Pengacakan dan Tata Letak
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Pengacakan dan Tata Letak 26
Pengacakan bisa dengan menggunakan Daftar Angka Acak, Undian, atau dengan perangkat komputer (bisa dilihat kembali pada pembahasan RAL/RAK/RBSL satu faktor). Cara pengacakan sama seperti rancangan acak lengkap.
Penempatan perlakuan-perlakuan yang merupakan kombinasi dari taraf faktor yang akan dicobakan dilakukan dengan cara yang sama seperti RAL/RAK/RBSL Faktor Tunggal.
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Pengacakan dan Tata Letak
Percobaan RAL Faktorial 27
Perhatikan contoh kasus berikut.
Suatu percobaan ingin mempelajari pengaruh pemupukan Nitrogen dan Varietas terhadap hasil produksi yang dilaksanakan di Rumah Kaca.
Kondisi lingkungan diasumsikan homogen. Faktor pemupukan terdiri dari 2 taraf, yaitu:
Faktor Varietas terdiri dari dua taraf, yaitu:
0 kg N/ha (n0) dan 60 kg N/ha (n1). Varietas IR-64 (v1) dan Varietas S-969 (v2).
Percobaan dirancang dengan menggunakan rancangan dasar RAL yang diulang 3 kali.
Percobaan tersebut merupakan percobaan RAL Faktorial 22 atau 2x2 sehingga terdapat 4 kombinasi perlakuan: n0v1; n0v2; n1v1; dan n1v2. Karena diulang 3 kali, maka satuan percobaannya terdiri dari 4x3 = 12 satuan percobaan.
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Pengacakan dan Tata Letak
Pengacakan RAL Faktorial 28
Buat 12 petak (satuan percobaan) dan beri nomor (1 sampai 12). Langkah pengacakan sama dengan pengacakan pada RAL tunggal. Misal hasil pengacakan adalah sebagai berikut: Angka acak menggunakan Fungsi: =Rand()
1
2
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Pengacakan dan Tata Letak
Denah RAL Faktorial 29
Berdasarkan hasil pengacakan tersebut, maka tata letak percobaan adalah sebagai berikut: 1 = n1v1
2 = n0v2
3 = n0v1
4 = n1v2
5 = n1v1
6 = n1v2
7 = n1v2
8 = n1v1
Datar (Homogen) Or Rumah Kaca
9 = n0v1
10 = n0v2
11 = n0v2
12 = n0v1
Kombinasi perlakuan ditempatkan secara acak dan bebas pada petak percobaan
Model Linier dan Analisis Ragam
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Model Linier RAL Faktorial: 37
Model linier aditif untuk rancangan faktorial dua faktor dengan rancangan lingkungannya RAL adalah sebagai berikut :
Yijk = μ + αi + βj + (αβ)ij + εijk i =1,2…,a; j = 1,2,…,b; c = 1,2,…,r
Yijk
μ αi βj (αβ)ij εijk
= pengamatan pada satuan percobaan ke-k yang memperoleh kombinasi perlakuan taraf ke-i dari faktor A dan taraf ke-j dari faktor B = mean populasi = pengaruh taraf ke-i dari faktor A = pengaruh taraf ke-j dari faktor B = pengaruh taraf ke-i dari faktor A dan taraf ke-j dari faktor B = pengaruh acak dari satuan percobaan ke-k yang memperoleh kombinasi perlakuan ij. εij ~ N(0,σ2).
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Analisis Ragam RAL Faktorial 38
Model linier percobaan faktorial dengan rancangan dasar RAL adalah sebagai berikut: Y ijk Model Galat Y ijk i j ( ) ij ijk
Yijk Y ... (Y i.. Y ... ) (Y . j. Y ... ) (Y ij. Y i.. Y . j. Y ... ) (Y ijk Y ij. ) (Y ijk Y ... ) (Y i.. Y ... ) (Y . j. Y ... ) (Y ij. Y i.. Y . j. Y ... ) (Y ijk Y ij. ) Apabila kedua ruas dikuadratkan:
(Yijk Y ... ) (Y i.. Y ... ) (Y . j. Y ... ) (Y ij. Y i.. Y . j. Y ... ) (Yijk Y ij. ) 2
JKT
2
JKA
2
JKB
2
JKAB
JKG
2
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Perhitungan Analisis Ragam RAL Faktorial 39
Definisi
Pengerjaan
Y...2
FK
abr
Y
JKT
FK
ijk
(Y i 1 j1 k1
JK(A)
Y ...)
2
i , j ,k
(Y Y ...)2 i..
i 1 j1 k1
Y ...)
(Y
JK(B)
2
Y 2
i
br 2
Y
. j... i 1 j1 k1
JK(AB)
(Y
ij.
