1971 − ELTE TTK ATOMFIZIKA TANSZÉK 1974 − SZÁMOK 1976 − ELTE TTK CSILLAGÁSZATI TANSZÉK 1981 − MTA FÖLDTUDOMÁNYI OSZTÁLY
Leningrád Amsterdam Moszkva Berlin Budapest Szófia Modena Trieste
Fizikus diploma Programozói diploma Doktori diploma Kandidátusi oklevel
Neutron aktivációs analízis PL1 − Fortran A légköri CO2 abszorpciójának számítása Műholdas ózonszondázás
Calgary Maryland
Dundee Oxford
Portland
Sanghai
Hampton
Ilorin OMSZ KLFI Sugárzási Osztály 1971 − 1981
Lagos
INTERKOZMOSZ: Leningrád, Moszkva, Berlin, Szófia Dundee, Oxford − F. Taylor, D. Walshaw NIGÉRIA, UNIVERSITY OF CALABAR, ILORIN−BSRN Sidney
ICTP G. Furlan, IMGA CNR R. Guzzi HARTCODE Colledge Park, UMD,(GOES,GLI) RAYTHEON ( OMPS )
Melbourne
Hampton LARC (LAABS, AIRS, CERES, FIRST) A. Rosch, N. van Andel − felszíni mérések K. Gregory, C. Game − számítógépes háttér G. Fulke, C. Wiese − elméleti interprtetációk J. Pompe − virial számítások D. Brooks − GCM −ek hiányosságai W. Guang, Y. Shaomin − sztohasztikus modellezés
Far-Infrared Properties of the Earth Radiation Budget A Proposal Submitted to NRA 03-OES-02 Submitted April 15 2003 Martin G. Mlynczak, Bill Collins, Dave Kratz, Ping Yang, Christopher J. Mertens, Ferenc Mislkolczi, Robert G. Ellingson, Bill Smith, Sr., Bryan Baum, Paul Stackhouse, Larry Gordley 8.1 Science Team Member Responsibilities • Mlynczak, Miskolczi, Mertens,and Smith : CERES and AIRS window radiance verification • Kratz, Mertens, Miskolczi, Gordley : Far-IR flux derivations • Ellingson, Mertens : Radiative cooling rates • Miskolczi, Kratz, and Mlynczak : Spectral Greenhouse Effect • Yang, Baum, and Stackhouse : Far-IR Cirrus Properties • Collins, Mertens, Kratz, Miskolczi : Climate Model Comparisons • All : Error Analysis
http:/science.larc.nasa.gov/ceres/STM/2005-11_miskolczi_airs.pdf
ÜVEGHÁZHATÁS ÉS ENERGETIKA A CO2 ÜVEGHÁZHATÁSON ALAPULÓ GLOBÁLIS FELMELEGEDÉS A KLÍMAVÁLTOZÁS MEGFIGYELT EMPIRIKUS TÉNYEI ÉS A KAPCSOLATOS ELMÉLETI MEGFONTOLÁSOK ENERGIAPOLITIKAI VONZATA
Dr. Ferenc M. Miskolczi 3 Holston Lane, Hampton, VA 23664, USA e-mail:
[email protected]
RS & NAS Feb. 27th 2014
An overview from the Royal Society and the US National Academy of Sciences
THE GREENHOUSE EFFECT :
FE FA
Some solar radiation is reflected by Earth and the FR atmosphere
G = S U - F A = S U - OLR A = A A - E U Some of the infrared radiation passes through the atmosphere. Some is absorbed by greenhouse gases and reemitted in all directions by the atmosphere. The effect of this is to warm Earth’s surface and the lower atmosphere.
