Frekvenční a fázová synchronizace
Proč je nutná synchronizace v mobilích sítích 1588v2 PTP, SyncE Master a Slave Clock, Boundary a Transparent Clock v systémech 1588v2, referenční body Stabilita obnovených hodin, měření wanderu a fáze
Frekvenční a fázová synchronizace Proč je nutná synchronizace v mobilních sítích Why do mobile basestations need frequency synchronisation? •Regulation and licensing of spectrum •Interference with other basestations •Handoff for mobiles moving between cells
Handset frequency acceptance ± 250ppb Basestation frequency accuracy ± 50ppb
•Quality of service
•Doppler effect
fc
frequency
Frekvenční a fázová synchronizace Doppler Shift f = fo . v c At 320km/h (200mph), f = 300ppb
At 160km/h (100mph), f = 150ppb
Frekvenční a fázová synchronizace Time Synchronisation GSM, UMTS (European 2G and 3G mobile standards): •no requirement for time synchronisation cdmaOne, cdma2000 (N. American 2G and 3G mobile standards): •Basestations must be within 3s of system time (10s holdover) •Required for “soft handoff” •Handset must see pilot signals from both basestations within a few microseconds of each other to handover properly
Company ±3s Confidential ±1km
±3s ±1km
Frekvenční a fázová synchronizace LTE Advanced: Small Cells Enhanced Inter-Cell Interference Co-ordination (eICIC) •Interference in small cell edge area •Solution: “Almost Blank Sub Frames” – macrocell reduces power temporarily so handsets can “hear” the small cell •Time synchronisation of ±1 to 5s required to co-ordinate ABSF
Frekvenční a fázová synchronizace LTE Advanced: CoMP Co-ordinated Multipoint (CoMP) Several techniques for improving throughput and performance:
•Joint Transmission or Reception •Co-ordinated Beamforming •Dynamic Point Selection •Dynamic Point Blanking All require time synchronisation in the order of ±1 to 5s
Frekvenční a fázová synchronizace LTE Synchronization Requirements
LTE (FDD)
±50 ppb
N/A
±16ppb (G.8261.1)
LTE (TDD)
±50 ppb
±1.5µs (< 3km radius) ±5µs (> 3km radius)
±16ppb (G.8261.1) ±1.1μs (G.8271.1)
LTE-A MBSFN
±50 ppb
LTE-A CoMP
±50 ppb
±1 to 5µs implementation dependent
±16ppb (G.8261.1) ±1.1μs (G.8271.1)
±33ppb ±1.1μs (G.8271.1) ±100ppb ±1.1μs (G.8271.1)
Network MIMO
LTE-A eICIC HetNet Coordination
±50 ppb
Small Cells
±100 ppb
N/A (FDD) ±1.5µs (TDD) ±1 to 5µs (eICIC)
Home Cells
±250 ppb
N/A (FDD) ±1.5µs (TDD)
Frekvenční a fázová synchronizace Frekvenční synchronizace – signály mají stejnou periodu, ale ne nutně fázi
Fázový posun mezi začátkem referenčního signálu Fázová synchronizace – signály začínají se stejný čas, ale ne nutně se stejnou periodou
Frekvenční a fázová synchronizace Mobile Backhaul Synchronization • Approach 1: Use the physical layer clock • SyncE clocks (EEC) made identical to SECs in performance terms Up to 10 SSUs
PRC
Up to 20 SECs or EECs
SSU
Up to 20 SECs or EECs
SSU
SSU
• Approach 2: Use a packet timing protocol • Packet timing protocols such as PTP or NTP used to deliver frequency
Up to 20 SECs or EECs
End Equipment
Up to 10 SSUs
M
PRC
Up to 20 SECs or EECs
SSU
Up to 20 SECs or EECs
SSU
SSU
Packet Network
S
Packet Master and Slave
End Equipment
Frekvenční a fázová synchronizace •Conventional timing (frequency) signal: •
A nominally periodic signal, generated by a clock: Significant instants
Timing jitter and wander
•Packet timing signal: •
A nominally periodic signal, generated by a packet master clock: Significant instants
F Payload Payload 4 H4 H
Packets
F Payload Payload 4 H3 H
F Payload Payload 4 H2 H
Packet Delay Variation
F Payload Payload 4 H1 H
Frekvenční a fázová synchronizace G.8260: Definitions and Terminology for Synchronization in Packet Networks (includes PDV metrics)
Frequency Basic Aspects Network Requirements
Time/phase
G.8261: Timing and Synchronization Aspects in Packet Networks (Frequency) G.8261.1: PDV Network Limits Applicable to PacketBased Methods (Frequency)
