KOKA 2005, XXXVI. mezinárodní konference kateder a pracovišť spalovacích motorů českých a slovenských vysokých škol
KONTAKTNÍ TLAKY TĚSNĚNÍ HLAVY VÁLCŮ STACIONÁRNÍHO MOTORU Lukáš Mrnuštík1, Pavel Brabec2, Pavel Kefurt3 ABSTRACT The paper deals with problems with the metal cylinder-head gasket of the in-line six stationary engine (engine power 1500 kW). The model was loaded by statically and dynamically powers in the software, which can take into account the yield strength of the used materials. The aim of the paper was distribution of the contact pressure (cylinder-head gasket) and distribution of the force from contact pressure between head screw and cylinderhead gasket. Key words: Metal cylinder-head gasket, Distribution of the contact pressure, FEM Analysis
1
ÚVOD Těsnění hlavy válců je významnou součástí všech motorů. Obzvláště u stacionárních motorů velkých rozměrů by mohla jeho porucha znamenat nemalé finanční náklady spojené s odstavením motoru a jeho opravou. Proto je třeba věnovat utěsnění spalovacího prostoru dostatečnou pozornost. Tento příspěvek pokračuje ve výpočetních pracích sledujících chování skříně spalovacího motoru při statickém a dynamickém zatížení. Úkolem bylo určit rozdělení síly od spalovacího tlaku, které závisí na pružnosti spoje (tuhosti hlavového šroubu a tuhosti nákružku skříně motoru) a zjištění kontaktního tlaku na těsnění hlavy válců. Výpočet byl proveden pro model šestiválcového stacionárního motoru s dělenými hlavami.
Obrázek 1: Vlevo zjednodušený model, vpravo detail na těsnění v řezu Figure 1: On the left simplified model, on the right detail cross cut of the gasket.
1
Ing. Lukáš Mrnuštík, Technická univerzita v Liberci, Hálkova 6, 461 17 Liberec 1, tel :+420 435 353 365, e-mail:
[email protected] 2 Ing. Pavel Brabec, Technická univerzita v Liberci, Hálkova 6, 461 17 Liberec 1, tel :+420 435 353 159, e-mail:
[email protected] 3 Ing. Pavel Kefurt, BEZ MOTORY, a.s., Plotiště nad Labem 613, 501 01 Hradec Králové, tel. +420 49 612233, e-mail :
[email protected]
2
MODEL Vzhledem k nesymetričnosti boku motoru byl pro výpočet zvolen výřez bloku mezi osami dvou sousedících válců (obr. 2). Původní model byl po přenesení do výpočetního softwaru upraven a zjednodušen. Z předchozích výpočtů (zpráva SM 403/2001) plyne, že deformace bloku jsou ve spodní části bloku velmi malé, proto byl model zkrácen v místě ukončení vložky válce. Jeho konečnou podobu ukazuje obr. 1 (vlevo celý model, vpravo detail na těsnění). 2.1
Materiálové vlastnosti a síť V modelu byly použity tři druhy materiálu. Jejich umístění v modelu a materiálové vlastnosti jsou uvedeny v následující tabulce. Model byl rozdělen na 472 765 elementů o 1 740 uzlových bodech. Část modelu
Modul pružnosti [MPa]
x
Modul pružnosti ve smyku [MPa] x
x x
x x
1 x 105
100
1 x 104
2,1 x 105
800
2 x 104
Mez kluzu [MPa]
Blok motoru Hlava válců Vložka Těsnění pod vložkou Těsnění pod hlavou Hlavový šroub Matka
1,259 x 10
5
Poissonova konstanta [-] 0,3
0,27
Tabulka 1: Materiálové parametry modelu Table 1: Material parameters of model 2.1.1 Okrajové podmínky a zatížení Modelu bylo zamezeno v pohybu ve směru osy Z v rovinách Obrázek 2: Orientace číslování válců Figure 2: Numbering of cylinders
Obrázek 3: Vlevo okrajové podmínky, vpravo tmavě vyznačená plocha zatížená tlakem 15MPa Figure 3: On the left boundary conditions, on the right dark area loaded pressure 15MPa