FA= OLRA
Atmosphere
AA
Earth‘s Surface
Some radiation is absorbed by Earth’s surface and warms it
RS - SIR PAUL NURSE President
OLRA ED
SU Infrared radiation is emitted by Earth’s surface
ST
EU
NAS - Dr. RALPH J. CICERONE President
http://www.bbc.co.uk/schools/.... global_warmingrev1.shtml
http://science-edu.larc.nasa.gov/energy_budget
http://www.realclimate.org/....2007/04/ learning-from-a-simple-model
http://www.seipub.org/des/Download.aspxID=21810
PLANETARY GREENHOUSE EFFECT LINKED TO ATMOSPHERIC IR ABSORPTION
KT97
KT08
PROGRESS ARTICLE
NATURE GEOSCIENCE DOI: 10.1038/NGEO1580
G. STEPHENS 2012 :
Incoming solar 340.2±0.1
Updated energy balance
TOA imbalance 0.6±0.4 Reflected solar 100.0±2 Shortwave cloud effect 47.5±3
Atmospheric absorption 75±10
5±5
Sensible heating 24±7
Clear-sky 27.2±4.6 refection Surface shortwave 165±6 absorption
All-sky atmospheric window 20±4
Outgoing 239.7±3.3 longwave radiation
Clear-sky emission 266.4±3.3
Longwave 26.7±4 cloud effect
Latent heating
-187.9±12.5
3±5
88±10
26.6±5
23±3
398±5
Surface reflection
Surface emission
All-sky longwave absorption
319±9
Clear-sky emission to surface
345.6±9 All-sky emission to surface
Surface imbalance 0.6±17 Martin Wild • Doris Folini • Christoph Schar • Norman Loeb • Ellsworth G. Dutton • Gert Konig-Langlo Clim Dyn (2013) 40:3107–3134 DOI 10.1007/s00382-012-1569-8
340.4 -99.9 -239.9 +0.6 Wm-2
+0.6 Wm-2
0.6 +/- 17 Wm-2 NATURE DOI:0.1038/NGEO1580 G. L. Stephens, J. Li, M. Wild, C. A. Clayson, N. Loeb4, S. Kato, T. L’Ecuyer, P. W. Stackhouse Jr, M.Lebsock and T. Andrews
S z ü n e t e l a k l í m a v á l t o z á s ÖSSZEFÜGGÉS : Kétségtelen az emberi tevékenység következménye Mika János : KLÍMAVÁLTOZÁS 13, 2014. ÁPRILIS 25., PÉNTEK "A melegedés megtorpanását minden bizonnyal a déli félteke óceánjainak váratlanul felerősödött hőelnyelő képessége okozza..." "Az éghajlati modellek nem tudják szimulálni a tapasztalt stagnálást." "Amíg tehát az óceáni cirkuláció számítását a kutatók fel nem javítják annyira a klímamodellekben, hogy megjelenjen bennük a hőmérséklet megtorpanása, addig azt sem leszünk képesek előre jelezni, hogy mikortól folyatódik a felmelegedés, és hogy ugyanolyan ütemű lesz-e, mint korábban."
Annual mean normalizd surface, effective and greenhouse temperatures, and CO2 concentrations 1948 − 2007, NOAA Earth System Research Laboratory
Normalized temperatures and CO2 concentrations
2.5 TS 2
TE = ( OLR / σ )0.25 ∆TG = TS − TE
1.5
CO2 1 0.5 0 −0.5 −1 −1.5 −2 −2.5
1950
1960
1970
1980 Years
1990
2000
2.8
Theoretical optical depth, τ , is the solution of the 3 + 2 e − τ = 10 / ( 1 + τ + e − τ ) equation
IR optical depth / H2O column amount
2.7 2.6 2.5
H2O precipitable centimeters
2.4 2.3 2.2 2.1 2
Theoretical: 1.87
IR optical depth ( annual mean ) 1948 − 2008 (61 year mean) 1959 − 2008 (50 year mean) 1948 − 1997 (50 year mean) 1973 − 2008 (36 year mean) 1948 − 1972 (25 year mean) 1977 − 2008 (32 year mean) 1948 − 1976 (29 year mean) mean profile values
1.9 1.8
1950
1960
1970
1980 Years
1990
2000
MAGYAR TUDOMÁNY : Vélemény Miskolczi Ferenc: Értekezés az üvegházhatásról c. kéziratáról " Miskolczi Ferenc kéziratában bemutatott kiindulási feltevése szakmailag téves, elfogadhatatlan.Abból indul ugyanis ki, hogy a Föld-légkör rendszerbe beérkező és onnan távozó energia egyenlő....." " Miskolczi a természeti folyamatokon tesz erőszakot akkor, amikor energia-egyensúlyt feltételez egy olyan rendszerben, amelyik gyakorlatilag soha nincs egyensúlyban...." " Összefoglalva: megítélésem szerint a kézirat a súlyos szakmai tévedések, és az olvasókat félrevezető hivatkozási csúsztatás miatt nem alkalmas az MT-ben történő közlésre....." Budapest, 2013. 02.23.
