SZÉN ARÁNYOK A VILLAMOSENERGIA TERMELÉSBEN, A KLÍMA-OKOK VALÓDISÁGA Prof. Em. Dr. hc. mult. Dr. Ing. Kovács Ferenc1, Kováts Péter2 1 az MTA rendes tagja, 2okl. környezetmérnök MTA Műszaki Földtudományi Kutatócsoport Az utóbbi időben bizonyos politikai-társadalmi-kormányzati körök a földi klíma változását az antropogén (emberi, ipari) származású széndioxid (CO2) hatásaként tekintik. A tanulmány első részében jelentős tudományos érveket sorakoztatunk fel ezen nézet, állítás cáfolataként. Majd a villamosenergia termelésben meglévő primér energiahordozó arányokat elemezve igazoljuk, hogy a világon és azon belül bizonyos vezető országokban a szénféleségek milyen jelentős arányt képviselnek. Továbbá részletesen bemutatjuk azt is, hogy a jövő (2020, 2035, 2050) villamosenergia ellátásában milyen arányokat prognosztizálnak. Kitérve arra, hogy Magyarország – jelentős, gazdaságosan kitermelhető szénvagyon ellenére – indokolatlanul alacsony (4%) szénarányt tervez. *** Az energiaellátás kérdései tárgyalása során az utóbb 2-3 évtizedben viszonylag széles körben, több európai országban, illetőleg az Európai Unió hivatalos állásfoglalásaiban is szinte determináló tényezőként jelenik meg az üvegházhatás, a globális felmelegedés, a légkör dekarbonizációjának szerepe. Széles körben publikálják, hogy a CO2 légköri koncentrációja döntő tényező a földi klíma alakulásában. Nyilatkozatok, tanulmányok arról szólnak, hogy az antropogén (emberi-ipari) származású széndioxid döntő módon a fosszilis energiahordozók, elsősorban a szén, továbbá a szénhidrogének felhasználása során keletkezik, a klímavédelem elsődleges feladata tehát ezen energiahordozók használatának mérséklése, minimális szintre csökkentése. A „küzdelem” alapvető iránya a szénfelhasználás csökkentése, nyilvánvalóan „önző” módon azért is, mivel a kőolaj a motorizáció elengedhetetlen „tápláléka”, a földgáz sokirányú felhasználása (kommunális szektor, vegyipar, stb.) pedig ma még semmivel sem helyettesíthető. Tanulmányunk első részében – elsősorban irodalmi hivatkozásokkal – arra mutatunk rá, hogy a földi klíma alakulása illetőleg a globális felmelegedéssel való divatos riogatás, a szénfelhasználás minden rossz okaként való megjelölése, ugyancsak vitatott téma, a CO2 elleni „küzdelem” racionális módon nem igazolja a szénhasználat negligálását. Már csak azért sem, mivel a világ energia ellátásában a szén ellátási és gazdaságossági szempontok alapján még hosszú évtizedekig nem nélkülözhető. Már a XIX. század végén a tudósok egy csoportja (Svante August Arrhenius, John Tyndall, Lecher és Pernter azt vizsgálta, hogy a földi hőmérséklet alakulásában milyen szerepe van a légköri gázok abszorpciójának, megállapítva, hogy az üvegházhatás alakulásában a vízgőz és a CO2 közel azonos szerepet kap, megemlítve a metán (CH4) szerepét, valamint az SO2 hűtőhatását is. A 4,5 milliárd éves földtörténet utóbbi 800 ezer évében kilenc „jégkorszak” volt, lehűlés és utána 4-5 oC-os felmelegedés, esetenként 10-12 ezer éves időszak-
okban 10-14 oC-os melegedéssel. Mindez akkor, amikor még ember nem élt a Földön, és fosszilis energiahordozókat sem tüzeltek. Az utóbbi 10-12 ezer éves időszakban is 3-4 oC-os hőmérsékletváltozással három-négy „kis jégkorszak” volt, amikor ember ugyan már élt, de még nem épített szénerőműveket. Alapvető megállapítása Arrhéniusnak és más tudósoknak, hogy a Föld és a légkör termikus egyensúlyban van, a Föld annyi hőt veszít az űrbe és a légkörbe jutó sugárzás útján, mint amennyit a Nap sugárzásából felvesz. A földet érő napsugár mennyiségét és felszíni eloszlását a Föld Naphoz viszonyított pályájának változása, a Föld-pálya paramétereinek periodikus alakulása döntő módon meghatározzák. (Milutin Milankovics, De Marchi, Bacsák György [1]). Jeles „földtudósok” szerint a globális felmelegedést és lehűlést, a jégtakaró terjedését vagy csökkenését elsősorban meghatározó tényezők: