Fiber Reinforced Polymers (FRP) in infrastructure: Rules and guidance Liesbeth Tromp Kees van IJselmuijden
Who is RHDHV?
2
Engineers, Consultants, Architects, FRP team Kees van IJselmuijden (engineer)
Joris Smits (architect) Ernst Klamer (engineer)
Liesbeth Tromp (FRP specialist) 3
FRP Capabilities Royal HaskoningDHV Engineering (including Finite Element Analysis) Architectural Design Feasibility studies Life Cycle Costing Sustainability evaluations (LCA) Second opinion and consultancy Tender documents System based contract management/ Quality Control Royal HaskoningDHV is technical coordinator of national FRP design guidance and partner of FRP Eurocode 4
5
Why FRP?
Low maintenance • 10% - 30% lower costs • reduced (traffic) hindrance
Sustainable and durable • Efficient material usage, low energy usage • Long life (> 80 years)
Lightweight and prefab • 2 á 3 times lighter than steel • Quick installation • Renovation and life time extension
Cost effective 6
• Life Cycle Analyses • Replacement of steel structures, lift bridges, moveable structures, temporary structures
Strong • 200 - 500 MPa • Fatigue resistant
Applications in infra structure and architecture FRP has demonstrated its value and feasibility a.o. for: Footbridges Traffic deck panels Traffic bridges Moveable bridges Hybrid bridges ( FRP/steel) Renovation (lightweight life time extension)
Cladding Edge elements Roof structures 7
Footbridges by RHDHV
Design by Joris Smits, Royal HaskoningDHV
Floating footbridge and incidental vehicles Installed 2011 8
Design by Jorge Moura, Royal HaskoningDHV
Footbridge and incidental vehicles Installed 2013
Liftbridge Katwijk
Design by Joris Smits, Royal HaskoningDHV
Foot bridge and incidental vehicles; span 25m FRP lift bridgedeck, steel balance structure, concrete substructure and approaches Architectural design and engineering by RHDHV (2013)
9
Royal HaskoningDHV: Dragon Fly bridge Lift bridge Oude Rijn, Katwijk
Ontwerp Jorge Moura, RoyalHaskoningDHV
Pedestrian bridge and incidental vehicle Hybrid glass fiber and carbon fiber reinforcement
10
FRP traffic bridge and trams : Sint Sebastiaansbridge Delft
34m Engineering by Royal HaskoningDHV
12m
Traffic bridge (tender design) 2 moveable decks: FRP deck with steel main beams combined LM1 and tram load (deck 34m by 12m) Heavy traffic and tram load, fatigue analysis Engineering of structures c.a by RHDHV 11
Structural Concept
12
Results: Thermal analysis
Ux (transverse) (1,8mm - -3,4mm)
13
Uy (length) (6,4mm - -20,4mm)
Uz (vertical) (22mm - -2,9mm)
Results Traffic loads: SLS
App 41 mm (steel 28 mm) FRP deck Uz < 17, 8 mm Including conversion factors 1,1*1,1*1,1 = 1,33
14
Pijlebrug Meppel– table bridge 13,6 m by 9 m Province of Drenthe FRP bridge deck
15
Elburgerbrug
Tender documents System based contract management/design review 16
Mandelabridge Alkmaar
Architect Joris Smits (RHDHV) RHDHV Design Review FRP deck 17
FRP Cladding Bridges Jeddah
Architect Joris Smits and team (RHDHV) Engineering by RHDHV (South Africa, Netherlands) 18
Steel truss bridges 20m – 60m FRP Cladding
Development of Design Guidance
CUR96 FRP Structures in Civil Structures Eurocode FRP 19
Team Herziening CUR96 : Toeleveranciers (composiet, materialen): FiberCore Europe Bijl Profielen PPG Teijin Twaron DSM Bostik VKCN (branche organisatie) Groot Composiet
