Sustainable Energy Technology Theo van der Meer
februari 2015
Contents Introductie Energiebehoefte World Energy Outlook 2013 van de International Energy Agency Het meest groene energie scenario Kunnen we zonder fossiele brandstoffen? Het programma van de master SET SET gerelateerd onderzoek in UT onderzoeksgroepen
Wat is eigenlijk ons probleem met energie?
populatie / miljoen
Historische bevolkingsgroei
jaar
Gegevens over de wereldbevolking http://www.worldometers.info/nl/ Een mens per dag heeft nodig aan voedsel:
8.000 kJ
Een Europeaan gebruikt hiernaast per dag: 640.000 kJ (elektriciteit, aardgas, benzine) Een Amerikaan: 900.000 kJ De armsten op aarde: 32.000 kJ Gemiddelde wereldbewoner: 480.000 kJ
Benodigd vermogen per persoon: ongeveer 4 kW Toename van de wereldbevolking: 225.000 mensen per dag. Toename aan vermogen: 0,9 GW per dag (2 e-centrales)
Een indruk van ons energiegebruik: 80 Miljoen barrels olie per dag
De meest recente voorspellingen van trends
Voor stabilisatie van de CO2 emissie in 2050 is nodig: Besparingen Alle auto’s: Verdubbel het rendement
Evolutie Kernenergie: Verdrievoudig het aantal kerncentrales
Revolutie Zonnecellen: 700 x meer capaciteit
Windenergie: 50 x meer windenergie Alle woonhuizen en bedrijven: Gebruik de beste voorzieningen
‘Schoon fossiel’: Berg de CO2 van 800 fossiel gestookte centrales op Bio-energie: 50 x meer ethanolproductie
Bron: Carbon Mitigation Initiative; www.princeton.edu
Energie scenario’s
International Energy Agency ACTS scenario: De CO2 concentratie in 2050 terug naar het niveau van 2005 Blue scenario: De CO2 concentratie in 2050 50% lager dan in 2005
Energiescenario’s van het International Energy Agency
Bron: Kleine energieatlas, VROM
Wat moeten we jaarlijks doen voor het Blue Map scenario?
35 kolencentrales met CO2 opslag (500 MW)
17,5 GW
20 gasgestookte centrales met CO2 opslag (500 MW)
10 GW
32 Kerncentrales (1000 MW)
32 GW
1/5 van de Canadese waterkrachtcentrales
18 GW
100 Biomassacentrales (50 MW)
5 GW
14000 windmolens op land (4MW)
52 GW
3750 windmolens op zee (4MW)
15 GW
130 geothermische centrales (100 MW)
13 GW
215 miljoen m2 zonnecollectoren
30 GW
80 thermische zonnecentrales (250 MW)
20 GW
Totaal te installeren vermogen per jaar
212,5 GW
Bron: IEA Energy Technology Perspectives
Kunnen we ook zonder fossiele brandstoffen?
Alle energie uit zon, aarde en maan. Zon: 2.700 Zettajoule per jaar (1021 J/jaar) wordt door het aardoppervlak geabsorbeerd. Aarde: geothermische energie productie: 1 ZJ/jaar Maan: getijdenenergie: 0,1 ZJ/jaar Kernfusie?? Huidige wereldverbruik is 0,5 ZJ/jaar, gelijk aan gemiddeld verbruik van 16 TW (16 1012 W) Bron: Kleine energieatlas, VROM
Kunnen we ook zonder fossiele brandstoffen?
Afgeleiden van energie uit zon:.
windenergie 20 ZJ/jaar golfenergie 0,2 Zj/jaar biomassa 5 ZJ/jaar waterkracht 0,1 ZJ/jaar Osmose 0,05 ZJ/jaar
Bron: Kleine energieatlas, VROM
Kunnen we ook zonder fossiele brandstoffen?
100% zon in 2050 Gebied van 1000 X 1000 km. In de Sahara!
Thermische zonnecentrales
Planta Solar 10 and 20 solar power towers Totaal 31 MW
3 Maal zo duur als een kolencentrale Solar Energy Generating systems in Calafornia 9 zonnecentrales, totaal vermogen 350 MW 936.384 spiegels, oppervlakte van 6,5 km2 Totaal geinstalleerd vermogen: 2,5 GW
Thermische zonnecentrales
Desertec 12 companies involved: Munich Re, TREC, Deutsche Bank, Siemens, ABB, E.ON, RWE, Abengoa Solar, Cevital, HSH Nordbank, M & W Zander Holding, MAN Solar Millennium, and Schott Solar.
15% of Europes electicity needs
De Nederlandse doelstellingen voor 2020 Kabinet Balkende IV (CDA, CU, PvdA) 2% efficiency verbetering per jaar 20% duurzame energie in 2020 30% CO2 reductie in 2020 t.o.v. 1990 Kabinet Rutte I (VVD, CDA): 14% duurzame energie in 2020 Kabinet Rutte II (VVD, PvdA) 14% duurzaam in 2020, 16% duurzaam in 2023 40% CO2 reductie in 2030 (recente klimaatagenda)
Master Sustainable Energy Technology
TU Eindhoven officially started in June 2005 with an approved master program. In April 2006 upgraded to a national master program (TUE/TUDelft/UT) Combination between technical (75%) and social sciences (25%), contrary to Utrecht with 25-75%
Comparable programs in Oldenburg, Stockholm, Leeds en Reading
program objectives Domain-specific requirements Broad: Have disciplinary theoretical and technical knowledge (broad) able to evaluate conventional and sustainable energy systems in integrated electrical system context able to evaluate sustainable energy systems in the societal context able to design energy systems able to analyze and understand the socio- technical nature of system innovations Deep: expert in at least one sub-area
Consequences of broadness Large differences in knowledge of the students (BW, CT, EL, TN, AT) Students will find one course too simple, and the next more difficult Teachers have to deal with differences in background Positive is that you learn how to deal with this: find quickly the necessary missing ingredients cooperate with students with other background
Broadness is not easy, BUT WE WANT IT.