Yi... Y.. j. Y ...)2
j
Y
i 1 j1 k1
i,j
JKG
(Y
Y )2
ar 2 ij.
r
JKT – JKA – JKB -JKAB
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Tabel Analisis Ragam RAL Faktorial 40
Sumber keragaman Perlakuan A B AB Galat Total
Derajat Bebas ab-1 a-1 b-1 (a-1) (b-1) ab(r-1) abr-1
Jumlah Kuadrat JKP JK(A) JK(B) JK(AB) JK(G) JKT
Kuadrat Tengah KTP KT(A) KT(B) KT(AB) KTG
F-hitung KTP/KTG KT(A)/KTG KT(B)/KTG KT(AB)/KTG
F-tabel F(α, db-P, db-G) F(α, db-A, db-G) F(α, db-B, db-G) F(α, db-AB, db-G)
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Model Linier RAK Faktorial: 41
Model linier aditif untuk rancangan faktorial dua faktor: Yijk = μ + αi + βj + (αβ)ij + ρk + εijk i =1,2…,r; j = 1,2,…,a; k = 1,2,…,b = pengamatan pada satuan percobaan ke-i yang memperoleh kombinasi perlakuan taraf ke-j dari faktor A dan taraf ke-k dari faktor B μ = mean populasi ρk = pengaruh taraf ke-k dari faktor Kelompok αi = pengaruh taraf ke-i dari faktor A βj = pengaruh taraf ke-j dari faktor B (αβ)ij = pengaruh taraf ke-i dari faktor A dan taraf ke-j dari faktor B εijk = pengaruh acak dari satuan percobaan ke-k yang memperoleh kombinasi perlakuan ij. εijk ~ N(0,σ2). Yijk
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Analisis Ragam RAK Faktorial 42
Model linier percobaan faktorial dengan rancangan dasar RAK adalah sebagai berikut:
Yijk Model Galat Yijk i j ( ) ij k ijk
Yijk Y ... (Y i.. Y ... ) (Y . j. Y ... ) (Y ij. Y i.. Y . j. Y ... ) (Y ..k Y ... ) (Yijk Y ij. ) Apabila kedua ruas dikuadratkan:
(Yijk Y ... ) (Y i.. Y ... ) (Y . j. Y ... ) (Y ij. Y i.. Y . j. Y ... ) (Y ..k Y ... ) (Yijk Y ij. ) 2
JKT
2
JKA
2
JKB
2
JKAB
2
JKR
JKG
2
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Perhitungan Analisis Ragam RAK Faktorial 43
Definisi
Pengerjaan
FK JKT
JK(R)
( ...)2 2 Yijk Y Yijk i 1 j1 k1
i1 j1 k1
(Y
Y ...)2 ..k
i 1 j1 k1
JK(A)
i 1 j1 k1
(Y i 1 j1 k1
Y ...)2 i..
i 1 j1 k1
Y..k 2
2
br
2
abr Y... 2
ab
Yi..
Y...
abr Y... 2
abr
Y...2 abr Yijk FK 2
i , j ,k
(r ) k
k
ab Y 2
i
i..
br
2
FK
(a ) i
FK
i
rb
2
FK
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Perhitungan Analisis Ragam RAK Faktorial 44
Definisi JK(B)
Pengerjaan 2
(Y
Y ...) 2
. j...
Y. j. ar
2
2 Y... abr
j
Y ar
ra
j
JK(AB)
(Y i 1 j1 k1
ij.
Yi... Y.. j. Y ...)2
2
Y ij.
r
i,j
2
FK JKA JKB
i,j
r JKG
(Y i 1 j1 k1
Y
2
JKT – JKK – JKA – JKB -JKAB
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Tabel Analisis Ragam RAK Faktorial 45
Sumber keragaman
Derajat Bebas
Jumlah Kuadrat
Kelompok Perlakuan A B AB Galat
r-1 ab-1 a-1 b-1 (a-1) (b-1) ab(r-1)
JKK JKP JK(A) JK(B) JK(AB) JK(G)
Total
abr-1
JKT
Kuadrat Tengah
KTK KTP KT(A) KT(B) KT(AB) KTG
F-hitung
KTP/KTG KT(A)/KTG KT(B)/KTG KT(AB)/KTG
F-tabel
F(α, db-P, db-G) F(α, db-A, db-G) F(α, db-B, db-G) F(α, db-AB, db-G)
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Hipotesis RAL/RAK: 46
Hipotesis: Model Tetap (Model I) Pengaruh Interaksi AxB H0 (αβ)ij =0 (tidak ada pengaruh interaksi terhadap respon yang diamati)
H1
minimal ada sepasang (i,j) sehingga (αβ)ij ≠0 (ada pengaruh interaksi terhadap respon yang diamati)
Pengaruh Utama Faktor A H0 α1 =α2 =…=αa=0 (tidak ada perbedaan respon di antara taraf faktor A yang dicobakan)
H1
minimal ada satu i sehingga αi ≠0 (ada perbedaan respon di antara taraf faktor A yang dicobakan)
Pengaruh Utama Faktor B β1 =β2 =…=βb=0 (tidak ada perbedaan respon di H0 antara taraf faktor B yang dicobakan)
H1
minimal ada satu j sehingga βj ≠0 (ada perbedaan respon diantara taraf faktor B yang dicobakan)
Model Acak (Model II) σ2αβ=0
(tidak ada keragaman dalam populasi kombinasi perlakuan)
σ2αβ>0
(terdapat keragaman dalam populasi kombinasi perlakuan)
σ2α=0 (tidak ada keragaman dalam populasi taraf faktor A)
σ2α>0 (terdapat keragaman dalam populasi taraf faktor A)
σ2β=0 (tidak ada keragaman dalam populasi taraf faktor B)
σ2β>0 (terdapat keragaman dalam populasi taraf faktor B)