a Földpálya excentricitásának változása, a Föld tengelyszögének változása és forgástengelyének (precesszió) mozgása. Ezek a tényezők biztosan ma is hatnak, ember által aligha befolyásolhatók. Az antropogén (ember, ipari) széndioxid „mindenért” kárhoztatása Mészáros Ernő kutatási eredményei alapján sem indokolt, mivel a közepes fejlettségű országokban (régiókban) az antropogén CO2 keletkezés csak a teljes széndioxid felszabadulás 14-16 %-a. [2] Akkor miért csak „ez ellen harcolunk”? A Föld és légköre hő-egyensúly kérdéseit elemezve Reményi Károly és Gróf Gyula alapvető megállapítása, hogy a Föld a világűrben termikus egyensúlyban van, a Napból kapott energiát teljes egészében visszasugározza a világűrbe. A szerzők részletes számításai szerint – egyensúlyi hőmérséklet, Stefan- Boltzmann, Beer törvény – a CO2-koncentráció 350 ppm-ről 500 ppm-re való növekedése hatására maximum 1o K hőmérséklet emelkedés várható. A számítás szerint a széndioxid tartalom kétszeresére (700 ppm) növekedése száz év alatt 1-1,5 oK hőmérséklet emelkedést okozhat. [3] Részletes fizikai-hőtani levezetések nélkül Zágoni Miklós hasonló megállapításokat ad, nevezetesen [4]: a részleges felhőborítással és elegendő vízpára tartalommal rendelkező Föld-típusú légkörök energetikailag maximált (kibocsátásokkal nem növelhető, telített) üvegházhatást tartanak fenn; a légkör üvegházgáz-piaca nem „hiánygazdaság”, ha a légkör emelni tudná a felszín hőmérsékletét, a mi kibocsátásaink előtt már rég meg tette volna, mivel neki ott van végtelen mennyiségben a legfontosabb üvegházhatású gáz, a vízpára az óceánokban; az energetikai egyensúlyi feltételek hatékony visszaszabályozást mutatnak; amíg a bejövő Nap-energia mennyisége változatlan, addig a kibocsátásoktól csak kismértékű fluktuációk lehetnek, hosszú távú trend nem. Általános érvényű, tömör megfogalmazást mond a kérdésről Láng István: Klímaváltozás mindig volt, ma is van és a jövőben is lesz. Azt alapvetően természeti tényezők okozzák, mint például a Föld tengelymozgásának ingadozása, a Nap és a Föld közötti hatások változása. [5] A szakmai-tudományos kutatások publikált eredményeiből fenti kiragadott példák mellett vezető szakemberek, jeles politikusok megnyilatkozásai ugyancsak alapos kétségeket támasztanak azzal kapcsolatban, hogy a Föld klímája alakulásában (a globális felmelegedés) egyedüli, döntő szerepe lenne az ember-ipar által használt fosszilis tüzelőanyagok használatának. Ezek közül most Vaclav Klaus-ra hivatkozom [6], továbbá Ban Ki Mun ENSz főtitkárnak a BBC-részére adott nyilat-
kozatára, amelyben részletesen kifejti nézeteit az irányban, hogy az IPCC jelentések tudományos alapjai, a nyilvánosságra nem hozott adatok alapján tett megállapításai, különösen prognózisai súlyos kifogások alá esnek, bizottsági felülvizsgálatot helyez kilátásba az IPCC jelentéskészítési és döntéshozatali gyakorlatának felülvizsgálatára. [7] A politikusok, állami vezetők a klíma-kérdésben időszakonként (Kyoto, Rio, Koppenhága) hangos sajtóval határozatokat hoznak, általában tudományosan indokolhatatlan, irreális, technikai-gazdasági vonatkozásban végre nem hajtható (és végre nem hajtott) célokat kitűzve. (Majd ezeket utánozva az EU és egyes országok határozatokat) Majd ezek végrehajthatatlanságával szembesülve a világ vezető ipari-gazdasági országai (USA, Kanada, Oroszország, Japán) csendesen fellazítják a célokat, kitolják a határidőket, más nagy kibocsátók, (Kína, India, Indonézia, Ausztrália) nem is csatlakoznak a „vállalásokhoz”. A tanulmány első részében arról szóltunk, hogy egyes nézetek szerint a klímaváltozás jelentős részben a fosszilis energiahordozók (szén, kőolaj, földgáz) használata során felszabaduló széndioxid (CO2) légkörbe kerülésének az okozója. Világszerte törekvések vannak ezen energiahordozók – elsősorban a szénfelhasználás – helyettesítésére, ami a gyakorlatban az un. megújuló energiaforrások arányának növelésére irányul. A megújuló, bizonyos megjelölés szerint „zöld” energiahordozók (napsugárzás, szél-, vízenergia, bioanyagok, geotermikus energia) elméletileg valóban csökkent széndioxid kibocsátást adnak, a gazdasági (költség) vonatkozásában azonban jelentősen magasabb költséggel hasznosíthatók, mint például a szénféleségek, illetőleg az atomalapú villamos energia. Szén