G.8271: Time and Phase Synchronization Aspects in Packet Networks G.8271.1: Network Limits for Time/Phase (full timing support) G.8271.2: Network Limits for Time/Phase (partial timing support)
Clock Specifications
G.8262: Timing Characteristics of a Synchronous Ethernet Equipment Slave Clock (EEC)
G.8272: Timing Characteristics of Primary Reference Time Clocks (PRTC)
G.8263: Timing Characteristics of Packet-Based Equipment Clocks (PEC)
G.8273: Packet-Based Equipment Clocks for Time/Phase: Framework G.8273.1: Telecom Grandmaster (T-GM) G.8273.2: Telecom Boundary Clock (T-BC) G.8273.3: Telecom Transparent Clock (T-TC)
Methodds and Architecture
G.8264: Distribution of Timing Information through Packet Networks G.8265: Architecture and Requirements for Packet-Based Frequency Delivery
Profiles
G.8265.1: Precision Time Protocol Telecom Profile for Frequency Synchronization
G.8273.4: Telecom Time Slave Clock (T-TSC) G.8275: Architecture and Requirements for Packet-Based Time and Phase Delivery G.8275.1: PTP Profile for Time and Phase Synchronization (full timing support) G.8275.2: PTP Profile for Time and Phase Synchronization (partial timing support)
Published
1st version agreed
Under development
Options
Frekvenční a fázová synchronizace Synchronous Ethernet (SyncE) Účelem SyncE je distribuovat informaci o frekvenci od PRC (Primary Reference Clock) prostřednictvím ethernetových zařízení. Hlavní činností SyncE rozhraní je získat synchronizační frekvenci z přicházejícího bitového streamu a předat ji systémovým hodinám EEC (Ethernet Equipment Clock) routru nebo switche, které pak tuto informaci šíří dál k dalšímu zařízení.
Hlavní rozdíl mezi “klasickým“ ethernetem a SyncE je ve vysílání hodin na TX portu routru/switche.
Frekvenční a fázová synchronizace SyncE ITU-T G.8261 • Používá k synchronizaci fyzickou vrstvu • Získává hodinový signál “bit stream” • Každý uzel obnovuje “hodiny“
• Nezávislý na použité síti (data jsou oddělená od synchronizace) • EEC (Ethernet Equipment Clock)
Frekvenční a fázová synchronizace Synchronous Ethernet (SyncE) • Použitý vysoce stabilní interní oscilátor • Ethernet ‘Classic’: ±100ppm. • Synchronous Ethernet: ±4.6ppm
ITU-T Standardy • G.8261: Timing & Synchronisation in Packet Networks • G.8262: Timing Characteristics for Synchronous Ethernet Equipment • G.8264: Distribution of Timing Through Packet Networks (ESMC)
Frekvenční a fázová synchronizace Precision Time Protocol (PTP) - IEEE 1588v2 • Jakmile je ustanovena hierarchie Master/Slaver (BMCA) “Announce message“, může začít proces synchronizace hodin, pomocí výměny PTP zpráv, která se skládá ze dvou částí: • Změřením “propagation delay“ mezi Mastrem a Slavem. Sync Message obsahuje časovou značku kdy byla odeslaná Mastrem.
Delay_Req_Message je identická jako Sync Message, ale odeslaná Slavem, obsahuje časovou značku kdy byla odeslaná Slavem.
Delay_Resp_Message odeslaná Mastrem, obsahuje časovou značku kdy byla Delay_req_message doručená Mastru.
t1 = Master Time čas vyslání Sync Message. t2 = Slave Time čas přijetí Sync Message. t3 = Slave Time čas vyslání Delay_Req Message. t4 = Master Time čas přijetí Delay_Req Message.
Frekvenční a fázová synchronizace Master t1=10
Time = 10 s Time = 11 s
Slave Sync = 10s? Follow up = 10s
Time = 17 s
t4=19
Time = 5 s Time = 8 s
t2=8
Time = 11 s
t3=11
Delay Req= 11s
Time = 19 s
Delay Resp= 19s Time = 23 s Time = 24 s
Sync = 23s ? Follow up = 23s
Delay = [(t2-t1) + (t4-t3)]/2 = [(19-11) + (8-10)]/2 = 3 Offset = (t2-t1) – Delay = -5
Time = 17 s Time = 23 s Time = 24 s
Slave čas upravený o offset a delay
Zpráva Sync resp. Follow Up udávajá zpoždění Master->Slave (t-ms) Zprávay Delay_req a Delay_resp udávají zpoždění Slave->Master (t-sm) Jakákoliv asymetrie mezi (t-ms) a (t-sm) vnáší chybu do výpočtu korekce hodin!
Frekvenční a fázová synchronizace Time Error Source Constant Time Error (cTE) The fixed component is called Constant Time Error (cTE) and comes from Link asymmetries and Node (T-GM, T-BC, T-TSC) asymmetries.