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Model Linier dan Analisis Ragam
Galat Baku RAL/RAK 47
Galat baku diperlukan untuk perhitungan perbandingan rataan Perbandingan dua rata-rata Faktor A:
2KTG SED SY rb
Perbandingan interaksi dua rata-rata Faktor AxB:
SED S Y
Perbandingan dua rata-rata Faktor B:
2KTG SED SY ra
2KTG r
Contoh Terapan RAL
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL: 49
Ada 3 jenis material untuk pembuatan baterai (A, B, C) dicobakan pada 3 temperatur (15oF, 70oF, 125oF). Dari percobaan tersebut ingin diketahui apakah jenis material dan suhu mempengaruhi daya tahan baterai? Apakah jenis material tertentu cocok untuk suhu tertentu? Dari percobaan tersebut diperoleh data daya tahan baterai sebagai berikut :
Material A
B
C
15 130 74 155 180 150 159 188 126 138 168 110 160
Suhu 70 34 80 40 75 136 106 122 115 174 150 120 139
125 20 82 70 58 25 70 58 45 96 82 104 60
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Perhitungan: 50
Material (A) A B C Jumlah (Y.j.)
15 539 623 576 1738
Langkah 1: Hitung Faktor Koreksi
3799 2 Y ... 2 FK 400900.028 rab 4 3 3 Langkah 2: Hitung Jumlah Kuadrat Total 2 JKT Y ijk FK i , j ,k
(130 2 74 2 .... 104 2 60 2 ) 400900.028
478547.000
Suhu (B) 70 229 479 583 1291
125 230 198 342 770
Jumlah Yi.. 998 1300 1501 Y... = 3799
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Perhitungan: 51
Material (A) A B C Jumlah (Y.j.)
15 539 623 576 1738
Suhu (B) 70 229 479 583 1291
125 230 198 342 770
Jumlah Yi.. 998 1300 1501 Y... = 3799
Langkah 3: Hitung Jumlah Kuadrat Perlakuan 2
Y JKA i.. FK rb i (998 2 1300 2 1501 2 ) 400900.028 43 10683.722 JK(AB) i,j
Y ij.2 r
JKB j
Y
2 . j.
ra
FK
(1738 2 1291 2 770 2 )
43 39118.722
FK JKA JKB
( 539 2 229 2 ... 583 2 342 2 ) 400900.028 10683.722 - 39118.722 4 9613.778
400900.028
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Perhitungan: 52
Langkah 4: Hitung Jumlah Kuadrat Galat
JKG JKT JKA JKB JK(AB) 18230.750 Langkah 5: Buat Tabel Analisis Ragam beserta Nilai F-tabelnya Sumber Ragam
DB
JK
KT
F-hit
F prob
F .05
F .01
Material (A) Suhu (B)
2 2
10683.7222 39118.7222
5341.86111 19559.3611
7.91 ** 28.97 **
0.00197608 1.9086E-07
3.354 3.354
5.488 5.488
AxB
4
9613.77778
2403.44444
3.56 *
0.01861117
2.728
4.106
Galat
27
18230.75
675.212963
-
Total
35
77646.9722
Pengaruh interaksi antara material dan suhu nyata! Nilai (Finteraksi = 3.56) > Nilai F0.05(db1=4, db2=27) = 2.728
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Langkah 6: Buat Kesimpulan 53
Material (A)
Suhu (B)
Karena Fhitung (7.91) > 3.354 maka kita tolak H0: μ1 = μ2 = μ3 pada taraf kepercayaan 95% (biasanya diberi satu buah tanda asterisk (*), yang menunjukkan berbeda nyata) Karena Fhitung (7.91) > 5.488 maka kita tolak H0: μ1 = μ2 = μ3 pada taraf kepercayaan 99% (biasanya diberi dua buah tanda asterisk (**), yang menunjukkan berbeda sangat nyata)
Karena Fhitung (28.97) > 3.354 maka kita tolak H0: μ1 = μ2 = μ3 pada taraf kepercayaan 95% (biasanya diberi satu buah tanda asterisk (*), yang menunjukkan berbeda nyata) Karena Fhitung (28.97) > 5.488 maka kita tolak H0: μ1 = μ2 = μ3 pada taraf kepercayaan 99% (biasanya diberi dua buah tanda asterisk (**), yang menunjukkan berbeda sangat nyata)
Interaksi Material x Suhu (AxB)
Karena Fhitung (3.56) > 2.728 maka kita tolak H0: μ1 = μ2 = μ3 pada taraf kepercayaan 95% (biasanya diberi satu buah tanda asterisk (*), yang menunjukkan berbeda nyata) Karena Fhitung (3.56) ≤ 4.106 maka kita gagal untuk menolak H0: μ1 = μ2 = μ3 pada taraf kepercayaan 99%
Ade Setiawan © 2009
http://smartstat.info
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Langkah 6… 54
Terlebih dahulu, kita periksa apakah Pengaruh Interaksi nyata atau tidak? Apabila nyata, selanjutnya periksalah pengaruh sederhana dari interaksi tersebut, dan abaikan pengaruh mandirinya, meskipun pengaruh mandiri tersebut signifikan! Mengapa?
