STUDI AUTOMATIC GENERATOR MELODI BERDASARKAN PARAMETER MOOD TERTENTU
TESIS Karya tulis sebagai salah satu syarat untuk memperoleh gelar Magister dari Institut Teknologi Bandung
Oleh
ALI AKBAR NIM : 23507042 (Program Studi Informatika)
INSTITUT TEKNOLOGI BANDUNG 2009
LEMBAR PENGESAHAN
STUDI AUTOMATIC GENERATOR MELODI BERDASARKAN PARAMETER MOOD TERTENTU
Oleh Ali Akbar NIM: 23507042 (Program Studi Informatika) Institut Teknologi Bandung
Telah disetujui dan disahkan sebagai laporan tesis di Bandung, pada tanggal Maret 2009
Pembimbing I
Pembimbing II
Dr.Ing. Iping Supriana S. NIP. 130769173
Dr.Ir. Richard Mengko NIP. 130704113
ii
ABSTRAK STUDI AUTOMATIC GENERATOR MELODI BERDASARKAN PARAMETER MOOD TERTENTU Oleh Ali Akbar NIM : 23507042 Secara umum, proses pembuatan musik oleh seorang komposer dimulai dengan pembuatan melodi. Melodi merupakan salah satu aspek utama musik. Melodi dibentuk komposer berdasarkan tema yang diinginkan. Tema tersebut biasanya dapat dikaitkan dengan mood tertentu yang ingin ditampilkan. Membuat melodi bukanlah suatu hal yang sederhana, dan memerlukan kreativitas yang tinggi. Pada tesis ini dikaji sebuah sistem pembuat melodi otomatis yang dapat memberikan potongan melodi yang dapat menjadi ide baru bagi komposer musik. Sistem ini diinginkan dapat menerima parameter masukan dari pengguna berupa mood. Secara internal, sistem akan menerjemahkan parameter mood tersebut menjadi parameter lebih rendah yang akan digunakan untuk merangkai melodi. Untuk dapat membuat sistem generator melodi seperti itu, pada tesis ini dikaji tiga hal utama, yaitu bagaimana memodelkan proses pembuatan melodi oleh komposer untuk dapat diimplementasikan menjadi sistem generator melodi, bagaimana proses pembuatan melodi dapat dikendalikan oleh pengguna, serta bagaimana memetakan antara mood dengan parameter generator melodi. Parameter mood yang dapat diterima sistem dipilih dari dua jenis klasifikasi mood yang banyak dipakai, yaitu model Hevner dan Thayer. Klasifikasi Thayer dipilih karena modelnya yang sederhana. Dari kombinasi elemen dasar melodi, pada teori musik didefinisikan beberapa karakteristik dasar melodi, yang kemudian diambil menjadi parameter-parameter dasar yang akan mengendalikan kerja sistem generator melodi. Setelah parameter tersebut terdefinisi, sistem generator melodi kemudian dirancang sesuai dengan parameter yang dapat ditanganinya. Dua pengujian dilaksanakan, masing-masing untuk mengetahui pemetaan antara mood dengan karakteristik dasar melodi, serta untuk memastikan sistem generator melodi berjalan dengan baik. Hasil pengujian menunjukkan bahwa aspek melodi saja tidak cukup untuk menentukan mood. Hasil pengujian terhadap generator melodi menunjukkan bahwa algoritma yang dirancang dapat menghasilkan melodi sesuai dengan masukan parameter dasar. Kata kunci: generator melodi, mood.
