Háttértár
1
Háttértár A háttértár olyan számítógépes hardverelem, mely nagy mennyiségű adatot képes tárolni, és azokat a számítógép kikapcsolása után is megőrzi. Erre azért van szükség, mert a számítógép műveleti memóriájában csak ideiglenesen lehet adatot tárolni, ennek tartalma a számítógép kikapcsolása után törlődik. A mai számítógépek legtöbbje digitális, azaz számokkal dolgozik, minden adatot (kép, hang, egyéb) számokká alakítva kap meg, így számokat dolgoz fel és azokat kell, hogy eltárolja. A tároló eszközök különböző (mechanikai, mágneses, elektronikus és optikai) elveken tárolják az adatokat. A merevlemez (angolul hard disk drive, rövidítése HDD), olyan háttértároló hardverelem, ami az adatokat kettes számrendszerben ábrázolva, a mágnesezhető réteggel bevont, forgó lemezeken tárolja.
Fajtái Mágneses tárak Mágnesdob
A mágnesdob történelmileg a számítástechnika legrégebbi digitális mágneses tárolója. 1950 és 1960 között ez volt a legelterjedtebb tároló. Ezen tárolták a programokat és a különböző adatokat is. A mágnesdob egy a légellenállás csökkentése céljából vákumban elhelyezett ferromágneses anyaggal borított fém henger. Az adatokat tároló csatornákat (track-eket) a dob felszínén helyezték el és minden csatornához egy-egy rögzített olvasó/író fej tartozott. Ez egyébként a mágneslemez és mágnesdob közti alapvető különbség, míg az előbbi esetében a lemez is és az olvasó fej is mozog, az utóbbinál csak a dob forog. Ez a megoldás mágnesdob esetében nagyságrendekkel rövidebb elérési időt biztosított. A BSD operációs rendszerekben mint anakronizmus mind a mai napig maradt fennmaradt a /dev/drum elnevezés (drum = dob), amivel most avirtuális memóriát azonosítjuk. Ferritgyűrűs memória Áram-járta vezető mágneses tulajdonságait használja ferromágneses anyagok felmágnesezésére, vagy ellenkező áramiránnyal átmágnesezésre. A két különböző állapot teszi lehetővé az információ tárolást. A felmágnesezett ferritgyűrű mágneses állapotát a tápfeszültség megszűnése után is megtartja, ezért rendszerösszeomlás esetén sem veszítjük a tárolt adatokat. Az Ural számítógépek mágnesdobja
Az apró, néhány tized milliméteres gyűrűket külön nem rögzítik, azokat keretre feszített huzalokból álló háló tartja. Jellemző sűrűség a négyzet-milliméterenkénti egy gyűrű volt.
Háttértár
2
Mivel a vasmagok mágneses hiszterézise jelentősen függ a hőmérséklettől, szükséges volt, az állandó üzemi hőfok beállításához, a számítógépterem állandó hőmérsékletének biztosítása, hűtése. Mágnesszalag Analóg adatrögzítési módszerrel analóg jeleket (hang, kép) rögzítünk mint folytonos elektromágneses jeleket a mágneses mező erejét változtatva (hullámokat) a mágnesezett szalagon.A számítástechnika őskorában analóg mágnesszalagokat is használtak adattárolásra. A digitális mágnesszalagok az adatokat kettes számrendszerben ábrázolva, egy mágnesezhető réteggel bevont, szalagon tárolják. Az első digitális mágnesszalag 1952-ben került a piacra. Ez a lyukszalag mágneses változatának volt tekinthető. A szalagon 7 csatornán rögzítettek információt (6 csatornán adatot és a 7. csatornán az úgy nevezett paritáskódot.
Magnószalag 1960 (analóg)
Mágnesszalagos egységek 1970 (digitális)
Magnókazetta 1980 (analóg)
Merevlemez (winchester) A merevlemezes egységben több, egymás felett elhelyezkedő, mágneses réteggel bevont könnyűfém lemezt helyeznek el. Az adatokat ebben az esetben író-olvasó fej segítségével lehet elérni, minden lemezhez tartozik egy-egy ilyen fej, amelyet egy fejmozgató egységre szerelnek fel. Az állandó sebességgel, gyorsan forgó lemezektől a fej kis távolságban mozog. A merevlemezek zárt külső borítása védi az adatokat tartalmazó lemezeket a külső mechanikai sérülésektől és szennyeződésektől. A merevlemezes tárolóban elhelyezkedő lemezek fizikai felépítése, sávokra, a sávok pedig szektorokra vannak beosztva. A merevlemezek nem egy szektort, hanem egyszerre többet kezelnek. A több egységből álló szektort klaszternek nevezzük. A merevlemezeket a számítógép házába építik be, a hordozható háttértárolók bármelyik számítógépben felhasználhatóak. Az első merevlemezt az IBM angliai Winchester városa mellett található Hursley-parki laboratóriumában fejlesztették ki, ezért kapta a winchester nevet. Ez az elnevezés lassan feledésbe merül. Hajlékonylemez (flopilemez) A hajlékonylemez egy mindkét oldalán mágnesezhető réteggel ellátott műanyagból készült korong. A külső fizikai behatásoktól egy tok védi meg, aminek a belső oldala a nagyobb méretű lemezeknél filc borítású. A lemezt a használathoz nem kell (és nem is lehet) kivenni a tokjából. Az író-olvasó fejnek és a lemez forgató mechanikának a megfelelő rések ki vannak vágva a tokon. Teljesítménymérés A tárolók teljesítőképességére jellemző a másodpercben megadott t hozzáférési idő, a bitben kifejezett C kapacitás és a bitenkénti költség K. A leggyakrabban használt memóriák teljesítőképessége; t – várakozási idő másodpercben, C – a kapacitás bitben, K – a mágnesdobra vonatkoztatott relatív költség
Háttértár
3
tároló
t
C
K
ferritgyűrűs
…
…
10
mágnesdob
…
…
1
mágneslemez 5.