Nilai (Finteraksi = 3.56) > Nilai F0.05(db1=4, db2=27) = 2.728, sehingga pada taraf nyata α = 5 % kita dapat menyimpulkan bahwa pengaruh interaksi antara material dan suhu nyata.
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Post-Hoc 55
Pengaruh interaksi antara Material dan Suhu nyata, sehingga kita perlu melakukan pengujian pengaruhpengaruh sederhananya yang merupakan konsekuensi logis dari model percobaan faktorial dalam penelitian. Hal ini dilakukan untuk mendapatkan kesimpulan yang lebih komprehensif!
Pada pengujian lanjut ini, perbedaan diantara pasangan rata-rata perlakuan dilakukan dengan menggunakan uji Duncan.
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Post-Hoc… 56
Langkah 1: Hitung nilai wilayah nyata terpendek (Rp):
Tentukan nilai KTG dan derajat bebasnya yang diperoleh dari Tabel Analisis Ragam.
Tentukan nilai kritisnya dari tabel wilayah nyata student yang didasarkan pada derajat bebas galat dan banyaknya perlakuan yang akan dibandingkan.
KTG = 675.213 ν = db = 27
Ada tiga parameter yang dibutuhkan untuk menentukan nilai rα(p,db), yaitu taraf nyata (α), p = banyaknya perlakuan yang akan dibandingkan, dan derajat bebas galat (db). Pada contoh ini, p = 2, 3, nilai db = 27 (lihat db galat pada tabel Analisis Ragamnya) dan α = 0.05. Selanjutnya, tentukan nilai r0.05(p, 27). Dari tabel kita dapatkan nilai nilai r,p, yaitu 2.905 dan 3.050
Hitung wilayah nyata terpendek (Rp)…
Penentuan nilai tabel wilayah nyata duncan 57
Critical Points for Duncan's Multiple Range Statistic -- ALPHA = 0.05 r0.05(p, v) derajat
p
bebas (ν) 1 2
2 18.00 6.09
3 18.00 6.09
4 18.00 6.09
3
4.50
4.50
. 4.50
5 18.00 09 6
6 18.00 6.09
50
4.50
7 … 18.00 6.09
4.50
7 84 9 10 5
3.35 3.93 3.26 3.20 3.15 3.64
3.47 4.01 3.39 3.34 3.30 3.74
… 6 20
2.95 3.46
3.10 3.58
22 24 26 28 30 … 60 100 inf
2.93 2.92 2.91 2.90 2.89
3.08 3.07 3.06 3.04 3.04
4 .3.54 3.58 3.60 3.61 N 4.02 02 4.02 4.02 47 3.52 3.55 ilai r 0.05(p, 27) 3.56 3. 4 3.47 3.50 3.52 3.41 .3.37 =3.43 3.46 2 : r0.05(2, 27) 3.47 = 2.905 3.79 83 3.83 3.83 p 18 33.25 3.30 3.34 . 17 3.24 3.29 3.32 = 3.050 3. = 368: r0.05(3, 3.64 3.68 27) 3.68 3 p . 3. 3.15 3.22 3.28 3.31 3.14 3.21 3.37 3.30 3.13 3.20 3.26 3.30 3.12 3.20 3.25 3.29
2.83 2.80 2.77
2.98 2.95 2.92
3.08 3.05 3.02
3.14 3.12 3.09
3.20 3.18 3.15
3.24 3.22 3.19
20 18.00 6.09
4.50 3.61 4.02 3.56 3.52 3.48 3.83 3.47 3.68
3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47
Untuk mencari nilai r0.05(p, 27) kita dapat melihatnya pada tabel Significant Ranges for Duncan’s Multiple Range Test pada taraf nyata α = 0.05 dengan p = 2, 3 dan derajat bebas (v)= 27. Dari tabel derajat bebas (v) = 27 tidak ada. Nilai tersebut berada dikisaran v = 26 dan v = 28. Nilai dicari dengan interpolasi!