The curriculum
Energy from biomass Solar energy Wind energy Electrical power engineering and system integration
Hydrogen technology System innovation and strategic niche management
24 EC
The curriculum
introductory course: Sustainable energy technologies courses to reach adequate basic levels in mathematics, physics, chemistry and design engineering: Transport phenomena, Energy systems, Chemical reactor engineering
courses to reach adequate basic levels in social sciences: Energy and economy
The curriculum
system integration projects (6+9 EC): ‘System integration projects 1 and 2’ (Can be replaced by an Internship) elective courses in preparation for the graduation project (15 EC): graduation project (45 EC): In one of the following topics: Solar Energy, Wind energy, Biomass, Hydrogen, Intelligent electricity networks and Transition policy. Choice for research group/professor has to be made in the first quarter of the first year.
The curriculum
Internship: Abengoa, Grolsch, NEM, Stork, Tri-O-Gen, Twence, Hygear, GE-wind, Nicaragua, Cambodja, Indonesie, Zuid Afrika, ECN, TNO, EDON, ENECO, Energie Delfland, EnergieNed, EPON, GASTEC, KEMA, Shell, Stork
3TU master
Eindhoven
Delft
Twente
Biomass
small scale conversion units
large scale power generation
thermal and chemical conversion processes for the use of biomass as an energy carrier and chemicals
Solar energy
production of amorphous silicon and polymer solar cells
nanostructured 3D solar cells
integration of solar energy into products
3TU master
Eindhoven
Delft
Twente
Wind energy
fluid structure interaction
mainly concentrated in Delft
computational fluid dynamics of wind turbines
Hydrogen technology
small scale production of hydrogen
production using sustainable energy and storage of hydrogen
large scale production of hydrogen
Research groups on: • Thermal conversion of biomass (Brem (CTW), Kersten (TNW), Lefferts (TNW)), Van der Meer (CTW)
• Pyrolysis/gasification/CO2 capture/combustion of biofuels
Research groups on: • Membrane-based energy production (Nijmeyer (TNW))
• water treatment (purification), bioreactors, • fuel cells • Blue energy
Research groups on: • Use of sustainable energy in consumer products and in buildings (De Wulf (CTW), Reinders (CTW)), • New concepts for PV modules • Simulation of irradiance and PV systems
• Product integrated PV
Research groups on: • Water footprint of biomass (Hoekstra, Gerbens (CTW))
Global weighted average green (precipitation), blue (ground and surface water) and grey (water related to pollution) water footprints of ethanol for ten crops
Research groups on: • Design and production with light weight and smart materials (Akkerman, ME) • Composite integrated PV • Composite materials for wind turbine blades • Structural health monitoring of wind turbine systems (sensors, structural behavior, material degredation) • Self healing materials for off shore wind turbines
Research groups on: • Engineering fluid dynamics in wind energy (Hoeijmakers, ME) • Rotating flow machines • Aero-acoustics • Fluid structure interaction and aero-elasticity
Research groups on: Materials and systems (Ter Brake, Dhalhe (TNW))
• Superconducting magnets for fusion reactors • Superconducting generators for wind turbines • Magnetic storage of electical power (friction-less flywheels) • Energy recovery in LNG re-gasification • Thermal properties of nanofluids
Research groups on: Production of solar cells with laser techniques (Huis in ‘t Veld, ME)
Drilling, texturing, doping, grooving, cutting, removal of oxides.
Research groups on: • Smart grids (Smit (EWI), Embedded Systems)
Research groups on: Micro-CHP and heat pumps (Van der Meer (CTW), Ter Brake (TNW)) • Heat engines • New heat exchange material • Heat storage systems (long and short term)
Research groups on: Advanced materials (several groups in MESA+) • Semiconductor materials with catalytic functionality • Solar fuels (conversion of solar energy into chemicals) • Micro-reactor technology for production of photovoltaic materials
Research groups on: Sustainable energy and society (Arentsen, CSTM) • Business and project management • Policy and management • Science technology studies
Program supervision of the M.Sc. program dr. ir. De Lange (TU/e), prof.dr.ir. Th.H, van der Meer (UT) and prof.dr. Kloosterman (TUDelft).
Program administration: In Twente at CTW
There are three target groups for the program: 1. Bachelor students from technical and related science programs at Dutch universities 2. Bachelor students from polytechnic colleges for higher education (in particular energy technology); 3. Bachelor students from technical and related science programs at foreign universities.
Admission 1. 2. 3. 4. 5. 6. 7.
Mechanical Engineering, Applied Physics, Chemical Engineering, Electrical Engineering, Installation Technology and Technology Management of TU/e, TUD and UT, Other technical B.Sc.-programs of Dutch universities: Pre-master 8. B-Sc programs from polytechnic colleges: Pre-master 9. Foreign students: check on level, English (similar to other Masters)
And what when you have finished your study
KEMA Dutch Space TUE UT Onderzoeksinstuut in Australie BAM Saxion Mastervolt (inverters voor zonne-energie) ECN IF Technologies
Does the market need SET-masters?
A market inventory says: YES To reach our ambitious goals: YES In the midst of our economic crisis: YES When the crisis is over: YES