Földgáz
Kőolaj
Atomenergia
Megújuló energia
100% 90%
Megújuló energia 14%
80%
Atomenergia 6%
70%
Kőolaj 18%
Atomenergia 14% Kőolaj 5%
60% 50%
Megújuló energia 20%
Földgáz 32%
Megújuló energia 18%
Megújuló energia 17%
Atomenergia 12%
Atomenergia 11% Kőolaj 4%
Kőolaj 5%
Földgáz 28%
Földgáz 23%
Földgáz 27%
Szén 38%
Szén 38%
Szén 40%
2010
2020
2030
40% 30% 20% 10%
Szén 30%
0% 2003
4,7%
4,2%
1. ábra A világ villamosenergia előállítása (milliárd MWh)
4,1%
Megítélésünk szerint azonban a villamosenergia termelésben még hosszú évtizedeken keresztül a szén, az atom, ill. a gázfelhasználás lehet a meghatározó. A megújuló energiák használata különböző okok (technikai, költség) miatt a legtöbb országban, illetőleg „világátlagban” sem fogja meghaladni a 10-20%-ot. Egyes országokban a helyi adottságoktól függően (pl. víz) természetesen eltérő arányok is lehetségesek. A politikai-társadalmi megítélés az egyes országokban természetesen az energia hordozó fajták vonatkozásában eltérő, mondhatni szélsőséges lehet (pl. a cunami után Japánban, társadalmi tiltakozás Németországban az atomerőművek ellen), az energiaellátás biztosításának kényszere azonban gyakran felülírja a szubjektív, avagy gazdasági szempontokat. Nézzük ezek után, hogy a világ ill. egyes országok adatai alapján, hogyan áll, ill. a prognózisok szerint várhatólag hogyan alakul az egyes primér energiahordozók aránya a villamosenergia termelésében. Először a 2030-ig szóló globális prognózis adatokat mutatjuk be. [12] Az 1. ábra a 2003-as tényadatok alapján a 2006-ban kiadott anyag szerint a 2010, 2020 és 2030-ra szóló villamosenergia termelés prognózist mutatja. A teljes villamosenergia termelésben a 2003-as tényadathoz képest 2010-ig évi 4,7%-os átlagos emelkedéssel 34%-os, 2020-ig évi 4,2%-os átlagos emelkedéssel 79%-os és 2030-ig évi 4,1%os átlagos emelkedéssel 112%-os összes növekedést prognosztizál. Két primér energiahordozót külön kiemelve látható, hogy a 2003-as 30%-os szén-arányt 2030ra 40%-osnak valószínűsíti. A 2010-re prognosztizált 20%-os összes megújuló arány valójában 24% lett (2. ábra), ugyanakkor „talán ennek alapján” szól a 2010-es évi prognózis 2035-re 25%-os megújuló arányról, benne 13% vízenergiával (3. ábra). Csupán érdekesség, avagy véletlen, hogy a 2006. évi prognózis szerint a 2010. évi összes villamosenergia 19,9 milliárd MWh lehet (1. ábra), ami gyakorlatilag azonos a 20 · 1012 kWh irodalomban publikált tényleges értékkel. A világ, az Amerikai Egyesült Államok és Németország adatai mellett Magyarország adatait mutatjuk be. Nem mintha az ország gazdasági potenciálja az előző országok adataival összevethető lenne, hanem csupán kirívó példaként. Magyarország ugyanis a szénkészletek (t/fő, ipari szénvagyon és a termelési aránya, 300500 éves ellátottság) vonatkozásában a világátlagnál sokkal kedvezőbb helyzetben van, a jövőben mégis alig tervez széntermelést, ugyanakkor minimális hazai földgázvagyon mellett a villamosenergia termelésben a világátlagot jelentősen meghaladva, a villamosenergia termelésben import gázzal 40%-os gázaránnyal számol. A magyarországi prognózis értékek indokoltsága csupán az országgyűlési határozatban [8] foglaltak alapján is vitatható. A határozat elvi bevezető részében a 2010. évi 14%-os szénfelhasználási arány távlati (2030) szintentartását jelöli meg célnak, ugyanakkor a kidolgozott öt változatban négy esetben a szén nulla (0) százalékkal szerepel, csupán egy változat szerepel a villamosenergia termelésben 5%-os szénaránnyal.