…5.
mágnesszalag 10…500
… …
Optikai tárak Az különböző szabványos CD és DVD lemezek, optikai tárak 1.2 mm vastag 120 mm átmérőjű polikarbonát diszkek amelyeket egy nagyon vékony alumínium réteggel tesznek fényvisszaverővé. Az adatok tárolása a lemez felületébe égetett vagy nyomott apró lyukacskák (pits) segítségével történik. Ezek a lyukacskák (pits) a lemez közepéből kiinduló spirál mentén kerülnek elhelyezésre. A lemezek tároló kapacitása elsősorban az olvasásra használt lézer fény hullámhosszának a függvénye, minél rövidebb hullámhosszú fényt használunk annál több és kisebb lyukacskát (pits) tudunk elhelyezni egy-egy lemez felszínén. A lemezen található lyukacskák nem közvetlenül jelentenek 0 vagy 1 logikai értéket, hanem a változásukat felhasználva úgy nevezett NRZi kódolási sémát használnak. Compact Disc (CD) Az első CD lemezt 1981-ben a Berlini Rádiótechnikai vásáron mutatták be. A CD lemezen a lemez olvasásánál használt 780 nanométer hullámhosszú közel infravörös lézerfény biztosította felbontásnak megfelelően az információ tárolásra szolgáló lyukacskák (pits) és az nyomok (tracks) közti távolság 1,6 µm. Ez a szabványos CD 12 cm átmérőjű lemezen maximálisan 900 MB információ tárolását teszi lehetővé. A CD-lemezeknek, meghajtóknak ma több fajtáját különböztetjük meg. Az egyik típusa a CD-ROM. Ezeket a lemezeket gyárilag írják meg, ezután adatokat ráírni, illetve törölni nem lehet róluk. A CD-R típusú lemezek egyszer írhatók, s írás után már csak olvasni tudjuk a rajta lévő adatokat. Ilyen lemez írásához CD-író szükséges. A legújabb CD-k lehetővé teszik azt is, hogy a felírt adatokat letöröljük, s a lemezeket újraírjuk. Ezek a CD-RW típusú lemezek, amelyek írásához, törléséhez újraírható CD-meghajtó szükséges. DVD Az 1995-ben megjelent DVD lemezek olvasásánál 650 nanométer hullámhosszú vörös lézerfényt használnak. Ennek megfelelően az információ tárolásra szolgáló lyukacskák (pits) és a nyomok (tracks) közti távolságot 0,74 µm-re csökkenthették. Így a DVD lemezek maximális kapacitása 4,7 GB. További újításként bevezették a kétrétegű írást, ennek megfelelően a szabvány méretű lemezek kapacitását 8,5 GB-ra növelték. Magas minőségű mozgóképek, filmek tárolására a CD kis tárolókapacitása miatt alkalmatlan, ezért új eszközt fejlesztettek ki, a DVD-t. A DVD lemezeken a filmeket tömörítve tárolják. Fizikai mérete megegyezik a CD lemez méretével, így a DVD meghajtók alkalmasak CD lemezek kezelésére is. A DVD lemezek fizikai felépítése hasonló a CD lemezekéhez, csak a bemélyedések egymástól való távolsága kisebb, mint a CD lemezeken. Ezáltal nagyobb az adatsűrűség, s nagyobb tárolókapacitás érhető el. A DVD lemezeknek létezik egy- és kétoldalas változata is. A CD-hez hasonlóan itt is van egyszer írható (DVD-R, DVD+) és újraírható (DVD-RW, DVD+RW).
Háttértár Blu-ray A hagyományos DVD lemezek továbbfejlesztett változata. Lényege, hogy amíg a szabványos DVD lemezek olvasására 650 nanométer hullámhosszúságú vörös fényű lézert használnak, addig ezeket a lemezeket 405 nm hullámhosszú ibolya színű lézer fénnyel lehet írni/olvasni. Így az információ tárolásra szolgáló lyukacskák (pits) és a nyomok (tracks) közti távolság 0,32 µm-re csökkent. Ez adattároláskor közelítőleg 10-szer nagyobb adatsűrűséget jelent.