CLEAR-SKY GREENHOUSE FACTORS
?
Global mean profiles of ∆G(z) : GT, G1− G4, GR
4
B(z): σt (z)
τ = τ(zT,z) : IR optical depth
70 G = ∆(B(z)*(1−2/(1+τ+exp(−τ)))
Altitude z, km
Tr IR transmission
T
128.54 W/m2
G1 = ∆(B(z) − OLR(zT,z))
128.42 W/m2
60
E upward flux U E downward flux
128.42 W/m2
G3 = ∆(ED(zT,z)/εi − EU(zT,z))
128.42 W/m2
50
OLR outgoing flux ε anisotropy i z top altitude T
G2 = ∆(B(z)*(1−Tr(zT,z) − EU(zT,z)) G4 = ∆OLR(z,0)
128.36 W/m
GR = ∆B(z)*(1−Tr(zT,z))
148.71 W/m
dGR = G1 − GR
−20.29 W/m2
D
∆z layer thickness
40
2 2
G(z) = σt4(z) − OLR(z ,z) = B(z)*(1−T (z ,z)) − E (z ,z) = Σ ∆G(z) T r T U T GR in Raval and Ramanathan, 1989: Nature, VOL 342, pp 759, Eqs. 1−2,
30
or G in Kiehl and Ramanathan, 2006: Frontiers of Climate Modeling, R Cambridge University Press 2006.,pp 133,Eqs. 5.3−5.4, are incorrect and inconsistent with the definitions of G1 − G4 and the theoretical
20
expectation of G ! Global average G shows 15 % error (overestimate) T R compared to the definition of G1 or the theoretical GT published in Miskolczi 2007:Időjárás,VOL 111, pp 14, Eqs. 18−19 and Eq. 28 !
10 0 −5
0
5
10
15
Layer contribution to G(z) : ∆G(z) = G(z+∆z)−G(z), W/m2
20
Water vapor column density and thermal structure Logarithm of the H2O column density follows the shape of the temperature variations, r = 0.994
40
689 soundings, saturation pressure computed over water and ice Water vapor layer column density Layer mean temperature 40 JAN
35
JAN
FEB
FEB
35
MAR
MAR
APR
30
APR
30
MAY
MAY
JUN
JUN
JUL
JUL
25
AUG
Altitude, km
Altitude, km
25
SEP OCT
20
NOV DEC
SEP OCT
20
15
10
10
5
5
−2 0 2 4 6 log(H2O, atm−cmSTP / km)
8
NOV DEC
15
0 −4
AUG
0
200
220 240 260 280 Temperature, K
300
RADIATIVE TRANSFER MODEL - G = SG - OLR = AA - EU Greenhouse effect: G = SG – O L R GN = G / SG All-sky measurements: SG = 391 Wm-2 OLR = 235 Wm-2 GN ~ 0.4
QUESTIONS: What can we learn from global scale simulations of IR fluxes ? What are the theoretical relationships among the global average IR flux density terms ? NET ATMOSPHERE:
(1) F + P + K + AA – ED – EU = 0
NET SURFACE :
(2) F0 + P0 + ED – F – P – K – AA – ST = 0 (3) F0 + P0 = OLR
1761 TIGR2 Soundings, 40 pressure levels
Pressure, hPa
10
100
1000 180
200
220
240 260 Temperature, K
280
300
320
Cross−referenced profile # 60
TIGR2 # 1621
S/N
ts
h2o
o3
Su
Ed
OLR
St
Eu
tau
1621 2171
266.6 266.6
0.5262 0.5274
0.2546 0.3548
286.7 286.7
200 200.4
213.8 210.4
78.48 76.95
135.3 133.4
1.295 1.315
∆ ∆%
0 0
0.0012 0.2281
0.1002 39.36
0.00043 0.00015
0.4968 0.2485
