasan (curas), pencurian
kendaraan bermotor (curanmor), kebakaran, perjudian, pemerasan, perkosaan, narkotika, dan kenakalan remaja. Penelitian ini ingin melihat secara umum kejahatan di DKI Jakarta, sehingga dilakukan penggabungan terhadap sebelas tindak pidana. Penelitian tentang kriminal pernah dilakukan oleh Hidayatunnismah (2003) dengan menggunakan analisis korespondensi. Penelitian ini menyebutkan bahwa pelaku tindak kriminal berusia 26-35 tahun, dengan jenis kelamin laki-laki serta bekerja sebagai buruh dan pengangguran. Pembunuhan dan pencurian dengan pemberatan memiliki asosiasi dengan pendidikan dibawah SD, pengangguran dan remaja. Waktu kejadiannya pembunuhan, pencurian berat dan pencurian kekerasan memiliki asosiasi pada pukul 18.0023.59 dan 00.00-05.59, sedangkan tempat yang paling rawan adalah pemukiman, tempat umum, pertokoan, jalan raya, dan lembaga. Sebaran kejahatan dapat dijelaskan oleh perpaduan antara ruang (wilayah) dan waktu dari target kejahatan dan motivasi si pelaku. Adapun perpaduan ini dijelaskan oleh beberapa komplektifitas aktifitas suatu tempat, dari mulai wilayah dengan aktifitas yang kompleks seperti wilayah tempat kerja dan sekolah sampai wilayah yang sangat kondisif, seperti perumahan (Anselin et al. 2000) Pengamatan di wilayah tertentu dipengaruhi oleh pengamatan di wilayah lain seperti yang dinyatakan pada hukum pertama tentang geografi yang dikemukakan W Tobler’s dalam Anselin (1988) yang menyebutkan bahwa segala sesuatu saling berhubungan satu dengan yang lainnya, tetapi sesuatu yang dekat lebih mempunyai pengaruh daripada sesuatu yang jauh. Penentuan daerah hotspot dan faktor-faktor yang mempengaruhi banyaknya kejahatan di DKI Jakarta sangat penting untuk menimbulkan sikap kritis terhadap statistik kriminal resmi dalam memberikan gambaran tentang fakta kejahatan yang ada di masyarakat, sehingga berguna bagi pihak kepolisian dan pihak-pihak yang berkaitan dalam memberikan pelayanan dan pengamanan kepada masyarakat. Tujuan Tujuan penelitian ini adalah 1. Mengidentifikasi lokasi yang menjadi hotspot dari banyaknya kejahatan di DKI Jakarta berdasarkan asosiasi spasialnya. 2. Menentukan faktor-faktor yang mempengaruhi banyaknya kejahatan di DKI Jakarta dengan pendekatan analisis regresi klasik dan spasial.
2
TINJAUAN PUSTAKA Analisis Data Spasial Asosiasi Spasial Asosiasi spasial atau otokorelasi spasial yaitu terdapat suatu kemiripan objek di dalam suatu ruang yang saling berhubungan. Pada kasus spasial, penggunaan istilah asosiasi mengacu pada data berbasis area dan memiliki hubungan yang bersifat kebertetangaan. Otokorelasi berbasis pada data area ada yang bersifat positif dan negatif. Positif jika dalam suatu daerah yang saling berdekatan mempunyai nilai yang mirip dan bersifat menggerombol. Dikatakan negatif jika dalam suatu daerah yang berdekatan nilainya berbeda dan tidak mirip (Silk 1979). Indikator Lokal dari Asosiasi Spasial Metode yang berhasil dikembangkan oleh Anselin (1995) untuk data spasial ialah Indikator Lokal dari Asosiasi Spasial (LISA). Suatu eksplorasi data (area) untuk menguji kestasioneran dan mendeteksi hotspot/coldspot, serta mampu menyajikan dalam bentuk visual. Hotspot merupakan suatu wilayah yang memiliki nilai pengamatan dengan pengukuran tertinggi, sedangkan coldspot sebaliknya. LISA juga mampu menemukan pola hubungan spasial yang berbasis lokal area (Indeks Moran Lokal) yaitu dengan menguji setiap area dan pengaruhnya terhadap aspek globalnya (Indeks Moran Global). Secara komputasi LISA diperoleh melalui dengan merupakan fungsi dari dan , dan adalah nilai observasi dari wilayah ke-i, sedangkan adalah nilai observasi dari wilayah lain ke-j dari area i. Ada beberapa asumsi dan metode yang dikombinasikan dalam LISA yaitu penggunaan matriks pembobot spasial, perhitungan Indeks Moran Global dan Lokal, dan plot pencaran Moran.
berdekatan jika secara vertikal, horisontal, dan diagonal berbatasan langsung (Silk 1979). Matriks akan memberikan nilai pada daerah i yang berbatasan langsung dengan daerah j, sisanya diberikan nilai 0. Selanjutnya, isi dari matriks pembobot spasial pada baris ke-i kolom ke-j yakni , dengan nilai sebagai berikut: ∑
2
3
4
5
6
7
8
9
a. Langkah ratu (Queen contiguity) Tetangga j D a e r
1
2
3
4
5
6
7
8
9
∑
1
0
1
0
1
1
0
0
0
0
3
2
1
0
1
1
1
1
0
0
0
5
3
0
1
0
0
1
1
0
0
0
3
4
1
1
0
0
1
0
1
1
0
5
a
5
1
1
1
1
0
1
1
1
1
8
h
6
0
1
1
0
1
0
0
1
1
5
7
0
0
0
1
1
0
0
1
0
3
8
0
0
0
1
1
1
1
0
1
5
9
0
0
0
0
1
1
0
1
0
3
i
b. Matriks Contiguity Tetangga j D a e
a. Matriks Pembobot Spasial Matriks pembobot spasial merupakan sebuah matriks yang menggambarkan hubungan kedekatan antar wilayah. Hubungan kedekatan antar wilayah dapat menggunakan berbagai metode, antara lain rook contiguity, bishop contiguity, dan queen contiquity. Penghitungan nilai W pada penelitian ini menggunakan queen contiguity, yaitu matriks pembobot spasial berdasarkan hubungan kebertetanggaan yang bergerak berdasarkan langkah ratu pada permainan catur, dikatakan
1
r a h
i
1
2
3
4
5
6
7
8
9
∑
1
0
1/3
0
1/3
1/3
0
0
0
0
1
2
1/5
0
1/5
1/5
1/5
1/5
0
0
0
1
3
0
1/3
0
0
1/3
1/3
0
0
0
1
4
1/5
1/5
0
0
1/5
0
1/5
1/5
0
1
5
1/8
1/8
1/8
1/8
0
1/8
1/8
1/8
1/8
1
6
0
1/5
1/5
0
1/5
0
0
1/5
1/5
1
7
0
0
0
1/3
1/3
0
0
1/3
0
1
8
0
0
0
1/5
1/5
1/5
1/5
0
1/5
1
9
0
0
0
0
1/3
1/3
0
1/3
0
1
c. Matriks pembobot spasial Gambar 1 Penghitungan matriks pembobot spasial dengan langkah ratu
3
b. Indeks Moran Global dan Lokal Menurut Ward & Gleditsch (2008) statistik Moran’s I adalah ukuran korelasi antara pengamatan pada suatu wilayah dengan wilayah lain yang berdekatan. Moran’s I dapat diperoleh melalui persamaan berikut: ∑ ∑ ̅ ( ̅) [ ][ ] ∑ ∑ ∑ ̅ dengan n adalah banyaknya pengamatan, ̅ adalah nilai rata-rata dari dari n lokasi. Sedangkan merupakan nilai pada lokasi ke-i dan adalah nilai pada lokasi ke-j. Kemudian adalah elemen matriks pembobot spasial. Nilai dari statistika I merupakan koefisien korelasi yang berada pada batas antara -1 dan 1. Nilai mendekati 1 atau -1 berarti memiliki korelasi yang tinggi. Sedangkan nilai mendekati nilai 0 mengartikan korelasi spasial tidak ada. Pengujian hipotesis Indeks Moran Global sebagai berikut: H0 : I = 0 (Tidak ada otokorelasi spasial) H1 : I > 0 (Otokorelasi spasial positif) : I < 0 (Otokorelasi spasial negatif) Statistik uji diturunkan dari sebaran normal baku, yaitu
I adalah Indeks Moran, dengan z (I) adalah nilai statistik uji dari Indeks Moran. E(I) nilai harapan Indeks Moran, merupakan simpangan baku dari Indeks Moran dan n banyaknya area. Statistik Moran Lokal berguna untuk pendeteksian hotspot/coldspot pada data area. Moran Lokal dengan matriks pembobot spasial didefinisikan sebagai berikut ̅ ∑ ̅
dengan merupakan nilai pengamatan pada lokasi ke-i, adalah nilai pengamatan pada lokasi ke-j, ̅ adalah nilai rataan dari variabel pengamatan, dan adalah ukuran pembobot antara wilayah ke-i dan ke-j (Anselin 1995). c. Plot Pencaran Moran Plot Pencaran Moran adalah analisis eksplorasi secara visual yang mampu mendeteksi otokorelasi spasial (Anselin 1995). Output yang dihasilkan adalah bukan data asli melainkan data yang telah distandarisasikan dalam z-score yang merupakan beda nilai antara pengamatan dengan nilai (rataan) harapan dari peubah. Plot Pencaran Moran
disajikan berbasis pada data z-score lokasi pada sumbu (x), dan nilai z-score rata-rata tetangganya pada sumbu y. Standarisasi mengacu pada simpangan baku z-score berdistribusi normal dan memiliki persamaan sebagai berikut: ̅ dengan nilai dari peubah yang diamati di lokasi i. Sementara ̅ merupakan nilai (rataan) harapan dari peubah pada semua lokasi dan adalah simpangan baku dari peubah . Secara visual plot Pencaran Moran terbagi atas empat kuadran seperti pada Gambar 2.