• Node asymmetry • Link asymmetry • Route asymmetry
Dynamic Time Error (dTE) The time-varying component is called Dynamic Time Error (dTE) and comes primarily from Packet Delay Variation (PDV) caused by router queues, etc.
Frekvenční a fázová synchronizace Approaches to Time Distribution 1. “Full Timing Support” • •
Combined use of PTP for time and SyncE for frequency Every switch or router in the timing path must support PTP and SyncE (i.e. contain a Telecom Boundary Clock, T-BC)
2. “Assisted Partial Timing Support” • •
Use of GNSS for time, supported by PTP for protection Some switches or routers in the timing path may support PTP (i.e. contain a BC or TC), but this is not mandatory
3. “Partial Timing Support” • •
Use of PTP for both time and frequency distribution Some switches or routers in the timing path may support PTP (i.e. contain a BC or TC), but this is not mandatory
Frekvenční a fázová synchronizace
PTP with Full Timing Support GNSS Reference Point A
Reference Point B
Reference Point C
Reference Point D
all switch/routers on the path between T-GM and T-TSC contain a T-BC
T-GM
PRTC
Features
PTP Grandmaster
T-TSC
Packet Network
PTP Slave
End clock
•Every element in the path must be “PTP aware”
•T-BC case covered in standards, T-TC case under development •Uses a combination of SyncE and PTP, where SyncE provides the frequency and PTP the phase/time
Frekvenční a fázová synchronizace Boundary Clock
Slave
PTP
Master
Boundary Clocks reduce PDV accumulation by:
Master
Slave
SyncE
PTP
1pps SyncE
EEC G.8273.2 Telecom FrequencyClock Time/Phase Boundary (T-BC) (T1/E1/SyncE) (1pps)
•Terminating the PTP flow and recovering the reference time •Generating a new PTP flow using the recovered time •No direct transfer of PDV •Slave/Master combination Telecom BCs use SyncE to: •Improve stability •Improve holdover
Frekvenční a fázová synchronizace
Packet Interfaces
Packet Interfaces
Siwtch/router Switch/Router
Slave
PTP Messages
Master
Boundary Clock
PTP Messages
1pps SyncE
EEC
SyncE
Frekvenční a fázová synchronizace Transparent Clock Transparent Clocks reduce PDV by; Calculating the time a PTP packet resides in the TC device (in nsec) and insert the value into the CorrectionField. Using the CorrectionField, the Slave or terminating BC can effectively remove the PDV introduced by the TC.
Q1
Q2 Qn
Packet Delay in TC Device inserted into CorrectionField
TC CF Accuracy = 50ns (IEEE C 37.238)
Frekvenční a fázová synchronizace
PTP with Full Timing Support Benefits •Controlled, deterministic environment suitable for both frequency and time/phase transfer •“Building block” approach to network construction, with example time error budgets in G.8271.1 •Profile, architecture and clock performance defined by ITU-T, published May 2014 Challenges •All equipment in path needs to be PTP aware •No control of asymmetry in the network
Frekvenční a fázová synchronizace G.8275.2 “Partial Timing Support” Profile
GNSS
GNSS not all switch/routers on the path between T-GM and T-TSC contain a T-BC T-GM
PRTC
PTP Grandmaster
APTSC Packet Network
Combined End clock GPS/PTP Slave
Features •Objective is backup to GNSS, i.e. “assisted holdover” •Can use GNSS when in service to monitor PTP service quality and measure network asymmetry
•PTP can maintain timebase when GNSS is out of service (e.g. due to jamming or antenna failure)
Frekvenční a fázová synchronizace PTP with Assisted Partial Timing Support Benefits •Mutual co-operation between GNSS and PTP • • •
PTP provides an initial time fix to assist the GNSS during signal acquisition GNSS calibrates the PTP asymmetry, and monitors its suitability for service PTP can monitor GNSS timing quality, e.g. antenna failure, spoofing, jamming
•Operates over existing networks, including third party access networks that may not have built-in PTP support •Profile, architecture and clock performance under definition in ITU-T Challenges •Less deterministic path from T-GM to APTSC, because not every network element assists in the timing flow •May need constraints on traffic load and span of the packet network •Little agreement in ITU-T on the scope of the network, hence consent date keeps slipping
Frekvenční a fázová synchronizace Use case: In-building Small Cells
Features: •GNSS antenna on roof, supplies synchronization to building (and possibly neighbouring buildings) •Distributed to small cells using PTP over the building LAN •No timing support provided (e.g. BCs or TCs)