R sYp r ,p , sY
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Post-Hoc… 58
Hitung wilayah nyata terpendek (Rp):
sY
KTG r 675.213 12.992 4
Hitung Nilai Rp: p sY r,p,
R p r ,p , s Y
2 12.992 2.9050 37.742
3 12.992 3.0500 39.626
Langkah 2: Urutkan tabel rata-rata perlakuan dari kecil ke besar atau sebaliknya. Pada contoh ini, rata-rata perlakuan diurutkan dari kecil ke besar
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Perbedaan dua rata-rata Material 59
Perbedaan dua rata-rata Material pada taraf suhu yang sama:
Pengujian pengaruh sederhana perbedaan dua rata-rata Material pada suhu 15 oC:
Material A C B
Rata-rata 134.75 144.00 155.75
A
134.75 0.00 9.25 (2) tn 21.00 (3) tn
C
B
144.00
155.75
0.00 11.75(2) tn
0.00
p sY r,p,
Rp r ,p, sY
Notasi a a a
2 12.992 2.9050 37.742
3 12.992 3.0500 39.626
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Perbedaan dua rata-rata Material p sY r,p,
60
Pengujian pengaruh sederhana perbedaan dua rata-rata Material pada suhu 70 oC: Material
A B C
Rata-rata
57.25 119.75 145.75
2 12.992 2.9050 37.742
R p r ,p , s Y
A
B
C
57.25
119.75
145.75
0.00 62.50 (2) * 88.50 (3) *
0.00 26.00 (2) tn
0.00
3 12.992 3.0500 39.626 Notasi
a b b
Pengujian pengaruh sederhana perbedaan dua rata-rata Material pada suhu 115 oC: Material B A C
Rata-rata 49.50 57.50 85.50
B 49.50 0.00 8.00 (2) tn 36.00 (3) tn
A
C
57.50
85.50
0.00 28.00 (2) tn
0.00
Notasi a a a
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Perbedaan dua rata-rata Suhu 61
Perbedaan dua rata-rata Suhu pada taraf Material yang sama:
Pengujian pengaruh sederhana perbedaan dua rata-rata Suhu pada Material A: Suhu
70 125 15
Rata-rata
57.25 57.50 134.75
70 57.25 0.00 0.25 (2) tn 77.50 (3) *
125
15
57.50
134.75
0.00 77.25
(2) *
p sY r,p,
Rp r ,p, sY
0.00
Notasi
a a b
2 12.992 2.9050 37.742
3 12.992 3.0500 39.626
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Perbedaan dua rata-rata Suhu p sY r,p,
62
Pengujian pengaruh sederhana perbedaan dua rata-rata Suhu pada Material B: Suhu 125 70 15
Rata-rata 49.50 119.75 155.75
2 12.992 2.9050 37.742
R p r ,p , s Y
125
70
15
49.50
119.75
155.75
0.00 70.25 (2) * 106.25 (3) *
0.00 36.00 (2) tn
0.00
Pengujian pengaruh sederhana perbedaan dua rata-rata Suhu pada Material C: Suhu
125 15 70
Rata-rata
85.50 144.00 145.75
125 85.50 0.00 58.50 (2) * 60.25 (3) *
15
70
144.00
145.75
0.00 1.75 (2) tn
0.00
Notasi
a b b
3 12.992 3.0500 39.626 Notasi a b b
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Tabel Dwi Arah (pengaruh sederhana) 63
Penyajian pengujian pengaruh sederhana pada percobaan tersebut dapat diringkas dalam bentuk tabel dua arah seperti tampak pada tabel berikut: Suhu (S) 15
70 125
Keterangan:
A 134.750 b A 57.250 a A 57.500 a A
Material (M) B 155.750 b A 119.750 b B 49.500 a A
C 144.000 b A 145.750 b B 85.500 a A
Angka yang diikuti huruf yang sama tidak berbeda nyata menurut uji Duncan pada taraf nyata 5%. Huruf kecil dibaca arah vertikal (kolom) dan huruf kapital dibaca arah horisontal (baris)
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Post-Hoc… 64
Pengaruh Interaksi: No 1 2 3 4 5 6 7 8 9
Material A A A B B B C C C
Suhu 15 70 125 15 70 125 15 70 125
Pengaruh Interaksi: Apabila kombinasi perlakuan material dan suhu dianggap sebagai faktor tunggal, didapat 9 perlakuan. t1 = A15 (Material A dan Suhu 15oC) t2 = A70 dst…