4. RT
1.TT
3. RR
2.TR
Gambar 2 Kuadran plot pencaran moran Wilayah yang termasuk ke dalam kuadran pertama adalah wilayah Tinggi-Tinggi (TT), artinya wilayah tersebut memiliki otokorelasi positif. Pengamatan pada wilayah ini tinggi dan dikelilingi oleh wilayah dengan amatan yang juga tinggi. Wilayah yang berada pada kuadran kedua adalah wilayah Tinggi-Rendah (TR) yang memiliki otokorelasi negatif. Wilayah ini merupakan pencilan atau disebut hotspot, karena amatan pada wilayah ini tinggi namun dikelilingi oleh wilayah dengan amatan yang rendah. Dampak yang ditimbulkan dari wilayah yang berada pada daerah hotspot adalah wilayah ini berpotensi untuk menularkan pengaruhnya ke wilayah di sekelilingnya yang amatannya rendah. Wilayah yang berada pada kuadran ketiga adalah wilayah Rendah-Rendah (RR), artinya wilayah tersebut memiliki otokorelasi positif. Pengamatan pada wilayah ini rendah dan dikelilingi oleh wilayah dengan amatan yang juga rendah. Wilayah yang berada pada kuadran keempat adalah wilayah RendahTinggi (RT) yang memiliki otokorelasi negatif. Wilayah ini merupakan pencilan atau disebut coldspot, karena amatan pada wilayah ini rendah namun dikelilingi oleh wilayah dengan amatan yang tinggi. Dampak yang ditimbulkan dari wilayah yang berada pada daerah coldspot adalah wilayah ini berpotensi untuk ditularkan oleh wilayah di sekelilingnya yang amatannya tinggi. Biasanya agar lebih menarik, hasil dari plot Pencaran Moran divisualisasikan ke dalam peta tematik.
4
Regresi Spasial Regresi spasial digunakan untuk menduga pengaruh peubah penjelas terhadap peubah respon dengan ditambahkan unsur spasial di dalamnya. Model umum regresi spasial sebagai berikut: [1] , dengan merupakan vektor peubah respon berukuran (nx1), adalah koefisien otoregresif lag spasial, adalah matriks pembobot spasial berukuran (nxn), adalah matriks peubah penjelas berukuran nx(k+1), adalah vektor parameter yang berukuran (k+1)x1, adalah vektor galat yang diasumsikan mengandung otokorelasi (nx1), merupakan koefisien otoregresi sisaan spasial dan adalah vektor sisaan yang berukuran (nx1) dengan k adalah banyaknya peubah penjelas (Anselin 1988). Parameter pada model regresi spasial diduga dengan metode penduga kemungkinan maksimum. Model Regresi Spasial Pada model [1] jika tidak ada pengaruh spasialnya, yakni ketika nilai efek ketergantungan lag spasial atau dan efek ketergantungan galat spasial atau maka model akan menjadi model regresi linier klasik. Metode regresi spasial dengan pendekatan area sudah banyak berkembang diantaranya adalah Model Regresi Otoregresif Spasial (SAR), Model Galat Spasial (SEM) dan Model Spasial Umum (GSM). a. Model Regresi Otoregresif Spasial Pada model [1] bila dan maka model disebut Model Regresi Otoregresif Spasial (Spatial Autoregressive Regression/SAR) yaitu model regresi spasial yang peubah responnya berkorelasi spasial, artinya model ini memiliki ketergantungan antar satu pengamatan di suatu wilayah dengan pengamatan yang lain di wilayah tetangganya. Sehingga model umum regresi spasialnya menjadi [2] Parameter otoregresif spasial lag ( ) mengindikasikan tingkat korelasi komponen spasial dari suatu wilayah terhadap wilayah lain di sekitarnya (Ward & Gleditsch 2008). Pendugaan parameter pada model SAR menggunakan metode kemungkinan maksimum, penduga untuk adalah ̂ ̂
Penduga untuk tidak dapat dilakukan dengan cara memaksimalkan persamaan penduga untuk secara analitik. Namun, penduga untuk dapat diperoleh dengan cara sebagai berikut: 1. Regresikan antara dan dengan menggunakan MKT sehingga diperoleh ̂ . 2. Regresikan dan dengan menggunakan MKT sehingga diperoleh ̂ . ̂ 3. Hitung galat dan ̂ . 4. Hitung dugaan untuk dengan memaksimalkan fungsi log kemungkinan parsial, yaitu: [ (
)(
)
]
b. Model Galat Spasial Pada model [1] apabila nilai dan maka model disebut Model Galat Spasial (Spatial Error Model/SEM) yaitu model regresi linier yang peubah galatnya terdapat korelasi spasial, artinya model ini memiliki ketergantungan galat pada pengamatan di suatu wilayah dengan galat pada pengamatan yang lain di wilayah yang berbeda sehingga model umumnya menjadi [3]
Parameter mengindikasikan tingkat korelasi komponen spasial galat dari suatu wilayah terhadap wilayah lain di sekitarnya (Ward & Gleditsch 2008). Penduga untuk model SEM juga menggunakan metode kemungkinan maksimum, penduga untuk adalah ̂
*(
̂
)(
̂
)+
(
̂
)(
̂
)
Penduga untuk tidak dapat dilakukan dengan cara memaksimalkan persamaan penduga untuk secara analitik. Penduga untuk diperoleh dengan cara yang sama seperti penduga untuk dan memaksimalkan fungsi log kemungkinan parsial. c. Model Spasial Umum Pada model [1] apabila nilai dan maka model disebut Model Spasial Umum (General Spatial Model/GSM) yaitu model regresi linier yang peubah galatnya dan peubah responnya terdapat korelasi spasial. Parameter otoregresif spasial lag ( ) mengindikasikan tingkat korelasi komponen spasial dari suatu wilayah terhadap wilayah
5
lain di sekitarnya dan parameter mengindikasikan tingkat korelasi komponen spasial galat dari suatu wilayah terhadap wilayah lain di sekitarnya. Penduga untuk model GSM juga menggunakan metode kemungkinan maksimum (Anselin 1988), penduga untuk adalah ̂ dengan
c. Model Spasial Umum H0 : dan atau λ=0 (tidak ada otokorelasi spasial) H1 : dan (ada otokorelasi spasial) statistik uji : ,( ) dengan
Pengujian Efek Spasial Pengujian efek spasial dibagi menjadi dua, yaitu efek ketergantungan spasial dan efek keragaman spasial. Pengujian ketergantungan spasial berguna dalam pemilihan model yang tepat, menggunakan ketergantungan lag spasial, ketergantungan galat spasial atau ketergantungan atas keduanya. Pengujian ketergantungan spasial menggunakan uji Pengganda Lagrange, sedangkan untuk menguji keragaman spasial menggunakan uji Breusch-Pagan. Pengujian hipotesis Pengganda Lagrange dan statistik ujinya adalah a. Model Regresi Otoregresif Spasial H0 : H1 : statistik uji : ]
[ dengan [
(
̂) (
(
) ̂
)(
̂) ]
⁄ ⁄
{ } kriteria penolakan uji LM ini yaitu tolak H0 jika LM > (Anselin 1988) Uji keragaman spasial menggunakan uji Breusch-Pagan. Bentuk umum keheterogenan ragam sebagai berikut: dengan adalah konstanta, adalah konstanta regresi yang selalu bernilai satu, dan adalah peubah penjelas. Jika keheterogenan ragam tidak terpenuhi maka tidak ditolak. Oleh karena itu hipotesis sebagai berikut (Arbia 2006). H0 : H1 : Statistik uji Breusch-Pagan adalah (∑
dan adalah vektor galat (nx1) dari MKT, ̂ dan ̂ diperoleh dengan menggunakan MKT, dan adalah operator teras (Anselin 1999). Statistik LMlag menyebar χ2(1). Jika LMlag lebih besar dari χ2(1) maka tolak H0 sehingga model yang dibuat adalah model otoregresif spasial.