Frekvenční a fázová synchronizace PTP with Partial Timing Support GNSS not all switch/routers on the path between T-GM and T-TSC contain a T-BC
T-GM
PRTC
PTP Grandmaster
Packet Network
Features •Objective is to distribute time over a small PTP-unaware network •Small network, potentially only a single in-building network •Places GNSS source as close to the end clock as possible
PTP Slave
End clock
Frekvenční a fázová synchronizace PTP with Partial Timing Support Benefits •Simple deployment over existing networks •Operators do not need to own or manage the network •Can be leased from a third party, e.g. building owner
•Short network, so cable or fibre asymmetry small •Profile, architecture and clock performance under definition in ITU-T Challenges •Less deterministic path from T-GM to T-TSC, because not every network element assists in the timing flow •Switches/routers not designed with PTP asymmetry in mind, so device asymmetry is uncontrolled •May need constraints on traffic load and span of the packet network •Little agreement in ITU-T on the scope of the network
Frekvenční a fázová synchronizace G.8271.1: Reference Points GPS
Reference Point A
Reference Point B
Reference Point C
T-GM PRTC
PTP Grandmaster
Reference Point D
T-TSC Packet Network
PTP Slave End clock
Reference Point A:
• Time accuracy and stability at output of PRTC (defined in G.8272)
Reference Point B: • Packet timing interface at output of PTP GM (defined in G.8272; same as A)
Reference Point C: • Time accuracy and stability at input to end equipment (defined in G.8271.1)
Reference Point D: • End application requirements (e.g. air interface time/frequency specification)
Frekvenční a fázová synchronizace G.8271.1 Network Reference Points A, B
±100ns (PRTC/T-GM)
C ±200ns dTE (random network variation)
D
cTE uses up 70% of the network equipment budget ±550ns cTE (node asymmetry, ±50ns per node)
±250ns cTE (link asymmetry compensation)
Class A T-BCs: Class B T-BCs: ±420ns cTE (21 nodes, ±20ns per node)
±380ns cTE (link asymmetry compensation)
±1.1µs network equipment budget ±1.5µs end-to-end budget
±250ns (short term holdover) ±150ns (end application)
Frekvenční a fázová synchronizace - co je nutné měřit TIE – Time Interval Error (ns) Fázový rozdíl mezi referenčním signálem a testovaným signálem v určitém čase.
MTIE – Maximum Time Interval Error (ns) Maximální rozkmit testovaného signálu vůči referenčnímu signálu, během celého testu.
TDEV – Time Deviation (ns)
TIE (ns)
Phase Error (TIE) MTIE
časová stabilita fáze v závislosti na času měření.
t(1) t(2) t(3) t(4) t(5)
Observation time (n·t0)
Reference Clock
Test Signal
MTIE (ns)
*Faster playback is used to better explain the concept.
t (s)
Frekvenční a fázová synchronizace Clock Interface on Manufacturers’ Equipments Juniper ACX 1100
Juniper ACX 1100 has a SMC port which outputs 1pps signal
ZTE BS 8700
PIN 18 for 10MHz signal. PIN 16 for GND
Huawei BTS 3900
Frekvenční a fázová synchronizace Clock Interface on Manufacturers’ Equipments Ericsson SIU (Cell Site Router)
Symmetricom TP 2700 BNC port which outputs 1pps signal.
Huawei ATN CX600/950B
Huawei CX600 has both RJ45 and miniBNC port that output E1 and 1pps signal.
Frekvenční a fázová synchronizace TX300S, TX320,MTT320 RXT1200
Paragon - X
Sentinel
Frekvenční a fázová synchronizace (CSAC) Chip Scalled Atomic Clock
Frekvenční a fázová synchronizace MTT320 wander analysis
GPS
Reference Point A
Reference Point B
Reference Point C
TGM PRTC
PTP GM
Reference Point D
T-TSC Packet Network
PTP Slave
End clock
1PPS
Frekvenční a fázová synchronizace TX300 Master Slave emulation GPS Reference Point B
Reference Point C
Reference Point D
T-TSC
TX300 Master Emulation
Packet Network
PTP Slave
TX300 Slave
Frekvenční a fázová synchronizace Sentinel operating in Pseudo-Slave mode
Antenna
Sentinel Tester emulates PTP Pseudo-Slave
1588v2 GM 1G O/E or 100M E
eNodeB
RNC NETWORK
2MHz/10MH/1PPS from eNodeB
Cell Site Router or Switch
Base Station
Frekvenční a fázová synchronizace Sentinel operating in Monitor mode
Sentinel Tester in Transparent Mode
Antenna
1588v2 GM 1G O/E or 100M E
A RNC NETWORK
Cell Site Router or Switch
A
B
Taps or Splitter
B
eNodeB Base Station
Frekvenční a fázová synchronizace
Color TFT, 8.4” 800 x 600
Antenna
Frequency In/Out Ports
388mm
126mm
320mm Net Weight: < 6kg (13lb)
Packet Module Clock Module
Modular Design
Frekvenční a fázová synchronizace
•Master Slave Emulation gives highest accuracy and repeatability for test bed •Time Error measurements in CAT allow detailed insight into device performance.