iii
ABSTRACT STUDY OF MOOD-BASED AUTOMATIC MELODY GENERATOR By Ali Akbar NIM : 23507042 In general, process of making music started with the creation of melody. Melody is one of the main aspect of music. The composer created the melody based on his preferred theme. Usually the theme is based on a choosen mood. Melody creation isn’t a simple process, because it needs high creativity. This thesis studied about an automatic melody generator that can create melody phrases that can be used as a creative idea by any music composer. The system receives mood as user input. Internally, the system translates the mood parameter into lower-level parameter that will be used in melody creation. To create the melody generator system, this thesis studied about three main problems, how to create a model of melody-making process that can be implemented in an automatic melody generator, how to parameterize the melody generation process, and how to map between mood classification and melody generator parameters. The mood parameter that can be accepted by the system was choosen from two classification models, Hevner’s and Thayer’s. Thayer’s classification model was choosen because it is simple and intuitive. From base element of melody, in music theory some melody characteristics are defined. Those parameters were taken to form the parameters that will drive the melody generator system. Two tests were performed, the first was performed to build the link between mood with the characteristics of melody, and the latter to test whether the melody generator system runs as planned. The first concluded that the melody aspect alone isn’t enough to make the music’s mood. The latter concluded that the system, and also the algorithm contained within it, could produce melodies that conforms with with the user-inputted parameters. Keywords: melody generator, mood.
iv
PEDOMAN PENGGUNAAN TESIS Tesis S2 yang tidak dipublikasikan terdaftar dan tersedia di Perpustakaan Institut Teknologi Bandung, dan terbuka untuk umum dengan ketentuan bahwa hak cipta ada pada pengarang dengan mengikuti aturan HaKI yang berlaku di Institut Teknologi Bandung. Referensi kepustakaan diperkenankan dicatat, tetapi pengutipan atau peringkasan hanya dapat dilakukan seizin pengarang dan harus disertai dengan kebiasaan ilmiah untuk menyebutkan sumbernya. Memperbanyak atau menerbitkan sebagian atau seluruh tesis haruslah seizin Direktur Program Pascasarjana Institut Teknologi Bandung.
v
Untuk Qurrotul ’Uyun
vi
KATA PENGANTAR Puji syukur penulis panjatkan ke hadirat Allah SWT, yang dengan rahmat dan karunia-Nya penulis dapat menyelesaikan Tesis ini. Shalawat serta salam senantiasa tercurah kepada Rasulullah SAW beserta keluarganya yang suci. Selama melaksanakan Tesis ini, penulis mendapat bantuan dan dukungan dari banyak pihak. Untuk itu, penulis ingin memberikan terima kasih kepada: 1. Dr. Ing. Iping Supriana S., dan Dr. Ir. Richard K. W. Mengko, selaku pembimbing II yang banyak membimbing dan mengarahkan selama pada pengerjaan Tesis ini; 2. Dr. dr. Oerip S. Santoso, M.Sc., ketua program studi Magister Informatika, juga penguji pada sidang, yang telah banyak membantu dalam berbagai urusan selama pendidikan magister ini; 3. Ir. Dwi Hendratmo Widyantoro, M.Sc., Ph.D., penguji pada pra sidang, Masayu Leylia Khodra, S.T., M.T., penguji pada sidang, yang banyak mencurahkan waktu untuk memberikan kritik dan saran untuk memantapkan isi dari Tesis ini; 4. Alm. Dr. Ing. Farid Wazdi, selaku dosen wali, yang memberikan dasar cara berfikir serta semangat selama pendidikan magister ini; 5. Pak Ade, Ibu Nur, Pak Rasidi, serta staf Tata Usaha Informatika Institut Teknologi Bandung; 6. Institut Teknologi Bandung atas bantuan Beasiswa Voucher Program Magister yang diterima selama pendidikan magister ini; 7. Ayah, ibu serta keluarga besar penulis, yang mendukung serta mencurahkan kasihnya; 8. Fathimah, Syarif, Nirma, Yus serta teman-teman lain yang turut terlibat dalam pengerjaan Tesis, baik sebagai narasumber maupun hal lainnya; 9. Leslie Sanford (
[email protected]) dan Repast Development Team (http://repast.sourceforge.net), pembuat pustaka yang digunakan dalam pembuatan Tesis ini; 10. Serta semua teman-teman serta berbagai pihak lainnya yang membantu dalam pengerjaan Tesis ini, yang tidak dapat penulis sebutkan satu persatu.
vii
Semoga Allah SWT membalas budi baik semua pihak dengan rahmat-Nya yang meliputi segala sesuatu. Akhir kata, penulis menyadari bahwa Tesis ini bukanlah tanpa kelemahan, untuk itu kritik dan saran sangat diharapkan.