−3.403 −1.592
−1.535 −1.956
−1.868 −1.381
0.01976 1.525
226.71
226.71
23.285
23.285 K
0.2496
0.2516
0.5862
0.5854
g/kg
0.1 Pressure, hPa
Pressure, hPa
0.1 1 10 100 1000 200 2.779
220 240 260 280 Temperature, K 2.607
3.899
3.212
1 10 100 1000 −6
300
Pressure, hPa
0.1
1 10 100 1000 −7.5
−7 −6.5 −6 −5.5 log10( O3 mmr, g/g )
−5 −4 −3 −2 log10( H2O mmr, g/g )
mg/kg
0.1 Pressure, hPa
TIGR2000 # 2171
−5
1
∆H O 2
∆O3
10 100 1000 −30 −20 −10 0 10 20 30 ∆H2O mmr, ppmm, ∆O3 mmr, ppmm
ABSORBED SURFACE RADIATION, AA, DOWNWARD EMITTANCE, ED, SURFACE UPWARD FLUX, SU, AND UPWARD EMITTANCE, EU
←TIGR PROFILES
← MARTIAN ATMOSPHERES ED = AA independent of the thermal structure and greenhouse gas content of the atmosphere (Kirchhoff law). SU=2EU Total gravitational potential energy is equal to two times of the internal kinetic energy (Virial theorem).
IR radiative structure of the atmosphere from TIGR2 600 ED/A, Wm
−2
500
r = 0.997
382
400 300 200 100 100
200
300 400 SU, Wm−2
500
600
Radiative equilibrium rule OLR(2+τA−A)/2, Wm−2
Atmospheric Kirchhoff rule 600 500
300 200 100 100
300 400 SU, Wm−2
500
600
600 r = 0.968
382
2EU, Wm−2
3*OLR/2, Wm
−2
200
Atmospheric virial rule
600
400 300 200 100 100
382
400
Energy conservation rule 500
r = 0.959
200
300 400 S , Wm−2 U
500
600
500
r = 0.94
382
400 300 200 100 100
200
300 400 −2 SU, Wm
500
600
Observed empirical facts, TIGR archives, 475 global soundings Ed = Aa, Su = Olr / f, Su = Olr / fc = Olr / ( 0.6 + 0.4 Ta ), Aa = 1.042 Ed − 2.6 W/m2, r = 0.998
Su = 2 Eu
Olr / f = 0.993 Su + 6.1 W/m2, r = 0.946
500 500 Olr / f, W/m2
Aa, W/m2
400 300 200 100 100
400
200 200
300
400
500
200
300
2
500
2
Ed, W/m
Su, W/m
Olr / fc = 0.765 Su + 90.5 W/m2, r = 0.976
2 Eu = 0.9366 Su + 23.5 W/m2, r = 0.934 500 2 Eu, W/m2
500 Olr / fc, W/m2
400
400
200
400
200 200
300
400 2
Su, W/m
500
200
300
400 2
Su, W/m
500
AA = ED 3 SU = OLR 2
SU = 2 EU OLR SU = f
f = 2 /(2 + τ − A)
OLR = EU + ST
AA = SU (1 − exp(−τ A ))
τ A = 1.867
Anisotropy in directional radiances Global average TIGR 2 atmosphere SU
Limb angles
140
EiD
ED
ST
EU
53.13o
AA
OLR
81.7o
Radiance, W/(m2 sr)
120 100 80 60 40 20 0 0
10
20
30 40 50 60 Viewing angle, degree
70
80
90
IPCC type no−feedback radiative forcing to N2, O2, CH4, CO2, and H2O perturbations
Reference global average clear−sky OLR : TIGR2 ( 1976 ) : 251.8 W/m2, NOAA R1 ( 1948 ) : 256.4 W/m2
30
Recent GCMs do not observe the true radiative constraints from known physical principles
25
CH4
1.29 atm−cmSTP
H O
2.61 prcm
CO2
15 ∆OLR , W/m2
