Sustainable Energy Technology Theo van der Meer
februari 2015
Wat is eigenlijk ons probleem met energie?
populatie / miljoen
Historische bevolkingsgroei
jaar
Gegevens over de wereldbevolking http://www.worldometers.info/nl/ Een mens per dag heeft nodig aan voedsel:
8.000 kJ
Een Europeaan gebruikt hiernaast per dag: 640.000 kJ (elektriciteit, aardgas, benzine) Een Amerikaan: 900.000 kJ Gemiddelde wereldbewoner: 480.000 kJ
Benodigd vermogen per persoon: ongeveer 4 kW Toename van de wereldbevolking: 225.000 mensen per dag. Toename aan vermogen: 0,9 GW per dag (2 e-centrales)
Twee uitdagingen
Binnen Nederland: In 2015: 20% duurzame energie Wereldwijd: Toename van duurzame energie moet sneller gaan dan de extra energie nodig voor de bevolkingstoename, willen we de toename van CO2-emissies tot staan brengen.
Kunnen we ook zonder fossiele brandstoffen?
Alle energie uit zon, aarde en maan.
Zon: 2.700 Zettajoule per jaar (1021 J/jaar) wordt door het aardoppervlak geabsorbeerd. Aarde: geothermische energie productie: 1 ZJ/jaar Maan: getijdenenergie: 0,1 ZJ/jaar Kernfusie?? Huidige wereldverbruik is 0,5 ZJ/jaar, gelijk aan gemiddeld verbruik van 16 TW (16 1012 W) Bron: Kleine energieatlas, VROM
Kunnen we ook zonder fossiele brandstoffen?
Afgeleiden van energie uit zon:.
windenergie 20 ZJ/jaar golfenergie 0,2 Zj/jaar biomassa 5 ZJ/jaar waterkracht 0,1 ZJ/jaar Osmose 0,05 ZJ/jaar
Bron: Kleine energieatlas, VROM
Kunnen we ook zonder fossiele brandstoffen?
100% zon in 2050 Gebied van 1000 X 1000 km. In de Sahara!
Thermische zonnecentrales
Planta Solar 10 and 20 solar power towers Totaal 31 MW 3 Maal zo duur als een kolencentrale Solar Energy Generating systems in Calafornia 9 zonnecentrales, totaal vermogen 350 MW 936.384 spiegels, oppervlakte van 6,5 km2 Totaal geinstalleerd vermogen: 2,5 GW
Thermische zonnecentrales
Desertec 12 companies involved: Munich Re, TREC, Deutsche Bank, Siemens, ABB, E.ON, RWE, Abengoa Solar, Cevital, HSH Nordbank, M & W Zander Holding, MAN Solar Millennium, and Schott Solar.
15% of Europes electicity needs
Master Sustainable Energy Technology
TU Eindhoven officially started in June 2005 with an approved master program. In April 2006 upgraded to a national master program (TUE/TUDelft/UT) Combination between technical (75%) and social sciences (25%), contrary to Utrecht with 25-75% Comparable programs in Oldenburg, Stockholm, Leeds en Reading
program objectives Domain-specific requirements Broad:
Have disciplinary theoretical and technical knowledge (broad) able to evaluate conventional and sustainable energy systems in integrated electrical system context able to evaluate sustainable energy systems in the societal context able to design energy systems
able to analyze and understand the socio- technical nature of system innovations Deep: expert in at least one sub-area
Consequences of broadness Large differences in knowledge of the students (BW, CT, EL, TN, AT) Students will find one course too simple, and the next more difficult Teachers have to deal with differences in background Positive is that you learn how to deal with this: find quickly the necessary missing ingredients cooperate with students with other background
Broadness is not easy, BUT WE WANT IT.