Bandung, Maret 2009
Penulis
viii
DAFTAR ISI Daftar Isi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ix
Daftar Lampiran
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
Daftar Gambar dan Ilustrasi . . . . . . . . . . . . . . . . . . . . . . .
xii
Daftar Tabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xiv
Bab I I.1 I.2 I.3 I.4 I.5 I.6
Pendahuluan . . . . . . . Latar Belakang . . . . . . Rumusan Masalah . . . . . Tujuan . . . . . . . . . . . Batasan Masalah . . . . . Metodologi dan Pendekatan Sistematika Pembahasan .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
I–1 I–1 I–5 I–6 I–6 I–7 I–8
Bab II Tinjauan Pustaka . . . . . . . . II.1 Musik . . . . . . . . . . . . . . . II.2 Mood pada Musik . . . . . . . . . II.2.1 Klasifikasi Hevner . . . . II.2.2 Model Mood Thayer . . . II.3 Melodi Sebagai Elemen Musik . . II.3.1 Bentuk atau Kontur Melodi II.3.2 Frasa dan Motif . . . . . . II.3.3 Counterpoint . . . . . . . II.3.4 Ritme dan Artikulasi . . . II.3.5 Pergerakan Melodi . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
II–1 II–1 II–2 II–3 II–5 II–7 II–8 II–8 II–10 II–10 II–11
Bab III Analisis Permasalahan . . . . . . . . . . . . III.1 Analisis Klasifikasi Mood . . . . . . . . . . . . III.2 Feature Melodi . . . . . . . . . . . . . . . . . III.2.1 Tingkatan Feature . . . . . . . . . . . . III.2.2 Feature Tingkat 1 . . . . . . . . . . . . III.2.3 Feature Tingkat 2 . . . . . . . . . . . . III.3 Analisis Translator Parameter Mood ke Feature III.3.1 Pendekatan Pengenalan Pola . . . . . . III.3.2 Analisis Data Melodi . . . . . . . . . . III.3.3 Analisis Hasil Pengujian . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. III–1 . III–1 . III–4 . III–4 . III–6 . III–7 . III–8 . III–9 . III–10 . III–12
Bab IV IV.1 IV.2 IV.3 IV.4
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. IV–1 . IV–1 . IV–4 . IV–8 . IV–10
Rancangan Generator Melodi . Konteks dan Arsitektur Sistem . . Skema Umum Generator Melodi . Pemilih Nada Secara Probabilistik Analisis Parameter Feature . . . .
ix
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
IV.4.1 Parameter Feature Tingkat 1: IV.4.2 Parameter Feature Tingkat 1: IV.4.3 Parameter Feature Tingkat 2 IV.4.4 Parameter Khusus . . . . . . IV.5 Rancangan Generator Melodi . . . . IV.5.1 Kelas MelodyGenerator . . IV.5.2 Kelas Note . . . . . . . . . . IV.5.3 Kelas Melody . . . . . . . . IV.5.4 Kelas PossibleNote . . . . . IV.5.5 Kelas Parameter . . . . . .
Ranah Pitch . Ranah Waktu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
IV–10 IV–13 IV–14 IV–14 IV–15 IV–16 IV–17 IV–17 IV–17 IV–17
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
V–1 V–1 V–2 V–4 V–5 V–6 V–7 V–7 V–8 V–9 V–10
Bab VI Kesimpulan dan Saran . . . . . . . . . . . . . . . . . . . . . VI.1 Kesimpulan . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI.2 Saran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VI–1 VI–1 VI–2
Bab V Implementasi dan Pengujian . . . . . . V.1 Implementasi Sistem . . . . . . . . . . . V.1.1 Implementasi Algoritma Utama . V.1.2 Implementasi Filter . . . . . . . . V.1.3 Implementasi Antarmuka . . . . . V.2 Pengujian Pemetaan Mood dengan Feature V.2.1 Data Melodi . . . . . . . . . . . . V.2.2 Hasil Pengujian WEKA . . . . . . V.3 Pengujian Generator Melodi . . . . . . . V.3.1 Pemilih Nada Secara Probabilistik V.3.2 Parameter . . . . . . . . . . . . .
Daftar Pustaka
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x
xv
DAFTAR LAMPIRAN Lampiran A Notasi Musik . . . . . . . . . . . . . . . . . . . . . . . .