6.23e+005 atm−cmSTP
O2
20
10
N2
2
1.67e+005 atm−cmSTP 263 atm−cmSTP
IPCC : ∆OLR = −3.53 * ln(c/co) = −0.747 W/m2
5
REALITY ∆OLR = 3.02 W/m2
0 −5 −10 −15 −20
ln(1/8)
ln(1/4) ln(1/2) ln( 1 ) ln(GHG column amount perurbations)
ln(3/2) ln( 2 )
GLOBAL AVERAGE ATMOSPHERES
The USST-76 atmosphere is not adequate for global radiative budget studies. (Not in radiative equilibrium, not in energy balance, H2O amount is small)
Interpretation of the effective temperature The global average spectral clear and cloudy OLR and the effective temperature violate the Wien displacement law 2 −1 Spectral flux densities are in W/m /cm
Clear,
0.4
St Eu
0.3 0.2 0.1 0
0
500
1000
Spectral OLR
Spectral flux density
Clear
St+Eu
0.3
Bν(te)
0.2 0.1 0
−1
Cloudy, ∆ν = 39 cm−1,
Ecu
0.1 0
500
1000 −1
Wavenumber, cm
1500
Spectral OLR
Spectral flux density
Sct
0.2
0
1000
1500
Wavenumber, cm
Cloudy − cloud top at 2 km
0.3
500
−1
Wavenumber, cm
0.4
te = 258.1 K
0.4
0
1500
∆ν = 53 cm−1,
tce = 255.1 K
0.4
Sct +Ecu
0.3
Bν(tce)
0.2 0.1 0
0
500
1000 −1
Wavenumber, cm
1500
Planetary radiative equilibrium cloud cover at hC altitude FA = (1-βA ) OLR + βA OLRC FE = (1-βE ) SU + βESUC βA ( FA , hC ) = ( FA − OLR ) / ( OLRC ( hC ) − OLR ) βE ( FE , hC ) = ( FE − S U) / ( SUC ( hC ) − S ) U
FA = (1 - αB )FE min ( || βA (hC,αB ) - βE(hC,αB ) ||2 )
Radiative equilibrium cloud altitude and albedo
6 10 4
log10 ( Δβ )
5
2
0 0 −2 −5 −4 −10 5
4
0.305 3
Altitude, km
−
2
0.3 1
0
0.295 Albedo
−6
ISCCP−D2 198307−200806 global mean : 66.38 +/− 1.48 %
Monthly mean cloud amount anomalies, %
4 Theoretical global mean : 66.18 % 2
0
−2
−4 1985
1990
1995 Years
2000
2005
Planetary effective temperatures Eu,ν , Ecu,ν : atmospheric upward LW spectral emission from clear and cloudy areas S , Sc : transmitted spectral flux density from the ground surface and cloud top t,ν t,ν OLRA = (1 − β)(St + Eu) + β (Sct + Ecu) = 238.9 W/m2
cloud cover β = 0.66
0.4
tae = (OLRA/σ)0.25 = 254.78 K
238.94 → OLRA ν
← observed
72.962 → (1−β) St,ν + β Sct,ν
0.35 Spectral flux density, W/m2/cm−1
165.98 → (1−β) Eu,ν + β Ecu,ν
0.3 0.25
238.94 → Bν(tae)
← observed tae = 254.8 K
238.94 → Bν(ta)
← NASA
341.98 → Bν(tas)
← observed tas = 278.7 K
341.97 → Bν(te)
0.2
← NASA
te = 254.8 K
te = 278.7 K
0.15 0.1 0.05 0 0
500
1000
1500 −1
Wavenumber, cm
2000
2500
E
Observed global mean spectral greenhouse factor, GFA ν
A
R
−2
F0 , F0 , and F0 : total effective, absorbed, and reflected SW radiation in W m
SA , OLRA, and GFA : total effective surface upwad, outgoing, and greenhouse LW flux densities in W m−2 U e e