řezu a ve všech směrech ve spodní části bloku (viz obr. 3 vlevo). Zatěžování modelu bylo prováděno ve dvou krocích. Nejprve byly předepjaty hlavové šrouby na hodnotu 330 kN a v druhém kroku byl přidán tlak 15 MPa na hlavu jednoho z válců (válec č. 2) zohledňující zatížení při chodu motoru (obr. 3 vpravo). 2.1.2 Výsledky Vzhledem k náročnosti výpočtu nebylo možné provést výpočet druhého kroku (dynamického zatížení). Proto byl model rozdělen v podélné ose motoru (obr. 4) a byl proveden výpočet obou kroků se stejnými parametry pro levou část modelu (strana výfuku). Průběhy kontaktních tlaků prvního kroku pak byly porovnány s výsledy s nerozděleného modelu (graf 1). Hodnoty se liší v průměru o 1,2 MPa (0,7%). Model lze tedy z tohoto pohledu za symetrický. Válec číslo1
Válec číslo 2
200
200
rozdělený model celý model
195 190 185 180 175 170 165
190 185 180 175 170 165
160
160
155
155
150
rozdělený model celý model
195 Kontaktní tlak [MPa]
Kontaktní tlak [MPa]
Obrázek 4: Rozdělený model Figure 4: Splitted model
150 0
20
40
úhel[°]
60
80
0
20
40
60
80
úhel[°]
Graf 1: Porovnání kontaktních tlaků na těsnění hlavy válců celého a rozděleného modelu Graph 1: Characteristics of contact pressure on cylinder head gasket of whole and splitted model Z grafu 3 je zřetelný pokles kontaktních tlaků těsnění válce číslo 2. Průměrná hodnota tlaku při dynamickém zatížení činí 121,4 MPa, tedy o 58,5 MPa méně než je tomu u statického zatížení. Z grafu pro válec číslo 1 je vidět zřetelný vliv sousedního válce na průběh kontaktních tlaků na těsnění. Průměrná hodnota tlaku zůstává téměř nezměněná, ale průběh se liší. V oblasti úhlu do 40° dochází ke snížení tlaku zhruba o 7 MPa a v oblasti nad 60° k nárůstu rovněž přibližně o 7 MPa. Je to způsobeno deformací bloku motoru (obr. 9) vzniklou působícím tlakem na hlavu sousedního válce.
200 195 kontaktní tlaky [MPa]
190
válec číslo 1 válec číslo 2
185 180 175 170 165 160 155 150 0
20
40
60
80
100
120
140
160
úhel [°]
Graf 2: Průběh kontaktních tlaků na těsnění hlavy válců pro statické zatížená (první krok) celého modelu Graph 2: Characteristics of contact pressure on cylinder head gasket for static load (firs load-step) of whole model Válec číslo 1
Obrázek 5: Orientace úhlů v grafech pro rozdělený model Figure 5: Angle direction for splitted model Válec číslo 2
200
180 160 statika
140
dynamika
120 100 0
20
40 úhel[°]
60
80
Kontaktní tlak [MPa]
Kontaktní tlak [MPa]
200
180
180 statika dynamika
160 140 120 100 0
20
40
60
80
úhel[°]
Graf 3: Porovnání kontaktních tlaků na těsnění hlavy válců mezi statickým a dynamickým zatížení. Graph 3: Characteristics of contact pressure on cylinder head gasket for static and dynamic load
Obrázek 6: Vlevo napětí na bloku motoru, vpravo detail napětí v oblasti okolo těsnění v řezu celým modelem Figure 6: On the left stress engine block, on the right detail on stress around gasket in the cross cut of whole model
Místem s výskytem nejvyššího napětí na bloku motoru je zakončení rádiusu v místě dotyku těsnění vložky válce (obr. 6), což potvrzuje předchozí výpočty provedené jiným softwarem (zpráva SM403/2001), kde byly vlivy hlav, vložky a .šroubů zohledněny silovým účinkem. Napětí zde dosahuje hodnot až 270 MPa. Hlavové šrouby nejsou utaženy na mez kluzu (obr. 8), proto se jediný výskyt Obrázek 7: Jediný výskyt plastických deformací materiálu nachází na krajích těsnění pod vložkou válce obou válců plastických deformací Figure 7: Only occurrence of (obr. 7). plastic deformation.