Rata-rata 134.75 57.25 57.50 155.75 119.75 49.50 144.00 145.75 85.50
Pembanding (Duncan) Sy rp RP
2 12.99 2.91 37.74
3 12.99 3.05 39.63
4 12.99 3.14 40.73
5 12.99 3.21 41.64
6 12.99 3.27 42.42
7 12.99 3.30 42.87
8 12.99 3.34 43.33
9 12.99 3.36 43.59
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Post-Hoc… 65
Pembanding (Duncan)
2 12.99 2.91 37.74
Sy rp RP
3 12.99 3.05 39.63
4 12.99 3.14 40.73
5 12.99 3.21 41.64
6 12.99 3.27 42.42
7 12.99 3.30 42.87
8 12.99 3.34 43.33
9 12.99 3.36 43.59
Tabel Matriks selisih perbedaan pasangan rata-rata AxB (setelah diurutkan dalam urutan menaik) 6
2
3
9
5
1
7
8
4
57.25
57.50
85.50
119.75
134.75
144.00
145.75
155.75
No
M
S
Rataan
49.50
6 2 3 9 5
B A A C B
125 70 125 125 70
49.50 57.25 57.50 85.50 119.75
0.00 7.75 8.00 36.00 70.25 *
0.00 0.25 28.25 62.50 *
0.00 28.00 62.25 *
0.00 34.25
0.00
1
A
15
134.75
85.25 *
77.50 *
77.25 *
49.25 *
15.00
0.00
7
C
15
144.00
94.50 *
86.75 *
86.50 *
58.50 *
24.25
9.25
0.00
8
C
70
145.75
96.25 *
88.50 *
88.25 *
60.25 *
26.00
11.00
1.75
0.00
4
B
15
155.75
106.25 *
98.50 *
98.25 *
70.25 *
36.00
21.00
11.75
10.00
a a a ab bc c c
Keterangan: Bandingkan selisih pasangan dua rata-rata dengan nilai pembanding yang sesuai berdasarkan peringkat jarak diantara kedua rata-rata (pada contoh di atas, untuk memudahkan pemahaman pembandingan selisih rata-rata dengan peringkat yang sesuai ditandai dengan kode warna yang sama antara selisih dan pembanding)
c 0.00
c
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Percobaan RAL:
Post-Hoc… 66
Penyajian pengujian pengaruh interaksi AxB pada percobaan tersebut dapat diringkas dalam bentuk tabel dua arah seperti tampak pada tabel berikut: Suhu (S) 15 70 125
Material (M) A B 134.750 c 155.750 c 57.250 a 119.750 bc 57.500 a 49.500 a
C 144.000 c 145.750 c 85.500 ab
Contoh RAK Faktorial
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial (1) 68
Olah Tanah (A) 1
2
3
Grand Total
Pupuk Organik (B) 0 10 20 30 0 10 20 30 0 10 20 30 ∑K
Kelompok (K) 1 2 3 154 151 165 166 166 160 177 178 176 193 189 200 143 147 139 149 156 171 160 164 136 190 166 169 139 134 145 162 147 166 181 161 149 161 172 182 1975 1931 1958
Grand Total ∑AB 470 492 531 582 429 476 460 525 418 475 491 515 5864
Percobaan Pengaruh Pengolahan Tanah dan Pupuk Organik terhadap Indeks Stabilitas Agregat
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Perhitungan Analisis Ragam RAK 69
Y...2 (5864) 2 FK 955180.44 abr 3 4 3 JKT Yijk2 FK i , j ,k
(154)2 (151)2 ... (182)2 955180.44 9821.56
(r )
2
JKR
k
FK ab (1975)2 (1931)2 (1958)2 k
82.06
3 4
955180.44
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Perhitungan Analisis Ragam RAK 70
Olah Tanah (A)
0
1 2 3 ΣB=Y.j.
470 429 418 1317
(a )
Pupuk Organik (B) 10 20 492 531 476 460 475 491 1443 1482
30
ΣA = Yi..
582 525 515 1622
2075 1890 1899 5864
2
JKA
i
i
FK
rb (2075)2 (1890)2 (1899) 2 955180.4444 1813.39 3 4 (b j )2 JKB j FK ra (1317)2 (1443)2 (1482)2 (1622)2 955180.44 5258.00 3 3
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Perhitungan Analisis Ragam RAK 71
(a b )
2
i
JK(AB)
j
FK JKA JKB r (470)2 (492)2 ... (491)2 (515)2 i,j
463.50
3
955180.44 1813.39 5258.00