) (∑
) (∑
)
̂ ( ), dengan , dan ̂ ∑ ̂ . Uji statistik BP menyebar χ2(k-1) dengan k adalah banyaknya parameter regresi, tolak H0 jika BP lebih besar dari χ2(k-1). METODOLOGI
b. Model Galat Spasial H0 : H1 : statistik uji : [
]
dengan adalah vektor galat (n 1) dari MKT dan adalah operator teras (Anselin 1999). Statistik LMgalat mengikuti sebaran χ2(1). Jika LMgalat lebih besar χ2(1) maka tolak H0 sehingga model yang dibuat adalah model galat spasial.
Data Data yang digunakan dalam penelitian ini adalah data tindak pidana dari lima Polres di DKI Jakarta dan data PODES dari BPS tahun 2011, yang mencangkup 42 kecamatan. Tindak pidana yang menjadi indeks kejahatan di Jakarta ada sebelas yaitu pembunuhan, anirat, curat, curas, curanmor, kebakaran, perjudian, pemerasan, perkosaan, narkotika, dan kenakalan remaja. Indeks kejahatan adalah bentuk-bentuk kejahatan tertentu yang dipilih dari banyaknya jenis tindak kejahatan yang ada untuk dipakai sebagai alat pengukur naik
6
turunnya kejahatan suatu wilayah. Penggabungan respon tidak bisa langsung dijumlahkan pada setiap wilayah karena setiap tindak pidana memiliki besarnya keragaman yang berbeda-beda. Oleh karena itu penggabungan respon dilakukan dengan pembobotan pada setiap tindak pidana. Hal yang harus diperhatikan saat menggabungkan adalah korelasi antar tindak pidana. Ada tiga cara pembobotan yang dibandingkan pada penelitian ini, yaitu pembobotan dengan proporsi masing-masing tidak pidana, pembobotan dengan simpangan baku masingmasing-masing tindak pidana, dan pembobotan dengan Komponen Utama (KU). Sehingga respon yang digunakan dalam penelitian ini adalah hasil penjumlahan dari sebelas tindak pidana yang sudah diboboti dan disebut banyaknya kejahatan. Pembobotan yang lebih baik dilihat dari sebarannya yang menyebar normal. Peubah penjelas yang digunakan dalam penelitian ini dapat dilihat pada Lampiran 1 yang berasal dari Badan Pusat Statistik. Metode Analisis Tahapan analisis yang digunakan untuk mencapai tujuan penelitian sebagai berikut: 1. Melakukan eksplorasi terhadap data tindak pidana. 2. Menggabungan respon dengan pembobotan menggunakan proporsi, simpangan baku, dan KU serta membandingkan ketiganya. Pembobotan yang lebih baik dilihat dari sebaran datanya yang menyebar normal. 3. Membuat matriks pembobot spasial. 4. Menguji otokorelasi spasial terhadap data banyaknya kejahatan dengan Indeks Moran. 5. Mengidentifikasi karakteristik wilayah di DKI Jakarta terhadap banyaknya kejahatan. 5.1 Memeriksa otokorelasi spasial untuk setiap wilayah berdasarkan Moran Lokal. 5.2 Membuat diagram pencar Moran. 5.3 Mengidentifikasi wilayah yang termasuk ke dalam TT, TR, RT, dan RR. 5.4 Membuat peta tematik berupa signifikan Moran Lokal untuk data banyaknya kejahatan. 5.5 Interpretasi dari peta tematik yang dihasilkan. 6. Mengidentifikasi peubah-peubah yang berpengaruh terhadap banyaknya kejahatan
dengan analisis regresi klasik dan analisis regresi kekar. 6.1 Melakukan uji multikolinieritas. 6.2 Melakukan pendugaan dan pengujian parameter model regresi klasik. 6.3 Menguji asumsi pada model regresi klasik (kehomogenan ragam sisaan, kenormalan sisaan, kebebasan antar sisaan, dan multikolinearitas). 6.4 Mendeteksi adanya pencilan atau amatan berpengaruh pada model regresi klasik. 6.5 Melakukan pendugaan dan pengujian parameter model regresi kekar. 6.6 Menguji asumsi sisaan pada model regresi kekar. 6.7 Membandingkan kebaikan model antara model regresi klasik dengan model regresi kekar berdasarkan nilai R2 dan RMSE. 7. Mengidentifikasi peubah-peubah yang berpengaruh terhadap banyaknya kejahatan dengan analisis regresi spasial. 7.1 Memeriksa otokorelasi spasial terhadap sisaan model regresi klasik menggunakan Indeks Moran. 7.2 Menguji efek kehomogenan ragam spasial dengan Breusch-Pagan. 7.3 Menguji efek ketergantungan spasial dengan Pengganda Lagrange. 7.4 Melakukan pendugaan dan pengujian parameter model regresi spasial yang signifikan pada uji Pengganda Lagrange. 7.5 Menguji asumsi sisaan pada model regresi spasial (kehomogenan ragam sisaan, kenormalan sisaan, dan kebebasan antar sisaan). 7.6 Membandingkan kebaikan model antar regresi spasial berdasarkan nilai AIC, R2, dan RMSE (Chatterjee & Hadi 2006). 7.7 Interpretasi peubah yang signifikan pada model yang lebih baik. 8. Menarik kesimpulan HASIL DAN PEMBAHASAN Eksplorasi Data Wilayah Kotamadya Jakarta Pusat menjadi wilayah yang paling sering terjadi kasus kejahatan yakni sebanyak 2912 kasus dalam setahun, dapat dilihat pada Gambar 3. Jakarta Pusat merupakan pusat pemerintahan dan pusat kegiatan yang bersifat nasional, regional maupun internasional. Jakarta Pusat banyak terdapat objek vital, seperti gedung kedutaan besar, rumah duta besar, kantor partai politik,
7
Jumlah Tindak Pidana
sentra ekonomi, hotel, istana negara, gedung DPR/MPR, gedung DPRD, Bank Indonesia, dan kantor departemen, sehingga Jakarta Pusat mempunyai potensi kerawanan kejahatan yang cukup tinggi. 3500 3000 2500 2000 1500 1000 500 0 Sel
Bar
Pus
Tim
Ut
Jakarta
Gambar 3
Jumlah kasus tindak pidana berdasarkan kotamadya
Pada Tabel 1, selama tahun 2011 jumlah tindak pidana dari sebelas tindak pidana di DKI Jakarta sebanyak 9268 kasus. Jenis tindak pidana yang paling sering terjadi adalah curanmor, curat, dan narkotika, sedangkan yang jarang terjadi adalah kasus pemerkosaan, pembunuhan, dan kenakalan remaja. Tabel 1 Sebaran Tindak Kejahatan Jenis
Jumlah
%
Pembunuhan Anirat Curat Curas Curanmor
19 914 2313 511 2727
0.21 9.86 24.96 5.51 29.42
Kebakaran Perjudian Pemerasan Pemerkosaan Kenakalan Remaja
244 483 195 5
2.63 5.21 2.10 0.05
59
0.64
Narkotika
1798
19.40
Total
9268
100
Berdasarkan Tabel 2, jumlah tindak pidana yang teringgi mencapai angka 535 kasus dalam setahun, kecamatan tersebut adalah kecamatan Kemayoran yang berada pada kotamadya Jakarta Pusat. Wilayah ini berbatasan langsung dengan Jakarta Utara. Jumlah tindak pidana yang terendah adalah 84 kasus dalam setahun, kecamatan tersebut adalah kecamatan Mampang Prapatan yang berada pada kotamadya Jakarta Selatan. Ratarata dari seluruh tindak pidana di DKI Jakarta sebesar 220.7 kasus.
Tabel 2 Nilai statistik jumlah tindak pidana Statistik Rataan Galat Baku Koef.Keragaman Minimum Median Maksimum
Jumlah Tindak Pidana 220.7 17.4 51.07 84 181 535
Penggabungan Respon Penggabungan respon tidak bisa langsung dijumlahkan pada setiap wilayah karena setiap tindak pidana memiliki besarnya keragaman yang berbeda-beda. Oleh karena itu penggabungan respon dilakukan dengan pembobotan pada setiap tindak pidana. Hal yang harus diperhatikan saat menggabungkan adalah korelasi antar tindak pidana. Metode pembobot yang digunakan untuk penelitian ini adalah yang lebih baik diantara pembobot dengan proporsi, pembobot dengan simpangan baku, dan pembobot dengan KU dilihat dari diagram kotak garis dan uji kenormalannya. Perhitungan ketiga metode pembobotan tersebut dapat dilihat pada Lampiran 2. Pada Lampiran 3 diperoleh bahwa metode pembobotan dengan proporsi terdapat pencilan dan datanya tidak menyebar normal, sedangkan metode pembobotan dengan simpangan baku dan KU tidak ada pencilan dan datanya menyebar normal. Namun metode pembobotan dengan KU secara eksplorasi lebih kecil nilai ragamnya dan lebih halus plot kenormalannya. Metode dengan KU ini membuat peubah baru yang peubahnya saling bebas satu sama lain atau antar peubah barunya ini tidak saling berkorelasi, sehingga pada penelitian ini menggunakan pembobotan dengan KU untuk menggabungkan respon dari sebelas tindak pidana dan disebut sebagai banyaknya kejahatan. Respon banyaknya kejahatan ini yang selanjutnya digunakan pada analisis berikutnya di penelitian ini. Asosiasi Spasial Indeks Moran Global dan Lokal Pada Gambar 4, berdasarkan data peubah respon yang sudah diboboti dengan KU, wilayah yang memiliki lebar selang yang sama cenderung membentuk kelompok. Sebagai contoh wilayah yang berwarna merah tua memiliki banyaknya kejahatan yang tinggi, dan wilayah tersebut membentuk pola mengelompok dengan wilayah tetangganya. Begitupun dengan kelompok warna yang lain.