Normalisatie Instituten, Consultants CUR NEN TechnoConsult
Overheden
Universiteiten / Onderzoeksinstituten Universiteit Twente Technische Universiteit Delft INHolland WMC TNO
Aannemers en ingenieursbureaus Heijmans Movares 20 Solico
Royal HaskoningDHV Witteveen + Bos CTC
Rijkswaterstaat Ingenieursbureau Den Haag Ingenieursbureau Rotterdam (GWR) Ingenieursbureau Utrecht COBc
Official members of WG4 Eurocode FRP Name
E-mail
Presented by
1
Luigi Ascione (Convenor)
[email protected] [email protected]
UNI, Italy
2
Lone Døjbak Andersen
[email protected]
DS, Denmark
3
Andrea Benedetti
[email protected]
UNI, Italy
4
Jean-François Caron
[email protected]
AFNOR, France
5
Miroslav Cerny
[email protected]
UNMZ, Czeck republic
6
Joäo Ramôa Correia
[email protected]
IPQ, Portugal
7
Patrice Godonou
[email protected]
SIS, Sweden
8
Eugenio Gutierrez
[email protected]
JRC, Italy
9
Wojcieech Karwowski
w.karwowskil.pw.edu.pl
Warsaw University of Technology
10
Thomas Keller
[email protected]
SIA, Switzerland
11
Jan Knippers
[email protected]
DIN, Germany
12
IJselmuijden, Kees van
[email protected]
NEN, The Netherlands
13
Toby Mottram
[email protected]
BSI, UK
14
Matthias Oppe
[email protected]
DIN, Germany
15
Carlo Paulotto
[email protected]
Acciona, Spain
16
Pawel Poneta
[email protected]
Mostostal Warszawa S.A., Poland
17
Andreas Schleifer
[email protected]
DIN, Germany
18
Morten Gantriis Sorensen
[email protected]
DS, Denmark
19
Ioannis Stefanou
[email protected]
AFNOR, France
20
Jon Taby
[email protected]
SN, Norway
21
Thanasis Triantafillou
[email protected]
ELOT, Greece
22
21Tromp Liesbeth
[email protected]
23
Frédéric Waimer
MEMBERS WG4
[email protected]
NEN, The Netherlands DIN, Germany
Eurocode FRP
Structure of the Technical Report Preface Chapter 1: General Chapter 2: Basis of Design (Partial Factors Method) Chapter 3: Materials Chapter 4: Durability (UV Radiation; Temperature; Humidity; Static Charge; Fire)
Chapter 5: Basis of Structural Design (Modeling of FRP, Behaviour in the case of Fire; Design assisted by Testing)
Chapter 6: Ultimate Limit States and Fatigue (Profiles; Plates and Shells; Sandwich Panels)
Chapter 7: Servicability Limit States (Deformations; Vibration and Comfort; Damage)
Chapter 8: Connections (Bolted and Adhesive Joints) Chapter 9: Production, Realisation, Management and Maintenance 22
Challenges • Maturing Technology • Variety of Materials • Variety of production processes – Pultrusion – (Vacuum Assisted) RTM – Hand lay up – Filament winding • Different environments – Dry – Wet dry – Wet – Temperatures • Variety of applications and loading conditions • Connections 23
Chapter 2 CUR96: Partial factors for the material CUR96 γM =γM1 * γM2 γM1 - source of material data : Detailed design material data derived from tests on same material and process (γM1 = 1.15- from tests, 1.35 from literature )
γM2 Depending on Manufacturing method and design Verification By coefficient of variation
24
Conversiefactoren: klimaatinvloeden, langeduureffecten ηc = ηct . ηcv . ηck . ηcf; Temperatuur Reductie orde 10%
Vocht Reductie nat/droog orde 10%, natte toepassingen 30%.
Kruip Bij hoge permanente belasting Afhankelijk laminaatopbouw
Vermoeiing
25
Reductie van stijfheid, orde 10% Sterkte analyse: UGT toets levensduuranalyse o.b.v. spannings niveau en wisselingen.