JKG JKT - JKK - JKA - JKB -JK(AB) 9821.56 82.06 1813.39 5258.00 463.50 2204.61
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Perhitungan Analisis Ragam RAK 72
Sumber keragaman Kelompok (R) Perlakuan A B AB Galat Total
Derajat Bebas r-1 = 2
Jumlah Kuadrat 82.06
Kuadrat Tengah 41.0277778
0.41 tn
a-1 = 2 b-1 = 3 (a-1) (b-1) = 6 ab(r-1) = 22 abr-1 = 35
1813.39 5258.00 463.50 2204.61 9821.56
906.6944444 1752.666667 77.25 100.209596
9.05 ** 3.443 5.719 17.49 ** 3.049 4.817 0.77 tn 2.549 3.758 -
F(0.05,2,22) =3.443 F(0.01,2,22) = 5.719 F(0.05,3,22) = 3.049 F(0.01,3,22) = 4.817 F(0.05,6,22) = 2.549 F(0.01,6,22) = 3.758
F-hitung
F0.05 F0.01 3.443 5.719
Pada taraf kepercayaan 95%:
Pengaruh Interaksi: tidak signifikan
(Fhitung (0.77) ≤ 2.549)
Pengaruh Faktor A: signifikan
(Fhitung (9.05) > 3.443)
Pengaruh Faktor B: signifikan
(Fhitung (9.05) > 3.443)
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Post-Hoc 73
Berdasarkan analisis ragam, pengaruh interaksi antara Faktor A dan Faktor B tidak nyata, sedangkan kedua pengaruh utamanya nyata sehingga pengujian lanjut hanya dilakukan terhadap pengaruh utama dari kedua faktor yang kita cobakan. Pengaruh Utama Pengolahan Tanah (A) LSD t /2;db
2KTG rb
LSD t /2;db
2KTG rb
2(100.21) 3 4 2.074 4.087 8.475 t 0.05/2;22
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Pengaruh Utama Pengolahan Tanah (A) 74
Olah Tanah (O) 1 2 3
Rata-rata 172.92 157.50 158.25
LSD = 8.475 Olah Tanah (O) Rata-rata 2 157.50 3 158.25 1 172.92
Nilai rata-rata diurutkan
2 157.50 0.00 0.75 15.42*
3 158.25 0.00 14.67*
1 172.92 a a 0.00 b
Bandingkan selisih rata-rata dengan nilai LSD
Olah Tanah (O) 2 3 1
Rata-rata 157.50 158.25 172.92
Olah Tanah (O) 1 2 3
Rata-rata 172.92 b 157.50 a 158.25 a
Urutan dikembalikan sesuai dengan urutan perlakuan
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Pengaruh Utama Pupuk Organik (B) 75
LSD t /2;db
2KTG ra
2KTG ra 2(100.21) t 0.05/2;22 3 3 2.074 4.719 9.787
LSD t /2;db
Nilai rata-rata diurutkan (Sudah terurut)
Pupuk Organik (P) 0 10 20 30
Rata-rata 146.33 160.33 164.67 180.22
LSD = 9.787 Pupuk Organik (P) 0 10 20 30
Rata-rata 146.33 160.33 164.67 180.22
0 10 20 30 146.33 160.33 164.67 180.22 0.00 14.00* 0.00 18.33* 4.33 0.00 33.89* 19.89* 15.56* 0.00
a b b c
Pupuk Organik (P) 0 10 20 30
Rata-rata 146.33 a 160.33 b 164.67 b 180.22 c
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Terapan RAK
Contoh RAK Faktorial (2): 76
Diberikan data sebagai berikut: A a0 a0 a1 a1
B b0 b1 b0 b1 Y..k
1 12 19 29 32 92
Y ... 2 (400) 2 FK 10000 abr 2 2 4
15 22 27 35 99
Kelompok 2 3 14 23 33 38 108
4 13 21 30 37 101
Yij. 54 85 119 142 Y…= 400
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Terapan RAK
Perhitungan Analisis Ragam: 77
JKT Y ijk2 FK i , j ,k
(12)2 (15)2 ... (37)2 10000
1170
JKR
2 (r ) k k
FK
ab 2 2 2 2 (92) (99) (108) (101) 10000 22 32.5
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Terapan RAK
Perhitungan Analisis Ragam: 78
a0 54 85 139
b0 b1 ΣA=Yi..
JKA
2 (a ) i i
FK
rb 2 2 (139) (261) 10000 42 930.25
a1 119 142 261
JKB
2 (b ) j j
ΣB = Y.j. 173 227 400
FK
ra (173) 2 (227) 2 10000 42 182.25
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Terapan RAK
Perhitungan Analisis Ragam: 79
a0 b0 b1 ΣA=Yi..
54 85 139
(a b ) i
JK(AB)
a1
i,j
r 2
ΣB = Y.j.