8
2,0 19.Kemayoran
W neighboor(standar)
1,5 30.Pasar Minggu
1,0
24.Mampang Prapatan
0,5
4.Cilandak 31.Pasar Rebo
0,0
38.Tamansari 35.Sawah Besar 5.Cilincing 21.Koja
-1,0
11.Jagakarsa
-2
Gambar 5
Gambar 4
Peta kelompok banyaknya kejahatan tingkat kecamatan
Banyaknya kejahatan di DKI Jakarta dipengaruhi oleh wilayah tetangganya dapat dilihat dari besarnya nilai Indeks Moran Global beserta nilai peluangnya. Sebelum melakukan pengujian Indeks Moran terlebih dahulu menentukan matriks pembobot yang kemudian dilakukan standarisasi pada setiap baris. Hasil Indeks Moran untuk data banyaknya kejahatan sebesar 0.5016 dengan nilai peluangnya 9.12e-09 (<α=5%). Besarnya nilai peluang tersebut menunjukkan bahwa terdapat otokorelasi spasial positif atau pola yang mengelompok dan memiliki kesamaan karakteristik pada wilayah yang berdekatan. Secara global sudah diketahui bahwa ada otokorelasi spasial pada banyaknya kejahatan. Berdasarkan besarnya nilai peluang pada setiap wilayah yang dideteksi menggunakan Indeks Moran Lokal pada Lampiran 4, ada 11 wilayah yang signifikan. Wilayah tersebut yaitu Cilandak, Cilincing, Jagakarsa, Kemayoran, Koja, Mampang Prapatan, Pancoran, Pasar Minggu, Pasar Rebo, Sawah Besar, Tamansari dan Tanjung Priok. Plot Pencaran Moran dan Peta Tematik Analisis eksplorasi secara visual untuk menentukan setiap kecamatan ke dalam empat kuadran yang berbeda menggunakan plot Pencaran Moran. Setiap wilayah yang signifikan pada Lokal Moran dibagi ke dalam empat kuadran yang berbeda, yaitu kuadran pertama (TT), kuadran kedua (TR) yang merupakan wilayah hotspot, kuadran ketiga (RR), dan kuadran keempat (RT) yang merupakan wilayah coldspot, dapat dilihat pada Gambar 5.
41.Tanjung Priok
-0,5
29.Pancoran
-1
0 Y(standar)
1
2
Plot pencaran moran banyaknya kejahatan
Hasil plot Pencaran Moran pada Gambar 5 dapat divisualisasikan ke peta tematik pada Gambar 6. Berdasarkan Gambar 6, diketahui bahwa wilayah TT hanya kecamatan Kemayoran saja, dan diberi warna orange. Hal ini menunjukkan bahwa Kemayoran memiliki otokorelasi positif, artinya Kemayoran memiliki banyaknya kejahatan yang tinggi dan dikelilingi oleh wilayah yang juga tinggi. Kemayoran adalah wilayah yang berada pada kotamadya Jakarta Pusat yang berbatasan langsung dengan Jakarta Utara. Wilayah hotspot adalah wilayah yang termasuk dalam wilayah TR yaitu Cilincing, Koja, Sawah Besar, Tamansari dan Tanjung Priok, diberi warna merah. Kelima wilayah hotspot ini memiliki otokorelasi negatif atau berpola pencilan, dengan nilai banyaknya kejahatan pada wilayah tersebut tinggi namun dikelilingi oleh wilayah yang memiliki banyaknya kejahatan yang rendah. Wilayah– wilayah tersebut berpotensi menjadikan wilayah disekitarnya menjadi wilayah yang rawan akan tindak pidana juga. Wilayah yang dikelilingi oleh wilayah hotspot ini terancam bahaya kejahatan. Wilayah yang berwarna biru adalah wilayah yang termasuk ke dalam wilayah RR. Wilayah signifikan yang masuk ke dalam wilayah ini memiliki banyaknya kejahatan yang rendah dan wilayah disekitarnya juga rendah. Wilayah-wilayah tersebut adalah Jagakarsa, Pancoran dan Pasar Rebo. Wilayah yang dikelilingi oleh wilayah coldspot ini tergolong aman, namun tetap berpotensi menjadi berbahaya ketika suatu saat wilayah coldspot ini menjadi tinggi, karena hubungannya yang berkorelasi positif. Kuadran yang keempat adalah RT yang diberi warna hijau. Wilayah signifikan yang termasuk ke dalam kuadran ini adalah Cilandak, Mampang Prapatan dan Pasar Minggu. Wilayah ini memiliki otokorelasi negatif atau berpola pencilan dengan nilai
9
banyaknya kejahatan pada wilayah tersebut rendah (coldspot) sedangkan wilayah sekitarnya tinggi. Wilayah coldspot ini berpotensi menjadi rawan akan tindak pidana yang ditularkan oleh wilayah di sekitarnya yang tinggi. Wilayah yang diberi warna abuabu artinya wilayah tersebut tidak signifikan ketika diuji Lokal Morannya.
Gambar 6
Peta hotspot kejahatan
banyaknya
Analisis Regresi Berganda Model Regresi Klasik Banyaknya kejahatan di DKI Jakarta dipengaruhi oleh beberapa faktor, untuk mengidentifikasi faktor-faktor yang mempengaruhi banyaknya kejahatan di DKI Jakarta digunakan analisis regresi klasik, tanpa memasukkan unsur spasial ke dalam model. Namun sebelum melakukan analisis, terlebih dahulu dideteksi multikolinearitasnya terhadap peubah penjelas yang digunakan. Hasil yang diperoleh pada Lampiran 5 menunjukkan bahwa peubah-peubah yang bertipe rasio tidak ada yang memiliki korelasi yang tinggi antar peubah penjelasnya, artinya semua peubah penjelas diikutsertakan dalam analisis regresi klasik maupun spasial. Pemodelan menggunakan model regresi klasik pada Tabel 3 diperoleh tiga peubah penjelas yang signifikan yaitu keberadaan tempat prostitusi (x3), rasio banyaknya industri per kelurahan (x6) dan persentase penerima jamkesda (x8). Besarnya R2 pada model yang terbentuk sebesar 63.39%, artinya model regresi yang terbentuk dapat menjelaskan keragaman banyaknya kejahatan sebesar 63.28%, sedangkan sisanya dijelaskan oleh peubah lain yang tidak dimasukkan ke dalam model.
Tabel 3 Penduga parameter regresi klasik Prediktor
Koefisien
nilai-p
(Intercept) 14.214 0.078 x1 1.354 0.317 x2 -0.485 0.610 x3 1.817 0.013* x4 0.751 0.362 x5 -12.613 0.058 x6 0.020 0.045* x7 0.003 0.964 x8 26.620 0.010* x9 0.347 0.159 x10 0.020 0.117 x11 0.472 0.448 x12 1.495 0.254 x13 -0.167 0.393 Keterangan : *) nyata pada α=5%
VIF 1.686 1.652 1.264 1.670 1.536 1.853 3.042 2.023 1.547 1.258 2.425 1.883 1.841
Pengujian asumsi pada model regresi klasik yang terbentuk harus terpenuhi agar model tersebut dapat memberikan keputusan yang tepat. Asumsi-asumsi tersebut meliputi kehomogenan ragam sisaan, kenormalan sisaan, kebebasan antar sisaan, dan tidak adanya multikolinieritas antar peubah penjelas. Secara eksplorasi pemeriksaan asumsi-asumsi untuk model regresi klasik ini dapat dilihat pada Lampiran 6 dan hasil dari tiap pengujian asumsi adalah sebagai berikut: a. Asumsi kehomogenan ragam sisaan Uji kehomogenan ragam sisaan menggunakan uji Breush-Pagan. Besarnya nilai BP pada model regresi klasik sebesar 13.2778 dengan nilai-p sebesar 0.4266. Nilai nilai-p ini lebih besar dari α=5%, artinya asumsi kehomogenan ragam sisaan pada model regresi klasik tidak terlanggar atau terpenuhi. Asumsi ini juga digunakan sebagai pengantar sebelum dilakukan pemodelan regresi spasial. b. Asumsi kenormalan sisaan Nilai Kolmogorov-Smirnov yang dihasilkan sebesar 0.119 dengan nilai-p sebesar 0.134. Ini menunjukkan bahwa nilai-p lebih besar dari α=5%, artinya asumsi kenormalan sisaan pada model regresi klasik terpenuhi. c. Asumsi kebebasan antar sisaan Kebebasan antar sisaan model regresi klasik dapat dilihat secara eksplorasi pada Lampiran 6. Grafik tersebut memperlihatkan bahwa sisaannya saling bebas dan tidak membentuk pola tertentu.