Obrázek 8: Napětí ve hlavových šroubech. Vlevo statické zatížení válce číslo 1, vpravo dynamické zatížení válce číslo 2. Figure 8: Stress on cylinder head screw. On the left static load in cylinder nr. 1, on the right dynamic load in cylinder nr. 2.
Obrázek 9: Deformace bloku motoru při dynamickém zatížený Figure 9: Block deformation, dynamic load
2.1.3 Rozdělení sil mezi těsnění a šroub Průměrné hodnoty odlehčení válce číslo dva činí 58,5 MPa (32,5%).
∆FODLEHČ = ∆p ⋅ S = 58,5 ⋅ = ∆p ⋅ S = 15 ⋅
π
π 4
⋅ (360 2 − 340 2 ) = 643 333 N;
F = ∆FŠROUB + ∆FODLEHČ =
⋅ (340 2 ) = 1 361 880 N, tzn. ∆FODLEHČ = 0,47 ⋅ F, ∆FŠROUB = 0,53 ⋅ F 4 Síla působící na hlavu válce se dělí mezi šroub a těsnění hlavy válců v poměru 53:47, což přibližně potvrzuje správnost předpokládané rozdělení v poměru 55:45 pro předchozí výpočty [1]. 3
ZÁVĚR Zpráva shrnuje výsledky výpočetních prací sledujících rozdělení síly od spalovacího tlaku motoru při statickém (utažením šroubů) a dynamickém zatížení (od působení spalovacího tlaku). Z důvodu symetričnosti konstrukce skříně víceválcového motoru byl zvolen model pro výpočet jen jako výřez s jednou přepážkou (viz obr. 1). Bohužel i takto zjednodušený model nebylo možné simulovat, protože měl veliké nároky na hardware. Proto byl model rozdělen v podélné ose motoru (viz obr. 4) a byl proveden výpočet jen pro levou část modelu. Možnost tohoto zjednodušení bylo odzkoušeno pro první krok výpočtu (statické zatížení – hlavové šrouby byly utaženy na 330 kN) pro oba modely. Následně bylo zjištěno, že výsledky výpočtu se lišily minimálně a to jen o 1,2 MPa (což odpovídá 0,7 %). Na grafu 3 je znázorněno porovnání kontaktních tlaků na těsnění jednotlivých hlav válců pro statické a dynamické zatížení. Vlivem spalovaní ve válci č. 2 došlo u tohoto válce ke zmenšení kontaktního tlaku na těsnění hlavy válců průměrně o 58,5 MPa (cca 32,5 %). Dále je možné pozorovat vliv válce, kde probíhá spalování, na průběh kontaktních tlaků na těsnění sousedního válce. Průměrná hodnota tlaku zůstává téměř nezměněná, ale průběh se liší. To je způsobeno deformací bloku motoru. Lze se domnívat, že ovlivnění sousedního válce by bylo daleko větší u menšího motoru, kde by byla použita jedna společná hlava. Z výsledků výpočtu bylo možné určit rozdělení síly od spalovacího tlaku mezi hlavové šrouby a těsnění hlavy válců, které vyšlo v poměru 53:47 pro šrouby. 4
LITERATURA
[1] Brabec P., Scholz C., Voženílek R.: Výpočet skříně motoru 6C28GSD (etapa roku 2001),
ZPRÁVA SM403/2001, TU v Liberci, Liberec 2001 [2] Brabec, P. – Kefurt, P. – Scholz, C – Voženílek, R.: Výpočet skříně stacionárního
motoru. In: XXXIII. konference kateder a pracovišť spalovacích motorů českých a slovenských vysokých škol. Str. 126 – 132. SPU Nitra, Račková dolina 2002. ISBN 808069-051-0. [3] Macek O.: Statické tenzometrické měření skříně motoru C28, ZPRÁVA Z010/04,
MotoSystem s.r.o Hradec Králové 2004. [4] Mrnuštík L., Scholz C.: Kovové těsnění hlavy válců, ZPRÁVA SM471/2002, TU v Liberci,
Liberec 2003
PODĚKOVÁNÍ Příspěvek vznikl v rámci projektu LN00B073, podporovaného MŠMT.