Szilárd félvezető áramkörre épülő tárak Pendrive A pendrive egy parányi nyomtatott áramkört tartalmaz, a ráerősített fémcsatlakozóval, általában egy műanyag tokba téve. A csatlakozója a személyi számítógépeken elterjedt „A típusú” USB csatlakozó. Önálló áramforrásuk csak akkor van, ha egyéb szolgáltatással is rendelkeznek, például adatmenyiség-kijelzés vagy MP3-zenelejátszás, diktafon funkció. CompactFlash I and II SONY Memory stick (Std/Duo/Pro/MagicGate verzió)
Papíralapú adattárak Lyukszalag A lyukszalag egy perforált leginkább papírból készült szalag, amelyet 20. században széleskörűen használtak adattárolásra és adat beviteli eszközként. A lyukszalagon a lyukak sorban helyezkedtek ezek számának megfelelően beszéltünk 5 illetve 8 csatornás lyukszalagokról. Az információt hordozó lyukak között egy – a szalagot aszimmetrikusan felosztó – apróbb lyuksor is található, mely a mechanikus szalagolvasók esetében a szalag továbbítását segítette. Ezeknek a lyukaknak a segítségével húzza a szalagot egy fogaskerék. Optikai olvasók esetében ezek révén ellenőrizhető, hogy oldalhelyesen van-e a lyukszalag az olvasóba befűzve. Lyukkártya A lyukkártya vagy Hollerith-kártya olyan adathordozó, elsődlegesen adatbeviteli eszköz, ahol a digitális információt a keménypapírból készült kártyán adott pozícióban meglevő lyukakkal ábrázolják. Lyukkártyákat illetve azonos elven működő információtároló eszközöket már a 18. század közepén is használtak az automatizálás és az adatfeldolgozás területén. Ezek célja az ismétlődő folyamatok vezérlése volt. Működési elvük a zenélő dobozok működésén alapul. Ezeknél és hasonló automatáknál egy forgó henger a rajta levő lyukakkal vezérelte a zeneszámok lejátszását vagy mechanikai folyamatokat. A lyukkártyák írására vagyis lyukasztására külön gép, a kártyalyukasztó szolgált, de készítettek kézi lyukasztásra szolgáló egyszerű kártyalyukasztókat is. A kártyák beolvasása optikai vagy mechanikus olvasóberendezésekkel történt
4
Háttértár
Egyéb Hanglemez/Gramofonlemez (az 1980-as években néhány otthoni számítógép program elosztására használták)
Külső hivatkozások • Meinders, E.R., Mijiritskii, A.V., Pieterson, L. van, Wuttig, M. Optical Data Storage Springer: (ISBN 978-1-4020-4216-4 )
• Bekenstein, Jacob D. (2003, August). Information in the holographic universe. Scientific American. Retrieved from http://www.sciam.com/article.cfm?articleID=000AF072-4891-1F0A-97AE80A84189EEDF
5
Szócikkek forrása és közreműködői
Szócikkek forrása és közreműködői Háttértár Forrás: http://hu.wikipedia.org/w/index.php?oldid=8650144 Közreműködők:: Alensha, Burumbátor, Csigabi, Dencey, Gabelking, Glanthor Reviol, Grin, Hannababa86, Hkoala, Hungarian83, Istvánka, Linkoman, MerciLessz, Novpeti, Nyenyec, Opa, Porrima, Szajci, Teemeah, Texaner, 10 névtelen szerkesztés
Képek forrásai, licencei és közreműködői Fájl:Apertura hard disk 05.jpg Forrás: http://hu.wikipedia.org/w/index.php?title=Fájl:Apertura_hard_disk_05.jpg Licenc: Creative Commons Attribution-Sharealike 3.0 Közreműködők:: Alessio Sbarbaro Fájl:Ural-1 Memory.jpg Forrás: http://hu.wikipedia.org/w/index.php?title=Fájl:Ural-1_Memory.jpg Licenc: Creative Commons Attribution-Sharealike 3.0 Közreműködők:: User:Panther Fájl:Magtape1.jpg Forrás: http://hu.wikipedia.org/w/index.php?title=Fájl:Magtape1.jpg Licenc: ismeretlen Közreműködők:: Daniel P. B. Smith.. Original uploader was Dpbsmith at en.wikipedia. Later version(s) were uploaded by Boojit at en.wikipedia. Fájl:IBM System 360 tape drives.jpg Forrás: http://hu.wikipedia.org/w/index.php?title=Fájl:IBM_System_360_tape_drives.jpg Licenc: Creative Commons Attribution 2.0 Közreműködők:: Erik Pitti from San Diego, CA, USA Fájl:Kaseta magnetofonowa ubt.jpeg Forrás: http://hu.wikipedia.org/w/index.php?title=Fájl:Kaseta_magnetofonowa_ubt.jpeg Licenc: Creative Commons Attribution 2.5 Közreműködők:: user:tsca
Licenc Creative Commons Attribution-Share Alike 3.0 Unported http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/
6