10
Hal ini menunjukkan bahwa asumsi kebebasan antar sisaan terpenuhi. d. Asumsi tidak adanya multikoliniearitas Nilai VIF pada Tabel 3 untuk semua peubah penjelas tidak ada yang lebih dari 10. Ini menunjukkan bahwa antar peubah penjelas tidak terjadi multikoliniearitas. Model Regresi Kekar Pada sisaan model regresi klasik menunjukkan bahwa secara uji formal asumsi kehomogenan ragam sisaan dan kenormalan sisaan terpenuhi. Namun perlu dicurigai adanya pencilan, karena secara eksplorasi plot kehomogenan ragam terlihat seperti corong, dapat dilihat kembali pada Lampiran 6. Pencilan dapat mengakibatkan ragam menjadi tidak homogen. Pencilan dapat dideteksi dengan melihat besarnya nilai sisaan terbakukan atau , jika maka amatan tersebut dapat dikatakan pencilan. Jika terdapat pencilan maka untuk mengatasinya dapat menggunakan regresi kekar. Hasil pada Tabel 4 untuk lima amatan dengan tertinggi menunjukkan ada empat kecamatan yang memiliki , yaitu kecamatan Taman Sari, Menteng, Tanjung Priok, dan Jatinegara. Tabel 4 No
38 26 41 12 39
Deteksi pencilan dengan sisaan terbakukan Kecamatan Banyaknya Sisaan Kejahatan terbakukan Taman Sari Menteng Tanjung Priok Jatinegara Tambora
11.518
2.419
5.631 11.190
2.267 2.127
4.296 7.963
2.028 1.875
Regresi kekar dengan penduga-Huber digunakan untuk mengatasi adanya pencilan pada model regresi klasik, dengan nilai k yang sudah ditetapkan sebesar (dimana adalah simpangan baku dari sisaan). Pada Tabel 5 diperoleh empat peubah penjelas yang signifikan pada model regresi kekar yaitu keberadaan tempat prostitusi (x3), rasio jenis kelamin laki-laki terhadap perempuan (x5), persentase penerima jamkesda (x8), dan rasio jumlah hotel terhadap banyaknya kelurahan (x9). Besarnya R2 pada model yang terbentuk sebesar 61.78%, artinya model regresi yang terbentuk dapat menjelaskan keragaman banyaknya kejahatan sebesar 61.78%, sedangkan sisanya dijelaskan oleh peubah lain yang tidak dimasukkan ke dalam model.
Tabel 5 Penduga parameter regresi kekar Prediktor
Koefisien
(Intercept) 13.466 x1 0.910 x2 -0.413 x3 1.377 x4 0.503 x5 -11.798 x6 0.016 x7 0.015 x8 27.715 x9 0.478 x10 0.018 x11 0.575 x12 1.745 x13 -0.159 Keterangan : *) nyata pada α=5%
Nilai-p 0.059 0.444 0.622 0.031* 0.488 0.045* 0.065 0.801 0.003* 0.032* 0.107 0.298 0.135 0.356
Sisaan pada model regresi kekar harus memenuhi asumsi kehomogenan ragam sisaan, kenormalan sisaan, kebebasan antar sisaan. Secara eksplorasi dapat dilihat pada Lampiran 7 dan hasil dari tiap pengujian asumsi adalah sebagai berikut: a. Asumsi kehomogenan ragam sisaan Uji kehomogenan ragam sisaan menggunakan uji Breush-Pagan. Besarnya nilai BP pada model regresi kekar sebesar 13.2778 dengan nilai-p sebesar 0.4266. Nilai nilai-p ini lebih besar dari α=5%, artinya asumsi kehomogenan ragam sisaan pada model regresi kekar terpenuhi. b. Asumsi kenormalan sisaan Nilai Kolmogorov-Smirnov yang dihasilkan sebesar 0.135 dengan nilai-p sebesar 0.052. Ini menunjukkan bahwa nilai nilai-p lebih besar dari α=5%, artinya asumsi kenormalan sisaan pada model regresi kekar terpenuhi. c. Asumsi kebebasan antar sisaan Kebebasan antar sisaan model regresi kekar dapat dilihat secara eksplorasi pada Lampiran 7. Grafik tersebut memperlihatkan bahwa sisaannya saling bebas dan tidak membentuk pola tertentu. Hal ini menunjukkan bahwa asumsi kebebasan antar sisaan terpenuhi. Ukuran Kebaikan Model Regresi Berganda Regresi kekar digunakan untuk mengatasi adanya pencilan pada model regresi klasik. Pada Tabel 6 menunjukkan bahwa tidak ada perbedaan yang signifikan antara model
11
regresi klasik dengan model regresi kekar. Dapat dilihat juga pada plot di Lampiran 7, sisaan regresi kekar polanya hampir sama dengan regresi klasik. Hal ini menunjukkan bahwa model regresi kekar belum dapat memperbaiki model regresi klasik dalam mengatasi pencilan. Tabel 6 Nilai kebaikan model berganda R2 RMSE Klasik 63.39% 1.589 Kekar 61.78% 1.624
Berdasarkan nilai-p dari hasil yang diperoleh uji Pengganda Lagrange mengindikasikan bahwa ketergantungan spasial dalam lag, ketergantungan spasial dalam galat, dan ketergantungan spasial dalam lag dan galat signifikan. Hal ini menunjukkan perlu membuat model spasial dengan memasukkan ketergantungan spasial dalam lag, model spasial dengan memasukkan ketergantungan spasial dalam galat, dan model spasial dengan memasukkan ketergantungan spasial dalam lag dan galat secara bersamaan.
Pengujian Efek Spasial Model regresi klasik dan model regresi kekar secara uji formal asumsi-asumsi sisaan sudah terpenuhi, namun secara eksplorasi terlihat ragam sisaannya belum homogen, yakni masih berbentuk seperti corong. Pemodelan lainnya untuk memperbaiki kedua model diatas yaitu memasukkan unsur spasial dengan pembobotan spasial kedalam model, karena diduga kedekatan antar wilayah juga mempengaruh kriminalitas. Sebelum menguji dua efek spasial, diperiksa terlebih dahulu otokorelasi spasial terhadap sisaan model regresi klasik menggunakan Indeks Moran. Hasil Indeks Moran terhadap sisaan model regresi klasik sebesar 0.3630 dengan nilai-p sebesar 1.37e-05. Nilai nilai-p yang dihasilkan kurang dari α=5%, artinya terdapat otokorelasi spasial positif pada data sisaan model regresi klasik. Uji efek spasial ada dua yaitu efek otokorelasi spasial dan efek keragaman spasial. Salah satu uji efek spasial yakni keragaman spasial telah diperoleh ketika menguji asumsi kehomogenan ragam sisaan pada model regresi klasik menggunakan uji Breush-Pagan. Hasilnya diketahui bahwa setiap wilayah di Jakarta memiliki ragam yang homogen. Efek yang selanjutnya diuji adalah efek otokorelasi spasial menggunakan uji Pengganda Lagrange, uji ini untuk mendeteksi ketergantungan spasial secara spesifik yaitu ketergantungan spasial dalam lag (SAR), ketergantungan spasial dalam galat (SEM), atau ketergantungan spasial dalam lag dan galat (GSM). Ringkasan hasil uji pengganda Lagrange dapat dilihat pada Tabel 7.
Analisis Regresi Spasial Model Regresi Otoregresif Spasial Hasil pendugaan dan pengujian parameter untuk model SAR menunjukkan bahwa ada enam peubah penjelas yang berpengaruh nyata terhadap banyaknya kejahatan. Peubah penjelas tersebut yaitu keberadaan tempat prostitusi (x3), rasio jenis kelamin laki-laki terhadap perempuan (x5), rasio banyaknya industri per kelurahan (x6), persentase penerima jamkesda (x8), rasio banyaknya restoran per kelurahan (x10) dan rasio banyaknya tempat berkumpulnya anak jalanan per kelurahan (x12). Hasil ini menambahkan tiga peubah penjelas yang nyata dari model regresi klasik, yaitu rasio jenis kelamin lakilaki terhadap perempuan (x5), rasio banyaknya restoran per kelurahan (x10) dan rasio banyaknya tempat berkumpulnya anak jalanan per kelurahan (x12), sedangkan ketiga peubah penjelas yang lainnya sama dengan peubah yang nyata pada model regresi klasik. Hal ini terjadi karena pada model regresi klasik tidak memasukkan ketergantungan lag spasial ke dalam modelnya. Pendugaan parameter SAR dapat dilihat pada Tabel 8. Koefisien pada model SAR berpengaruh nyata terhadap model, dengan nilainya sebesar 0.619. Besarnya nilai ini mengandung makna jika suatu wilayah yang dikelilingi oleh wilayah lain sebanyak n, maka pengaruh dari masing-masing wilayah yang mengelilinginya sebesar 0.619 dikalikan rata-rata banyaknya kejahatan di sekelilingnya. Nilai AIC yang dihasilkan pada model SAR ini sebesar 168.39, lebih kecil dari nilai AIC pada model regresi klasik yang sebesar 188.11.