Lameleigenschappen VVK (bouwstenen) UD
Vezel en hars
0/90
Lameleigenschappen: Tabellen Formules (Halpin-Tsai – Manera) Laminaateigenschappen: Klassieke laminaten theorie => software 26
CSM (mat)
Rekenprogramma’s materiaaleigenschappen • Diverse rekentools beschikbaar tbv bepalen laminaateigenschappen. • obv Klassieke laminaten theorie (Classical Laminate Theory) • Overzicht zie : http://www.compositesuk.co.uk/LinkClick.aspx?fileticket=SRE1-zpumWI%3D
Voorbeeld: Kolibri (Lightweight Structures) 27
Sterkte van laminaten of lamellen Tsai-Hill (gecorrigeerd) (‘Von Mises’ voor VVK) Houdt rekening met gecombineerde spanningen:
28
Sterktetoets CUR96+ (concept)
29
Toetsing UGT en BGT Materiaaleigenschappen Karakteristieke waarden uit tabel of testen Toon aan dat ontwerpwaarden worden gerealiseerd Ontwerpwaarden uit testen of methode van partiële factoren Materiaalfactoren Conversiefactoren Analyse methoden Handberekeningen of eindige elementenanalyse Sterkte toets: O.b.v. vereenvoudigd rek criterium (GVK = 1.2%) O.b.v. Tsai-Hill (gecorrigeerd) O.b.v. doorsnede-toets (profielen)
Bewijsvoering door testen 30
Materiaaltesten Componenttesten Full scale-test
BGT eisen: Comfort van (voet)bruggen Comforteis: maximale versnelling i.p.v. statische doorbuiging L/300. (NEN-EN 1991-2 2011 Nationale bijlage) Stijfheid VVK is relatief laag t.o.v. sterkte. Massa VVK is relatief laag t.o.v. sterkte => veelal eigenfrequentie met bijkomende massa. Demping (vergelijkbaar met beton)
Limiet statische doorbuiging? (bijv. incidentele voertuigen)
31
Failure modes FRP compression Interlaminaire shear (ILSS) In plane shear Delamination Tensile Bolted connections Bearing (gat-ovalisatie) Netto section failure Shear out Pull out
Adhesive connections 32
Peel stresses Shear failure
Delaminatie t.g.v. ILSS
Chapter 8: Connections Rules for (multi row) bolted connections Geometrical limits Verification of bolted connection for : In plane and out of plane loading Formulas for determination of joint capacity Stress concentration factors
Rules for adhesive connections General configurations Verification by tests
33
Guidance adhesive connections Prevent progressive collapse Long term properties aging (temperature, moisture, creep, cure, coating) Fatigue (no rules for infra)
Analytical (hand or FEA) supported by test data. Test data from previous projects used as ‘proof of principle’ in design. Tests as part of quality control. Instructions for tolerances, tools and quality control. Climate control, training and supervision by trained specialist in realisation phase!
34
Quality Control Expert review Trained personel
Tuned to consequence class and level of expertise
Proces control: Proces conditions (moisture, temperature, safety) Traceable materials Fiber placement ( fiber straightness) Impregnation (no voids) Cure
• Quality checks • Verification tests materials (design proof and quality control ) imperfections: geometry, voids
• 35
Inspection and maintenance plan • •
0-measurement Inspection protocol
Quality of pultrudes and material
Pultrusion: NEN-EN 13706 part 1 - 3
flatness straightness Production-imperfections Fiber buckling Voids and dry spots Etc.
36
EC FRP and CUR96 Technical report FRP draft finished in 2015 Published for comments 2015 via CEN website Technical Report/Specifications development until 2018 Dutch design guide CUR96 finished 2015 English version will be presented in an event in Utrecht by Rijkswaterstaat
37
Thank you for your attention!
Voor meer informatie over VVK:
[email protected] Liesbeth Tromp 38
+31-683530320