A–1
Hasil Pengujian Pembangkit Bilangan Acak . . . . . . . .
B–1
Lampiran B
xi
DAFTAR GAMBAR DAN ILUSTRASI Gambar I.1
Gambar I.2 Gambar I.3 Gambar I.4
(a) Melodi lagu “Ah Vous Dirai-je Maman”(b) Varian “Ah Vous Dirai-je Maman” dalam “12 Variations” karya Mozart. . . . . . . . . . . . . . . . . . . . . . . Proses pembuatan melodi oleh seorang komposer . . . Gambaran umum sistem generator melodi . . . . . . . Pendekatan Pengerjaan Tesis . . . . . . . . . . . . . .
Tangga nada diatonis musik barat dan notasinya [QUA08a] . . . . . . . . . . . . . . . . . . . . . . . . Gambar II.2 Model mood yang dirumuskan oleh Thayer [LIU03a] . Gambar II.3 Model mood adaptasi Y.H. Yang [YAN07b] . . . . . . Gambar II.4 (a) Mood Map dari Musicovery/Spodtronic [MUS07] (b) Pilihan mood pada fitur SenseMe Sonny Ericsson Walkman [MOB09]. . . . . . . . . . . . . . . . . . . . Gambar II.5 Bentuk lengkungan pada melodi . . . . . . . . . . . . Gambar II.6 Melodi “Simfoni No.9, Movement 4” karya Beethoven Gambar II.7 Motif “Simfoni No.5, Movement 1” karya Beethoven . Gambar II.8 Potongan dari sebuah karya fugue yang dibuat oleh J.S. Bach . . . . . . . . . . . . . . . . . . . . . . . . . . . Gambar II.9 Gambaran durasi suatu nada-nada yang memiliki artikulasi (a) legato, (b) marcato dan (c) staccato . . . Gambar II.10 Melodi conjunct, disjunct dan gabungan . . . . . . . .
I–3 I–3 I–4 I–7
Gambar II.1
II–3 II–5 II–6
II–6 II–8 II–9 II–9 II–10 II–11 II–11
Gambar III.1 (a) Melodi lagu “Burung Kakaktua” (b) Melodi lagu “Cing Cang Keling”. . . . . . . . . . . . . . . . . . . III–7 Gambar III.2 Proses analisis data melodi dengan pendekatan (a) data melodi berasal dari lagu-lagu yang sudah ada dan (b) data melodi berasal dari pembangkitan oleh generator melodi . . . . . . . . . . . . . . . . . . . . . . . . . . III–11 Gambar IV.1 Pembagian jenis alat bantu berdasarkan tingkat intervensi dan letaknya dalam proses pembuatan musik Gambar IV.2 Arsitektur sistem generator melodi berbasis mood. . . . Gambar IV.3 Gambaran proses pemilihan nada . . . . . . . . . . . . Gambar IV.4 Nilai awal probabilitas (a), faktor pengali yang dihasilkan oleh filter (b), serta nilai akhir probabilitas setelah dikalikan dengan faktor pengali (c). Sumbu tegak pada gambar menunjukkan tingkat nilai probabilitas atau faktor pengali, setiap blok mewakili nilai probabilitas / faktor pengali untuk setiap kemungkinan not. . . . . . . . . . . . . . . . . . . . . Gambar IV.5 Posisi faktor pengali filter pitch dalam pengubahan nilai probabilitas dalam matriks. . . . . . . . . . . . . . . .