119 142 261
173 227 400
2
j
FK JKA JKB 2
2
2
(54) (85) (119) (142) 10000 930.25 182.25 4 4 JKG JKT - JKK - JKA - JKB -JK(AB) 1170 32.5 930.25 182.25 4
21
Catatan: JKP = JKA + JKB + JK(AB)
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh Terapan RAK
Tabel Analisis Ragam: 80
Sumber keragaman Kelompok (R) Perlakuan
Derajat Bebas r-1 = 3
Jumlah Kuadrat 32.5
Kuadrat F-hitung Tengah 10.833 4.64*
A B AB Galat
a-1 = 1 b-1 = 1 (a-1) (b-1) = 1 ab(r-1) = 9
930.25 182.25 4 21
930.25 182.25 4 2.33
Total
abr-1 = 15
1170
Pada taraf kepercayaan 95%: Pengaruh Interaksi: tidak signifikan Pengaruh Faktor A: signifikan Pengaruh Faktor B: signifikan
F0.05 3.86
398.679** 5.11 78.107** 5.11 1.714 5.11
(Fhitung (1.714) ≤ 5.11) (Fhitung (398.68) > 5.11) (Fhitung (1.714) ≤ 5.11)
F0.01 6.99 10.56 10.56 10.56
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial (3) 81
Olah Tanah (A) 1
2
3
Grand Total
Pupuk Organik (B) 0 10 20 30 0 10 20 30 0 10 20 30 ∑K
Kelompok (K) 1 2 3 4.7 4.9 4.7 5.5 5.6 5.4 5.3 6.1 5.6 6.1 6.1 5.9 5.1 5.2 5.0 5.3 5.6 5.5 5.9 5.7 5.4 5.5 5.7 5.8 5.1 5.2 5.2 5.4 5.3 5.5 5.3 5.4 5.8 6.2 6.2 6.1 65.40 67.00 65.90
Grand Total ∑AB 14.3 16.5 17.0 18.1 15.3 16.4 17.0 17.0 15.5 16.2 16.5 18.5 198.30
Percobaan Pengaruh Pengolahan Tanah dan Pupuk Organik terhadap pH H2O
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Perhitungan Analisis Ragam RAK 82
Sumber keragaman Kelompok (R) Perlakuan A B AB Total Galat
Derajat Bebas r-1 = 2
Jumlah Kuadra t 0.11166667
0.05583333
1.75 tn
3.44
5.72
a-1 = 2 b-1 = 3 (a-1) (b-1) = 6 abr-1 = =3522 ab(r-1)
0.04666667 4.14527778 0.70222222 5.7075 0.70166667
0.02333333 0.73 tn 1.38175926 43.32 ** 0.11703704 3.67 * 0.03189394 -
3.44 3.05 2.55
5.72 4.82 3.76
F(0.05,2,22) =3.443 F(0.01,2,22) = 5.719 F(0.05,3,22) = 3.049 F(0.01,3,22) = 4.817 F(0.05,6,22) = 2.549 F(0.01,6,22) = 3.758
Kuadrat Tengah
F-hitung F0.05 F0.01
Pada taraf kepercayaan 95%:
Pengaruh Interaksi: signifikan
(Fhitung (3.67) > 2.549)
Pengaruh Faktor A: tidak signifikan
(Fhitung (0.73) ≤ 3.443)
Pengaruh Faktor B: signifikan
(Fhitung (43.32) > 3.443)
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Post-Hoc 83
Berdasarkan analisis ragam, pengaruh interaksi antara Faktor A dan Faktor B nyata, sehingga dilanjutkan dengan pemeriksaan pengaruh sederhana interaksi AB. Pengaruh utamanya diabaikan meskipun signifikan!
Pengaruh Sederhana Interaksi AB LSD t /2;db
2KTG r
LSD t /2;db
2KTG r
2(0.03189) 3 2.074 0.14582 0.3024
t 0.05/2;22
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Perbandingan dua rata-rata Olah Tanah 84
LSD = 0.3024 Pada taraf Pupuk Organik 0 (p0) Olah Tanah (O) 1 2 3
Rata-rata 4.77 a 5.10 b 5.17 b
Pada taraf Pupuk Organik 20 (p2) Olah Tanah (O) 1 2 3
Rata-rata 5.67 a 5.67 a 5.50 a
Pada taraf Pupuk Organik 10 (p1) Olah Tanah (O) 1 2 3
Rata-rata 5.50 a 5.47 a 5.40 a
Pada taraf Pupuk Organik 30 (p3) Olah Tanah (O) 1 2 3
Rata-rata 6.03 b 5.67 a 6.17 b
Langkahlangkah dalam penentuan indeks huruf (notasi) bisa dilihat dalam contoh RAL Faktorial
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Contoh RAK Faktorial
Perbandingan dua rata-rata Pupuk Organik 85
LSD = 0.3024 Pada taraf Olah Tanah (O1)
Pada taraf Olah Tanah (O3)
Pupuk Organik (P) Rata-rata 1 4.77 (a) 2 5.50 (b) 3 5.67 (b) 4 6.03 (c)
Pupuk Organik (P) Rata-rata 1 5.17 (a) 2 5.40 (ab) 3 5.50 (b) 4 6.17 (c)
Pada taraf Olah Tanah (O2)
Pupuk Organik (P) Rata-rata 1 5.10 (a) 2 5.47 (b) 3 5.67 (b) 4 5.67 (b)
Langkahlangkah dalam penentuan indeks huruf (notasi) bisa dilihat dalam contoh RAL Faktorial
Pendahuluan Pengacakan dan Tata Letak Percobaan RBSL Model Linier dan Analisis Ragam Contoh Penerapan
Tabel Dwi arah A x B 86
Perbandingan:
2-rataan P Olah Tanah (O) 1 2 3
SED BNT 5% 2-rataan O 0.145817099 0.3024 0.145817099 0.3024 Pupuk Organik (P) 0 10 20 4.77 a 5.50 a 5.67 a (a) (b) (b) 5.10 b 5.47 a 5.67 a (a) (b) (b) 5.17 b 5.40 a 5.50 a (a) (ab) (b)
30 6.03 b (c) 5.67 a (b) 6.17 b (c)
Keterangan: Huruf dalam kurung dibaca arah horizontal, membandingkan antara 2 P pada O yang sama Huruf kecil tanpa kurung dibaca arah vertikal, membandingkan antara 2 O pada P yang sama