Tabel 7 Nilai Pengganda Lagrange Model Nilai SAR 22.107 SEM 13.424 GSM 22.221 Keterangan : *) nyata pada α=5%
Model Galat Spasial Pada Tabel 8, untuk model SEM dapat dilihat bahwa ada lima peubah penjelas yang berpengaruh nyata terhadap banyaknya kejahatan. Peubah penjelas tersebut yaitu keberadaan tempat prostitusi (x3), rasio jumlah industri per kelurahan (x6), persentase
nilai-p 0.000* 0.000* 0.000*
12
penerima jamkesda (x8), rasio jumlah restoran per kelurahan (x10) dan rasio jumlah tempat berkumpulnya anak jalanan per kelurahan (x12). Hasil ini menambahkan dua peubah penjelas yang nyata dari model regresi klasik, yaitu rasio jumlah restoran per kelurahan (x10) dan rasio jumlah tempat berkumpulnya anak jalanan per kelurahan (x12), sedangkan ketiga peubah penjelas yang lainnya sama dengan peubah yang nyata pada model regresi klasik. Hal ini terjadi karena pada model regresi klasik tidak memasukkan ketergantungan spasial dalam sisaan ke dalam modelnya. Model SEM ini memiliki koefisien λ yang berpengaruh nyata, dengan nilainya sebesar 0.837. Besarnya nilai ini memiliki makna bahwa jika suatu wilayah yang dikelilingi oleh wilayah lain sebanyak n, maka pengaruh dari masing-masing wilayah yang mengelilinginya sebesar 0.837 dikalikan rata-rata sisaan di sekelilingnya. Model SEM ini memiliki nilai AIC sebesar 166.51, lebih kecil bila dibandingkan dengan nilai AIC pada model regresi SAR yang sebesar 168.39.
spasial yakni ketergantungan lag spasial dan ketergantungan galat spasial (λ) dimasukkan secara bersamaan maka peubah menjadi tidak signifikan. Pada Tabel 8 terlihat bahwa peubah x3, x8, x10, dan x12 selalu signifikan di semua model spasial.
Model Spasial Umum Hasil pendugaan dan pengujian parameter untuk model GSM menunjukkan bahwa ada empat peubah penjelas yang berpengaruh nyata terhadap banyaknya kejahatan. Peubah penjelas tersebut yaitu keberadaan tempat prostitusi (x3), persentase penerima jamkesda (x8), rasio banyaknya restoran per kelurahan (x10) dan rasio banyaknya tempat berkumpulnya anak jalanan per kelurahan (x12), dapat dilihat pada Tabel 8. Model GSM yang memasukkan dua ketergantungan spasial secara bersamaan, menghasilkan koefisien yang tidak signifikan, tetapi koefisien λ signifikan, dengan nilainya sebesar 0.915. Besarnya nilai ini memiliki makna bahwa jika suatu wilayah yang dikelilingi oleh wilayah lain sebanyak n, maka pengaruh dari masing-masing wilayah yang mengelilinginya sebesar 0.915 dikalikan rata-rata sisaan di sekelilingnya. Model GSM ini memiliki nilai AIC sebesar 168.11, lebih kecil bila dibandingkan dengan nilai AIC pada model regresi SAR yang sebesar 168.39 namun lebih besar dari nilai AIC SEM. Pada Tabel 8 terlihat bahwa ketiga model spasial yakni SAR, SEM dan GSM memiliki tanda koefisien yang konsisten. Namun ada yang berbeda ketika di model GSM, pada peubah tandanya berbeda dengan model SAR, ini diperkuat dengan tidak signifikannya peubah di model GSM. Hal ini menunjukkan bahwa pada model GSM ketika dua peubah
Tabel 8 Penduga parameter model spasial Koefisien
Prediktor (Intercept)
SAR
SEM
7.432
10.578*
11.595*
0.837*
0.915* -0.274
λ 0.619*
GSM
x1 x2
1.041 -0.726
0.971 -0.626
0.911 -0.531
x3 x4
1.648* 0.536
1.394* 0.738
1.273* 0.751
x5 x6
-7.811* 0.012*
-6.740 0.010*
-5.894 0.008
x7 x8
-0.031 19.920*
-0.049 15.698*
-0.048 13.777*
x9 0.074 0.093 x10 0.018* 0.014* x11 0.396 0.689 x12 2.506* 2.467* x13 -0.147 -0.122 Keterangan : *) nyata pada α=5%
0.095 0.013* 0.668 2.321* -0.121
Model SAR, SEM, dan GSM yang diperoleh akan tepat digunakan jika memenuhi asumsi. Asumsi yang harus dipenuhi sama seperti saat menguji asumsi pada model regresi klasik, yaitu kehomogenan ragam sisaan, kenormalan sisaan dan kebebasan antar sisaan. Secara eksplorasi pemeriksaan asumsiasumsi untuk model SAR, SEM, dan GSM berturut-turut dapat dilihat pada Lampiran 8, 9, dan 10. Pengujian asumsi secara formal dapat dilihat pada Tabel 9. Tabel 9 Hasil uji asumsi regresi spasial Nilai-p SAR SEM GSM Kenormalan >0.150 0.416 0.119 Kehomogenan 0.605 0.930 0.943 Ragam Pengujian asumsi kenormalan sisaan menggunakan uji Kolmogorov-Smirnov, pada Tabel 9 terlihat bahwa ketiga model spasial sisaannya menyebar secara normal. Pengujian asumsi kehomogenan ragam sisaan
13
menggunakan uji Breush-Pagan, berdasarkan nilai-p dari ketiga model spasial menunjukkan bahwa ragam sisaan pada masing-masing model homogen, dapat dilihat kembali pada Lampiran 8, 9, dan 10. Secara eksplorasi juga dapat terlihat bahwa ragamnya sudah homogen dan tidak lagi berbentuk corong seperti pada regresi klasik dan kekar. Namun ada dua titik yang berbeda, yaitu kecamatan Tamansari dan Tanjung Priok, yang ternyata dua kecamatan ini termasuk ke dalam daerah hotspot, yakni daerah yang memiliki banyaknya kejahatan yang tinggi tetapi daerah disekitarnya rendah. Ukuran Kebaikan Model Regresi Spasial Kriteria yang digunakan untuk memilih model terbaik dari ketiga model spasial dengan membandingkan nilai AIC, R2, dan RMSEnya. Perbandingan dari ketiga model tersebut dapat dilihat pada Tabel 10. Tabel 10 Nilai kebaikan model spasial SAR AIC R2 RMSE
SEM
GSM
168.39 80.19%
166.51 83.21%
168.11 84.85%
1.169
1.076
1.022
Model dikatakan lebih baik dibandingkan yang lainnya jika nilai AIC lebih kecil, R2 lebih besar, dan RMSE lebih kecil. Walaupun nilai R2 pada GSM lebih besar dari SAR dan SEM, namun perbedaannya tidak besar. Ini menunjukkan bahwa ada salah satu peubah dari peubah ketergantungan spasial yang dimasukkan secara bersamaan ke dalam model tidak memberikan kontribusi yang besar terhadap model. Pada Tabel 8, model GSM menunjukkan bahwa peubah ketergantungan lag spasial tidak signifikan. Model SEM memiliki nilai AIC yang lebih kecil dibandingkan dengan model SAR maupun GSM, artinya model SEM lebih baik digunakan dalam memodelkan banyaknya kejahatan di DKI Jakarta. Interpretasi Faktor yang Berpengaruh Berdasarkan persamaan model SEM yang terbentuk, maka interpretasi koefisien yang berpengaruh adalah nilai koefisien x3 sebesar 1.394, artinya rata-rata banyaknya kejahatan di kecamatan yang memiliki tempat prostitusi lebih tinggi 1.394 dari kecamatan yang tidak memiliki tempat prostitusi. Suatu wilayah yang terdapat tempat prostitusi akan meningkatkan banyaknya kejahatan di wilayah tersebut. Penggusuran tempat prostitusi dapat
menjadi salah satu cara untuk menekan angka banyaknya kejahatan di wilayah tersebut. Koefisien x6 sebesar 0.010, artinya setiap kenaikkan rasio industri terhadap banyaknya kelurahan satu satuan akan meningkatkan banyaknya kejahatan sebesar 0.010 satuan. Hal ini dapat dilihat bahwa wilayah dengan banyak industri memiliki aktifitas yang tinggi dan kompleks. Selain itu, pendapatan di wilayah tersebut juga akan meningkat. Dampaknya adalah wilayah yang seperti ini cenderung menjadi target kejahatan. Sehingga semakin banyak industri tumbuh dan berkembang di wilayah tertentu maka wilayah tersebut akan meningkatkan resiko kejahatan. Pengamanan yang lebih ketat dan kewaspadaan yang tinggi dapat menjadi cara untuk menekan angka banyaknya kejahatan di wilayah tersebut. Nilai koefisien x8 adalah 15.698, artinya setiap kenaikkan persentase jamkesda satu persen akan menaikkan banyaknya kejahatan sebesar 15.698 poin. Semakin banyak masyarakat penerima jamkesda di suatu wilayah maka mencerminkan persentase masyarakat kurang mampu di wilayah tersebut tinggi. Hal ini dapat meningkatkan banyaknya kejahatan karena apapun dapat mereka lakukan untuk bertahan hidup di ibukota. Pemerintah daerah harus bisa mengangkat wilayah yang seperti ini dari jurang kemiskinan untuk menekan angka banyaknya kejahatan di wilayah tersebut. Koefisien x10 sebesar 0.014, artinya setiap penaikkan rasio restoran satu satuan akan menaikkan banyaknya kejahatan sebesar 0.014 satuan. Semakin banyak restoran tumbuh dan berkembang di wilayah tertentu maka wilayah tersebut akan meningkatkan resiko kejahatan. Hal ini dapat dilihat bahwa wilayah tersebut memiliki aktifitas yang tinggi dan kompleks. Selain itu, pendapatan di wilayah tersebut juga akan meningkat. Dampaknya adalah wilayah yang seperti ini cenderung menjadi target kejahatan. Pengamanan yang lebih ketat dan kewaspadaan yang tinggi dapat menjadi cara untuk menekan angka banyaknya kejahatan di wilayah tersebut. Koefisien x12 sebesar 2.467, artinya setiap kenaikkan rasio tempat berkumpulnya anak jalanan akan menaikkan banyaknya kejahatan sebesar 2.467 satuan. Suatu wilayah yang terdapat lokasi anak jalanan akan meningkatkan banyaknya kejahatan di wilayah tersebut. Penyuluhan dan pelatihan kepada anak-anak jalanan dapat menjadi salah satu cara untuk menekan angka banyaknya kejahatan di wilayah tersebut.