xii
IV–1 IV–3 IV–5
IV–7 IV–8
Gambar IV.6 Posisi faktor pengali filter pitch dalam pengubahan nilai probabilitas dalam matriks. . . . . . . . . . . . . . . . IV–8 Gambar IV.7 Distribusi probabilitas nilai (a) uniform (b) sebaran nilai tertentu (non-uniform). . . . . . . . . . . . . . . . . . IV–9 Gambar IV.8 Proses untuk menghasilkan nilai acak dengan distribusi tertentu dari nilai acak dengan distribusi uniform . . . . IV–9 Gambar IV.9 Faktor pengali untuk tangga nada mayor (a), minor harmonik (b), minor melodik naik (c) dan turun (d), serta kromatik (e), dengan perbandingan antara nilai faktor pengali besar dengan kecil adalah 1 : psisipan . . . IV–12 Gambar IV.10 Faktor pengali parameter jangkauan pitch. . . . . . . . IV–13 Gambar IV.11 Diagram kelas generator melodi . . . . . . . . . . . . IV–15 Gambar V.1 Gambar V.2
Gambar V.3
Gambar V.4
Rancangan antarmuka utama sistem GMBM . . . . . . Histogram hasil pengujian untuk tangga nada mayor (a), harmonic minor (b), melodic minor (c), serta kromatik (e). . . . . . . . . . . . . . . . . . . . . . . . Hasil pengujian parameter durasi, dengan rata-rata not 1/4 dan variansi 1 (a), rata-rata not 1/4 dan variansi 2 (b), dan rata-rata not 1/2 dengan variansi 1 (c). . . . . . Hasil pengujian parameter interval, dengan rata-rata interval 1 dan variansi 1 (a), rata-rata interval 2 dan variansi 2 (b), rata-rata interval 4 dengan variansi 1 (c), dan rata-rata interval 8 dengan variansi 8. . . . . . . .
xiii
V–6
V–12
V–13
V–15
DAFTAR TABEL Tabel II.1 Tabel II.2 Tabel II.3
Istilah-istilah mengenai karakteristik/properti suatu nada [JON74] . . . . . . . . . . . . . . . . . . . . . . . . . . Klasifikasi mood Farnsworth [LI03] . . . . . . . . . . . . Cluster mood yang digunakan pada MIREX 2007 [MIR07]
II–1 II–4 II–5
Tabel III.1 Tingkat pemenuhan tiga kriteria pemilihan model mood oleh model mood Hevner dan Thayer. . . . . . . . . . . . III–3 Tabel III.2 Rumusan pembagian mood dari Gambar II.3 . . . . . . . III–4 Tabel III.3 Daftar feature . . . . . . . . . . . . . . . . . . . . . . . III–13 Tabel IV.1 Tabel IV.2 Tabel IV.3 Tabel IV.4 Tabel IV.5 Tabel IV.6 Tabel IV.7
Matriks probabilitas kemungkinan not. . . . Nada-nada pada tangga nada. . . . . . . . . Operasi pada kelas MelodyGenerator . . . . Atribut pada kelas Note . . . . . . . . . . . Atribut dan operasi pada kelas Melody . . . Atribut dan operasi pada kelas PossibleNote Operasi pada kelas Parameter . . . . . . . .
Tabel V.1 Tabel V.2
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
Batasan nilai pitch serta durasi yang dapat ditangani sistem Data melodi yang digunakan untuk pengujian. Kolom A dan V masing-masing mewakili dimensi mood arousal dan valence. Tingkat arousal dapat tinggi (+) maupun rendah (-), dan valence dapat bernilai positif (+) maupun negatif (-). . . . . . . . . . . . . . . . . . . . . . . . . . Tabel V.3 Hasil pengujian pemetaan mood dengan feature melodi dengan validasi ke data pelatihan. . . . . . . . . . . . . . Tabel V.4 Hasil pengujian pemetaan mood dengan feature melodi dengan validasi crossfolding. . . . . . . . . . . . . . . . Tabel V.5 Hasil dari pengujian pembangkit bilangan acak probabilistik berupa rata-rata total nilai kesalahan untuk setiap sebaran probabilitas P . . . . . . . . . . . . . Tabel V.6 Hasil pengujian parameter tangga nada . . . . . . . . . . Tabel V.7 Hasil pengujian parameter jangkauan nada . . . . . . . . Tabel V.8 Hasil pengujian parameter nada awal dan akhir . . . . . . Tabel V.9 Hasil pengujian parameter jangkauan nada . . . . . . . . Tabel V.10 Hasil pengujian parameter IntervalBalance . . . . . . . .
xiv
IV–8 IV–11 IV–16 IV–17 IV–17 IV–18 IV–18 V–3
V–7 V–8 V–8
V–10 V–11 V–11 V–11 V–13 V–14