Szén 100% 90% 80% 70%
Egyéb össz. 24% (Víz 16%)
Atom
Egyéb össz.
Egyéb össz. 13% (Víz 6%)
Import(+) Export(-)
Egyéb össz. 21% (Megújuló 16%)
Import +13% Egyéb össz. 7%
Atom 20% Atom 14%
60% 50%
Földgáz
Atom 23% Atom 37% Földgáz 20%
Földgáz 21%
Földgáz 13%
40% 30% 20%
Földgáz 29% Szén 41%
Szén 47%
Szén 43%
10%
Szén 14%
0% Világ 100% = 20x10^12 kWh/év
USA 100% = 3,7x10^12 kWh/év
Németország 100% = 0,62x10^12 kWh/év
Magyarország 100% = 140 PJ/év
2. ábra Az egyes energiahordozó fajták villamosenergia-termelésben prognosztizált arányai (2030, 2035, 2050 év) Részleteke menve a 2. ábra a világ [9], az Amerikai Egyesült Államok [10], Németország [11] és a magyar [8] villamosenergia termelés primér energia arányát mutatja. A világ, az USA és Németország primér energia felhasználás arányai közel azonosak, szén 41-47%, földgáz 13-21%, atom 14-23%, megújuló 13-21%, a világon a víz arány 16%. A magyar összetételi arányokban kiugróan alacsony a szén (a jelentős lignitvagyon ellenére), ugyanakkor kiugróan magas az import földgáz és az atom. A 3. ábra a távlati prognózis adatokat szemlélteti (Világ 2035, USA 2050, Németország 2020 után, Magyarország 2030). A szén aránya a nagy gazdasági potenciáloknál 43-38-50%, évtizedek 2020-2050 múltán is 40%-os aránnyal számolnak, Magyarország – a szerző véleménye szerint – érthetetlen módon 5%-al. A földgáz aránya ugyanakkor a nagy gázkészletek alapján a világban 21%, az USAban most még – a gázpala telepek termelésének felfutása nélkül – 6%, Magyarországon import gázra alapozva 39-41-52%! Atom alapú vilamosenergiával a világ 10%-al, az USA 26%-al számol, Magyarország uránérc bányászat nélkül import fűtőelemmel 27-54-54%-al! Németország politikai-kormányzati nyilatkozata most (aktuális megfontolás alapján) atomerővel nem. Ki tudja mit hoz majd a kényszer, a német szénbányászat készen áll az atom pótlására.
Szén
100% 80%
Földgáz
Atom
Egyéb össz.
Import(+) Export(-) Import +5%
Egyéb össz. Egyéb össz 25% (Víz 13%)
Egyéb össz. 30% (Víz 7%) (Szél 17%)
Egyéb össz. 30% (Víz 6%) (Szél 19%)
Atom
Egyéb össz. 16%
Egyéb össz. 16% Egyéb össz. 16%
?
Atom 11%
60% Földgáz 21%
?
Atom 34%
40%
Atom 26%
Atom 27%
Földgáz
?