14
KESIMPULAN DAN SARAN Kesimpulan Wilayah yang termasuk kedalam hotspot atau wilayah Tinggi-Rendah adalah kecamatan Cilincing, Koja, Sawah Besar, Tamansari dan Tanjung Priok. Hal ini menunjukkan bahwa wilayah tersebut memiliki banyaknya kejahatan yang tinggi namun dikelilingi oleh wilayah yang memiliki banyaknya kejahatan yang rendah. Wilayah tersebut bisa menjadikan wilayah disekitarnya menjadi wilayah yang rawan akan tindak pidana. Penentuan faktor-faktor yang mempengaruhi banyaknya kejahatan di Jakarta tahun 2011 lebih baik dimodelkan dengan model SEM, dengan memasukkan ketergantungan spasial dalam sisaan ke dalam model. Faktor-faktor yang mempengaruhi banyaknya kejahatan di DKI Jakarta adalah keberadaan tempat prostitusi, rasio industri terhadap banyaknya kelurahan, persentase penerima jamkesda, rasio restoran terhadap banyaknya kelurahan dan rasio tempat berkumpulnya anak jalanan terhadap banyaknya kelurahan. Tamansari dan Tanjung Priok adalah daerah yang tersebar berbeda dengan yang lainnya di plot kehomogenan ragam sisaan pada model SEM, yang ternyata dua daerah tersebut merupakan daerah yang termasuk ke dalam hotspot. Saran Penelitian ini memiliki keterbatasan pada asumsi kehomogenan ragam sisaan model regresi spasial yang disebabkan oleh adanya pencilan atau daerah hotspot. Penelitian selanjutnya dapat dikaji tentang regresi spasial yang kekar terhadap adanya pencilan atau daerah hotspot menggunakan pendekatan analisis regresi spasial kekar. DAFTAR PUSTAKA Anselin L. 1988. Spatial Econometrics : Methods and Models. Dordrecht : Academic Publisher. Anselin L. 1995. Local Indicators of Spatial Association. Research Paper 9331 Regional Research Institute West Virginia. Anselin L. 1999. Spatial Econometrics. Dallas: Bruton Center. Anselin L, Cohen J, Cook D, Goor W, and Tita G. 2000. Spatial Analyses of Crime. Measurement and Analysis of Crime and Justice, 4 (220).
Arbia G. 2006. Statistical Foundations and Application to Regional Convergence. Berlin: Springer-Verlag. [BPS] Badan Pusat Statistik. 2009. Statistik Perkiraan Urbanisasi Penduduk Kotakota di Indonesia. Jakarta: Badan Pusat Statistik. Chatterjee S, Hadi AS. 2006. Regression Analysis by Example. New Jersey: John Wiley & Sons, Inc. Hidayatunnismah. 2003. Analisis Korespondensi Beberapa Kejadian Tindak Kriminal (studi kasus: wilayah kotamadya Bogor) [Skripsi]. Bogor : Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor. Humas Polda Metro Jaya. 2010. Jumpa Pers Akhir Tahun 2010 Polda Metropolitan Jakarta Raya. [terhubung berkala]. http://humaspoldametrojaya.blogspot.co m/2010/12/jumpa-pers-akhir-tahun-2010polda.html [22 Oktober 2012]. Silk J. 1979. Statistical Concept in Geography. London : George Allen & Unwin. Susanto I.S. 2010. Statistik Kriminal Sebagai Konstruksi Sosial. Yogyakarta : Genta Publishing. Ward MD, Gleditsch KS. 2008. Spatial Regrression Models. United States: Sage Publications, Inc. Yoga K.U, Pane N.S. 2006. Profil Polda Metropolitan Jakarta Raya. Jakarta : Exatama Group.
LAMPIRAN
16
Lampiran 1 Peubah penjelas yang digunakan dalam analisis Jenis Peubah Keragaman suku x1 Penduduk berasal lebih dari satu dan agama etnis Tempat Hiburan x2 Lokasi diskotik x3 Lokasi prostitusi/tempat mangkal PSK Keamanan x4 Agen yang beroperasi mencari TKW Jenis Kelamin x5 Rasio jenis kelamin laki-laki terhadap perempuan x6 Rasio jumlah industri skala kecil dan rumah tangga terhadap banyaknya kelurahan. x7 Rasio jumlah sekolah terhadap banyaknya kelurahan x8 Persentase warga penerima JAMKESDA x9 Rasio jumlah hotel terhadap banyaknya kelurahan Ekonomi dan x10 Rasio jumlah restoran terhadap Kependudukan banyaknya kelurahan x11 Rasio jumlah pasar tradisional terhadap banyaknya kelurahan x12 Rasio jumlah tempat berkumpulnya anak jalanan terhadap banyaknya kelurahan x13 Rasio jumlah organisasi kemasyarakatan terhadap banyaknya kelurahan
Skala Nominal
Keterangan Ya atau tidak
Nominal
Ada atau tidak Ada atau tidak
Nominal
Ada atau tidak
Rasio Rasio
Lakilaki/perempuan Unit/kelurahan
Rasio
Unit/kelurahan
Rasio
%
Rasio
Unit/kelurahan
Rasio
Unit/kelurahan
Rasio
Pasar/kelurahan
Rasio
Tempat/kelurahan
Rasio
Ormas/kelurahan
17
Lampiran 2 Perhitungan bobot setiap tindak pidana a.
Pembobotan dengan proporsi dari masing-masing tindak pidana
∑
∑
∑
dengan adalah tindak pidana ke-i pada kecamatan ke-j, i adalah tindak pidana ke-i dan j adalah kecamatan ke-j.
b.
Pembobotan dengan simpangan baku dari masing-masing tindak pidana ∑ ( ̅) dengan adalah tindak pidana ke-i pada kecamatan ke-j, i adalah tindak pidana ke-i dan j adalah kecamatan ke-j, ̅ adalah rataan tindak pidana ke-i.
c.
Pembobotan dengan Komponen Utama Pada penelitian ini menggunakan persentase keragaman kumulatifnya sebesar 75%.