The curriculum
Energy from biomass Solar energy
Wind energy Electrical power engineering and system integration Hydrogen technology
System innovation and strategic niche management
24 EC
The curriculum
introductory course: Sustainable energy technologies
courses to reach adequate basic levels in mathematics, physics, chemistry and design engineering: Transport phenomena, Energy systems, Chemical reactor engineering
courses to reach adequate basic levels in social sciences: Energy and economy
The curriculum
system integration projects (6+9 EC): ‘System integration projects 1 and 2’ (Can be replaced by an Internship) elective courses in preparation for the graduation project (15 EC): graduation project (45 EC): In one of the following topics: Solar Energy, Wind energy, Biomass, Hydrogen, Intelligent electricity networks and Transition policy. Choice for research group/professor has to be made in the first quarter of the first year.
The curriculum
Internship: Abengoa, Grolsch, NEM, Stork, Tri-O-Gen, Twence, Hygear, GE-wind, Nicaragua, Cambodja, Indonesie, Zuid Afrika, ECN, TNO, EDON, ENECO, Energie Delfland, EnergieNed, EPON, GASTEC, KEMA, Shell, Stork
3TU master
Eindhoven
Delft
Twente
Biomass
small scale conversion units
large scale power generation
thermal and chemical conversion processes for the use of biomass as an energy carrier and chemicals
Solar energy
production of amorphous silicon and polymer solar cells
nanostructured 3D solar cells
integration of solar energy into products
3TU master
Eindhoven
Delft
Twente
Wind energy
fluid structure interaction
mainly concentrated in Delft
computational fluid dynamics of wind turbines
Hydrogen technology
small scale production of hydrogen
production using sustainable energy and storage of hydrogen
large scale production of hydrogen
Research groups on: • Thermal conversion of biomass (Brem (CTW), Kersten (TNW), Lefferts (TNW)), Van der Meer (CTW)
• Pyrolysis/gasification/CO2 capture/combustion of biofuels
Research groups on: • Membrane-based energy production (Nijmeyer (TNW))
• water treatment (purification), bioreactors, • fuel cells • Blue energy
Research groups on: • Use of sustainable energy in consumer products and in buildings (De Wulf (CTW), Reinders (CTW)), • New concepts for PV modules • Simulation of irradiance and PV systems • Product integrated PV
Research groups on: • Water footprint of biomass (Hoekstra, Gerbens (CTW))
Global weighted average green (precipitation), blue (ground and surface water) and grey (water related to pollution) water footprints of ethanol for ten crops
Research groups on: • Design and production with light weight and smart materials (Akkerman, ME) • Composite integrated PV • Composite materials for wind turbine blades
• Structural health monitoring of wind turbine systems (sensors, structural behavior, material degredation) • Self healing materials for off shore wind turbines
Research groups on: • Engineering fluid dynamics in wind energy (Hoeijmakers, ME)
• Rotating flow machines • Aero-acoustics • Fluid structure interaction
and aero-elasticity
Research groups on: Materials and systems (Ter Brake, Dhalhe (TNW))
• Superconducting magnets for fusion reactors • Superconducting generators for wind turbines • Magnetic storage of electical power (friction-less flywheels) • Energy recovery in LNG re-gasification • Thermal properties of nanofluids
Research groups on: Production of solar cells with laser techniques (Huis in ‘t Veld, ME)
Drilling, texturing, doping, grooving, cutting, removal of oxides.
Research groups on: • Smart grids (Smit (EWI), Embedded Systems)
Research groups on: Micro-CHP and heat pumps (Van der Meer (CTW), Ter Brake (TNW)) • Heat engines • New heat exchange material • Heat storage systems (long and short term)
Research groups on: Advanced materials (several groups in MESA+) • Semiconductor materials with catalytic functionality
• Solar fuels (conversion of solar energy into chemicals) • Micro-reactor technology for production of photovoltaic materials
Research groups on: Sustainable energy and society (Arentsen, CSTM)
• Business and project management • Policy and management • Science technology studies
And what when you have finished your study
KEMA Dutch Space TUE UT Onderzoeksinstuut in Australie BAM Saxion Mastervolt (inverters voor zonne-energie) ECN IF Technologies
Does the market need SET-masters?
A market inventory says: YES To reach our ambitious goals: YES In the midst of our economic crisis: YES When the crisis is over: YES