Atom 54%
Atom 54%
Földgáz 6% Földgáz 11%
20%
Szén ≈50%
Szén 43%
Szén 38%
Földgáz 52% Földgáz 41%
Földgáz 39%
Szén 5% Export -14%
Szén 0%
Magyarország (2030) Anti atom-zöld 100% = 200 PJ/év
Szén 0% Export -11%
Magyarország (2030) Atom-szén-zöld 100% = 230 PJ/év
Németország (2020 után)
USA (2050) 100% = 5,0x10^12 kWh/év
USA (2030) 100% = 4,5x10^12 kWh/év
-20%
Világ (2035) 100% = 39x10^12 kWh/év
0%
Magyarország (2030) Atom-zöld 100% = 225 PJ/év
Szén 25%
3. ábra Az egyes energiahordozó fajták villamosenergia-termelésben prognosztizált arányai (2030, 2035, 2050 év) A 3. ábra szerinti prognózis adatok azt mutatják, hogy a világ (USA, Németország) villamosenergia termelésben hosszabb távra is 40-50%-os szén aránnyal számol. Ezentúl várhatólag csökken a földgáz és az atom szerepe, ugyanakkor a növekvő megújuló (20-30%) arányon belül a szél és a víz, „édes testvérként” együtt normális megoldásként optimális megoldásként nagyobb szerephez juthat a távoli jövőben. A fentebb bemutatott adatok elemzése alapján érdemes megemlíteni, hogy a 2008-2010 években az USA még a világtermelés 17,5%-ával szerepelt, míg a prognózisok szerint 2030-2035-ben „már csak” 12%-ával. A fentebb bemutatott „átlagos/világ” adatok mellett egészen egyedi jellemzőkkel rendelkező országok is vannak. Pl. Lengyelországban évtizedek óta a kőszén + lignit aránya 92-93% volt a villamosenergia termelésben, ugyanakkor a 2020-as 156,1 tWh prognózisban a szén aránya 62,5%, 2030-ra pedig a 201,8 tWh termelésben az 56,5%-os kőszén + lignit arány mellett 15,6% nukleáris és 19,3% megújuló energia-arány szerepel. A fentebb (3. ábra) bemutatott prognózis adatok alapján a szerző véleménye az, hogy a magyarországi igen jelentős, kedvező adottsági lignit vagyona ellenére az ország indokolatlanul alacsony szén-aránnyal számol, ugyanakkor a magas gáz(import), illetőleg uránérc termelés hiányában ugyancsak import fűtőelemre alapozó atom-arány igen kedvezőtlen helyzetet teremt az ország energia-függősége vonatkozásában.
Irodalom [1] [2]
[3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
[13] [14]
Kovács Ferenc: Meddig és mit bányásszunk? In: Mindentudás Egyeteme 3. kötet pp. 69-95. Mészáros Ernő: Az üvegházhatású gázok légköri körforgalma Magyarország fölött. In: Ezredforduló. Stratégiai tanulmányok a Magyar Tudományos Akadémián. 2003/1. pp. 14-19. Reményi Károly – Gróf Gyula: Megjegyzések a globális felmelegedéshez. In: Magyar Tudomány 169. (2008) évf. 4. sz. pp. 458-461. Zágoni Miklós: Új tudományos fejlemények és következményeik a beruházási, alkalmazkodási és pénzügyi politikára. (Kézirat, előadás) Láng István: A vidék és a klímaváltozás. In: Párbeszéd a vidékért. II. évf. 1. sz. pp. 23-24. Szarka László: Kellemetlen igazság. In: Természet Világa. 138. (2007) évf. 4. sz. pp. 149. (Vaclav Klaus: Modrá, nikoli zelena planetu.) Hargitai Miklós: IPCC reform: a klímaőrök körmére néznek. In: Népszabadság 2010. március 12. pp. 14. Nemzeti Energiastratégia 2030 (2011) In. 77/2011 (X.14) Országgyűlési Határozat. (Magyar Közlöny 2011. évi 119. szám) Fabian, Jan (2011): Steinkohle – lokalu Anwirkungen eines globalen Aufschwungs. 12. November, 2011. clausthal – Zellerfeld Karmis, Michael (2010): Carbon capture and Storege (CCS) – The Road to Deployment. Annual General Meeting Society of Mining Professors, Tallin, Estonia, June. 2010. Karcher, Cristian (2012): RWE The energy to lead. Bergheim 18.04.2012. Department of Energy/Energy Information Administration, Washington 2006.