Akar ciri
3.425
2.194
1.429
1.173
0.828
0.743
0.425
0.344
0.191
0.139
0.108
Proporsi
0.311
0.199
0.13
0.107
0.075
0.068
0.039
0.031
0.017
0.013
0.01
Kumulatif
0.311
0.511
0.641
0.747
0.823
0.89
0.929
0.96
0.977
0.99
1
KU1
KU2
KU3
KU4
KU5
KU6
KU7
KU8
KU9
KU10
-0.542
0.213
0.014
0.016
-0.007
-0.22
Peubah
KU11
Pembunuhan
0.174
-0.14
-0.333
-0.477
0.473
Anirat
0.443
0.159
-0.122
-0.085
-0.143
0.202
0.204
0.644
-0.224
0.434
0.022
-0.095
0.148
0.418
-0.279
0.564
Curat
0.434
0.189
0.289
-0.024
0.017
-0.299
Curas
0.303
-0.154
0.053
0.363
0.646
0.31
-0.257
0.16
-0.179
-0.3
-0.148
Curanmor
0.308
0.179
0.574
0.043
-0.192
-0.26
-0.032
-0.102
-0.056
0.018
-0.65
Kebakaran
0.008
-0.24
-0.225
0.669
-0.228
-0.509
0.23
0.155
-0.195
-0.131
0.032
0.522
-0.417
0.345
0.012
-0.108
Perjudian
0.297
0.338
-0.277
0.271
0.077
0.255
Pemerasan
0.027
0.619
-0.118
-0.049
0.053
-0.141
-0.102
-0.244
-0.661
-0.155
0.213
Pemerkosaan Kenakalan Remaja
0.321
-0.13
-0.429
-0.229
-0.483
0.165
-0.264
-0.012
0.014
-0.522
-0.201
-0.196
0.451
-0.345
0.214
0.07
-0.183
-0.514
0.231
0.375
0.192
-0.244
0.411
-0.297
-0.12
0.095
-0.039
-0.088
-0.409
-0.465
-0.067
0.541
0.174
Narkotika
( √
)
(
)
(
)
dengan adalah akar ciri, banyaknya komponen utama yang digunakan, adalah peubah respon ke dan adalah peubah yang sudah dibakukan. Bobot masing-masing peubah mencerminkan besarnya keragaman peubah asal yang dijelaskan oleh komponen utama yang terpilih.
18
Lampiran 3 Perbandingan kebaikan model pembobotan a. Diagram kotak garis 140 120 100
Data
80 60 40 20 0 proporsi
simpangan baku
KU
99
99
95
95
95
90
90
90
80
80
80
70
70
70
60 50 40
Percent
99
Percent
Percent
b. Plot kenormalan data banyaknya kejahatan
60 50 40
60 50 40
30
30
30
20
20
20
10
10
10
5
5
1
0
30
60 Proporsi
90
120
Pembobot dengan proporsi
1
5
0
5
10 15 simpangan baku
20
25
Pembobot dengan simpangan baku
c. Uji kenormalan dengan Kolmogorov-Smirnov Metode Pembobot Proporsi Simpangan baku KU
Nilai-p < 0.010 > 0.150 > 0.150
1
0
2
4
6 KU
8
10
Pembobot dengan KU
12
19
Lampiran 4 Indeks Moran Lokal Kecamatan Cakung Cempaka Putih Cengkareng Cilandak Cilincing
Ii
E(Ii)
Var(Ii)
Z(Ii)
Pr(z > 0)
Cipayung Ciracas Duren Sawit Gambir Grogol Petamburan
-0.09375 0.02161 0.14965 0.93257 0.95226 0.86139 0.86081 -0.01778 0.37515 0.30279
-0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439
0.2244 0.1748 0.1748 0.1748 0.3071 0.3071 0.3071 0.2244 0.1005 0.1418
-0.1464 0.1099 0.4161 2.2882 1.7623 1.5984 1.5973 0.0139 1.2601 0.8687
5.58E-01 4.56E-01 3.39E-01 1.11E-02* 3.90E-02* 5.50E-02 5.51E-02 4.94E-01 1.04E-01 1.92E-01
Jagakarsa Jatinegara Johar Baru Kalideres Kebayoran Baru Kebayoran Lama Kebon Jeruk Kelapa Gading
1.82138 -0.00486 -0.22825 0.37467 -0.10690 0.14868 -0.00823 0.05421
-0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439
0.3071 0.1418 0.3071 0.4723 0.1748 0.1182 0.1418 0.1418
3.3307 0.0518 -0.3678 0.5806 -0.1972 0.5033 0.0429 0.2087
4.33E-04* 4.79E-01 6.44E-01 2.81E-01 5.78E-01 3.07E-01 4.83E-01 4.17E-01
Kemayoran Kembangan Koja
0.71343 -0.02876
-0.02439 -0.02439
0.1005 0.2244
2.3271 -0.0092
9.98E-03* 5.04E-01
2.04524 0.01115 0.43873 1.10741 -0.03088 0.00822 0.43933 -0.16741
-0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439 -0.02439
0.3071 0.1005 0.2244 0.1418 0.1418 0.1418 0.1418 0.1748
3.7346 0.1121 0.9775 3.0051 -0.0172 0.0865 1.2313 -0.3420
9.40E-05* 4.55E-01 1.64E-01 1.33E-03* 5.07E-01 4.65E-01 1.09E-01 6.34E-01
Pancoran Pasar Minggu Pasar Rebo Penjaringan
0.79770 1.42521 1.22922 0.45782
-0.02439 -0.02439 -0.02439 -0.02439
0.2244 0.1418 0.2240 0.1418
1.7351 3.8490 2.6459 1.2803
4.14E-02* 5.93E-05* 4.07E-03* 1.00E-01
Pesanggrahan Pulo Gadung
0.48903 0.42043
-0.02439 -0.02439
0.3071 0.1005
0.9264 1.4029
1.77E-01 8.03E-02
Sawah Besar Senen
1.10118 -0.00123
-0.02439 -0.02439
0.1748 0.1182
2.6914 0.0673
3.56E-03* 4.73E-01
0.19776
-0.02439
0.1748
0.5312
2.98E-01
1.46766 0.61394 -0.01650
-0.02439 -0.02439 -0.02439
0.1748 0.1748 0.1418
3.5678 1.5263 0.0209
1.80E-04* 6.35E-02 4.92E-01
1.81863 -0.02439 0.1748 Tebet 0.13297 -0.02439 0.1182 Keterangan : *) merupakan kecamatan yang nyata pada α=5%
4.4070 0.4576
5.24E-06* 3.24E-01
Kramatjati Makasar Mampang Prapatan Matraman Menteng Pademangan Palmerah
Setiabudi Tamansari Tambora Tanah Abang Tanjung Priok
20
Lampiran 5 Korelasi antar peubah penjelas bertipe rasio JK JK
industri
sekolah
%jamkesda
hotel
resto
anak jalan
pasar
ormas
1
industri
0.273
1
sekolah
0.081
0.426
%jamkesda
-0.042
-0.117
0.154
1
hotel
-0.215
-0.277
-0.468
-0.03
1
resto
-0.007
-0.222
-0.152
-0.12
0.194
1
pasar
-0.065
0.426
0.589
0.204
-0.22
-0.19
anak jalan
-0.061
0.308
0.146
-0.13
0.085
-0.28
0.16
1
ormas
-0.145
-0.103
-0.209
0.487
0.052
-0.14
0.043
0.1
1
1 1
Lampiran 6 Pemeriksaan asumsi regresi klasik secara eksplorasi 5
99
95
3
90
2
80 70
0
Percent
1 0
60 50 40 30
-1
20
-2
10
-3
5
-4 2
3
4
5
6
7 fit-klasik
8
9
10
1
11
-4
Kehomogenan ragam sisaan
-3
-2
-1
4 3 2 1 0
0
-1 -2 -3 -4 0
0 1 resiklasik
2
Kenormalan sisaan
5
resiklasik
resiklasik
4
10
20 order
30
Kebebasan antar sisaan
40
3
4
5
21
Lampiran 7 Pemeriksaan asumsi model regresi kekar secara eksplorasi 5
99
95
3
90
2
80 70
1 0
Percent
resirobust
4
0
60 50 40 30
-1
20
-2
10
-3
5
-4 2
4
6
8
10
1
12
-4
-3
-2
-1
fit-robust
Kehomogenan ragam sisaan
0 1 resirobust
2
3
4
5
Kenormalan sisaan
5 4 3
resirobust
2 1 0
0
-1 -2 -3 -4 0
10
20 order
30
40
Kebebasan antar sisaan Lampiran 8 Pemeriksaan asumsi model SAR secara eksplorasi 4
99
3
95 90 80 70
0
Percent
1 0
60 50 40 30 20
-1
10
-2
5
-3 2
3
4
5
6 fit-sar
7
8
9
10
1
11
-3
-2
-1
0
1
2
resisar
Kehomogenan ragam sisaan
Kenormalan sisaan
4 3 2
resisar
resisar
2
1 0
0
-1 -2 -3 0
10
20 order
30
Kebebasan antar sisaan
40
3
4
22
Lampiran 9 Pemeriksaan asumsi model SEM secara eksplorasi 99
3
95
2
90
70
0
Percent
resisem
80
1
0
60 50 40 30 20 10
-1
5
-2 2
3
4
5
6 7 fit-sem
8
9
10
1
11
-3
-2
Kehomogenan ragam sisaan
-1
0 resisem
1
2
3
Kenormalan sisaan
3
resisem
2
1
0
0
-1
-2 0
10
20 order
30
40
Kebebasan antar sisaan
Lampiran 10 Pemeriksaan asumsi model GSM secara eksplorasi 3
99
95
2
90
0
Percent
70
0
60 50 40 30 20 10
-1
5
-2 2
3
4
5
6 7 fit-gsm
8
9
10
1
11
-3
Kehomogenan ragam sisaan
-2
-1
2
1
0
0
-1
-2 0
0 resigsm
1
Kenormalan sisaan
3
resigsm
resigsm
80
1
10
20 order
30
Kebebasan antar sisaan
40
2
3