0.4 GFA ν
GFA
= 103.04
FE 0,ν
FE 0
= 341.97
0.3
FA 0,ν
FA 0
= 238.94
0.25
FR 0,ν
FR 0
= 103.03
SA U,ν
SA U
= 341.98
Spectral flux density, W m−2 cm−1
0.35
0.2
OLRA e,ν
OLRA = 238.94 e
GFA e,ν
GFA e
0.15 = 103.04
0.1 0.05 0 200
400
600
800
1000
1200 −1
Wavenumber, cm
1400
1600
1800
2000
Albedo : 0.30
Cloud cover : 0.66
Cloud top altitude : 1.92 km
wν : Wien constant
4
log10 ( Spectral flux density, W m−2 cm−1 )
W m−2 3
E
63.18E+6
S
1368
tSUN 5778 t0 394.1
SE
342
tE
278.7
239
tA
254.8
103
tR
206.5
0 0
2
S
A
SR
1
K
A
OBSERVED
H2O triple point at :
535.66 cm−1 273.16 K = νmaxwν
342
S
A
OLR 239 GFA 103
0
−1
−2
−3
0
0.5
1
1.5
2
2.5
3
3.5 −1
log10 ( Wavenumber, cm )
4
4.5
5
H2O According to the simple-minded or ‘classic’ view of the greenhouse effect the global average greenhouse temperature change may be estimated by the direct application of the Beer-Lambert law moderated by local or regional scale weather phenomena (R. Pierrehumbert, A. Lacis, R. Spencer, R. Lindzen, A. P. Smith, H. deBruin, J. Abraham et al., J. Hansen et al.,and many others)*. This is not true. .
The dynamics of the greenhouse effect depend on the dynamics of the absorbed solar radiation and the space-time distribution of the atmospheric humidity. The global distribution of the IR optical thickness is fundamentally stochastic. The instantaneous effective values are governed by the turbulent mixing of H2O in the air and the global (meridional) redistribution of the thermal energy resulted from the general (atmospheric and oceanic) circulation. . .
.
The greenhouse effect is a global scale radiative phenomenon and can not be discussed without the explicit quantitative understanding of the global characteristics of the IR atmospheric absorption and its governing physical principles. . *R. Pierrehumbert, Physics Today, Jan. 2011; A. Lacis et al., Science, 330,2010; R. Lindzen, BAMS, March 2001; Spencer et al., GRL, 34, August 2007;A. P. Smith, AOPhysics, February, 2008; H. deBruin, Idojaras, 114,4,2010; J. Abraham et al., Letter: To the Members of the U.S. House of Represen-tatives and the U.S. Senate , January, 2011; J. Hansen et al., Science, 213, 1981
A CO2 ÜVEGHÁZHATÁSÁN ALAPULÓ GLOBÁLIS FELMELEGEDÉS HIPOTÉZISE TUDOMÁNYTALAN SZEMFÉNYVESZTÉS JÓZAN ENERGIAPOLITIKÁNAK A VÁRHATÓ ENERGIAIGÉNYEK ÉS A RENDELKEZÉSRE ÁLLÓ ENERGIAFORRÁSOK KORREKT FELMÉRÉSÉN KELL ALAPULNIA
bu h2o ed olr st eu tau
350
300
Power
250
200
150
100
50
0 2
4
6
8 10 Period(Years/Cycle)
12
14
16