Geometria 1. Térelemek a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy sík): illeszkedik ill. nem illeszkedik ii. egyenesek: metsző, párhuzamos, kitérő iii. egyenes és sík: illeszkedik, döfi, párhuzamos 2. A szög és mérése a. Def: szög (Közös pontból két induló félegyenes) Szög részei: szár stb. b. Mérés: Ívmérték, Fok. c. Szögek osztályozása 3. Térelemek távolsága, szöge. a. Legnagyobb alsó korlát: Def: Legyen A , Azt mondjuk hogy k az A legnagyobb alsó korlátja, ha a A esetén: k a és k k esetén létezik h , hogy h k . b. Két alakzat távolsága az őket összekötő szakaszok hosszának legnagyobb alsó korlátja. Példa: Hiperbola és az x tengely távolsága. Távolságuk nulla, még sincs közös pontja. c. Egyenes és sík szöge: Ha egy egyenes pontjaiból egy síkra merőlegest állítunk, akkor a talppontok az egyenes síkra eső merőleges vetületét alkotják. d. Két sík szöge: Két metsző sík közös része egy egyenes, a két sík metszésvonala. Mindkét síkon merőlegest állítunk a metszésvonalra, ezek szöge adja a két sík szögét. 4. Konvex és konkáv alakzatok. a. A sík feldarabolásával síkidomokat kapunk. Például a körlap, a trapéz, a szögtartomány, a félsík síkidomok. A síkidomot vonal határolja. b. Def: (Konvex) Ha bármely két pontját összekötő szakaszt is tartalmazza. c. Def: A sík A1 , A2 , , An pontokat szakaszokkal összekötjük, akkor az így nyert alakzatot poligonnak nevezzük.
d. Def: Ha A1 An , akkor zárt, különben nyílt. e. Def: Síkbeli zárt, önmagát nem metsző poligont egyszerű sokszögnek nevezzük. f. Def: Két nem szomszédos csúcsot összekötő szakasz az átló g. TÉTEL: Az n oldalú sokszög átlóinak száma:
n n 3 2
h. TÉTEL: Az n oldalú sokszög belső szögeinek összege: n 2 180 5. Euklideszi szerkesztés a. Az alábbi három pont véges sokszori alkalmazásával nyerjük az alakzatot. i. Két egyenes metszéspontjának meghatározása ii. Egyenes és kör metszéspontjának meghatározása iii. Két kör metszéspontjának meghatározása 6. Háromszög, négyszög, kör a. Hármoszög i. TÉTEL: Egy háromszögben nagyobb oldallal szemben nagyobb szög van és fordítva. ii. Def: Középvonal iii. TÉTEL: A háromszög középvonal párhuzamos a szemközti oldallal és annak fele. iv. Def: Oldalfelező merőleges v. TÉTEL: A háromszög oldalfelező merőlegesei egy pontban metszik egymást és ez a háromszög körülírható körének középpontja vi. Def: Magosságvonal vii. Def: Belső szögfelező Beírható kör viii. Def: Súlyvonal ix. TÉTEL: A háromszög súlyvonalai egy pontban metszik egymást súlypont. Súlypont a súlyvonalat harmadolja, úgy hogy az oldalhoz közelebbi harmadoló pont. b. Kör i. Def: Egy kör kerületi szöge, ha szög szárai a kör szelői. Ha az egyik érintő érintő szárú kerület szög
ii. TÉTEL: A kerületi szög fele, az ugyanezen íven nyugvó középponti szögnek. c. Négyszögek i. TÉTEL: Thalész: Ha a kör két átellenes pont összekötjük a kör egyez két pont kivételével bármely ponttal, akkor egy derékszögű háromszöget kapunk. Megfordítása: Ha egy háromszög derékszögű, akkor a körülírható kör középpontja az átfogó felezőpontja. ii. TÉTEL: Pitagorász: Egy háromszög derékszögű akkor és csak akkor, ha a befogók négyzetösszege egyenlő az átfogó négyzetével. 7. Sokszöget átdarabolása a. Def: Két sokszög egymásba átdarabolható, ha véges sok részre bontható úgy, hogy a két sokszög részei egymással páronként egybevágóak. b. TÉTEL: (Bolyai-Gerwein) Ha két sokszög területe egyenlő, akkor egymásba átdarabolható. i. 1. SEGÉDTÉTEL: Minden háromszög átdarabolható téglalappá ii. 2. SEGÉDTÉTEL: Két egyenlő alapú paralelogramma mindig átdarabolható egymásba iii. 3. SEGÉDTÉTEL: Minden téglalap átdarabolható adott alapú téglalappá. iv. Bizonyítás: A két sokszöget háromszögekre daraboljuk. A háromszögeket téglalappá (1. ST). A téglalapokat azonos alapú téglalapokká (3. ST). Ezen téglalapok egymásba átdarabolhatók (2. ST) v. A TÉTEL nem általánosítható. Pl poliéderekre nem működik. 8. Konvex poliéderek, szabályos testek a. Def: Az olyan térrészt, amelyet véges számú szögtartomány határol, poliédernek nevezzük. Lap, élek, csúcsok. b. Def: Konvex c. TÉTEL: (Euler) Egy egyszerű konvex poliéder esetén: c l e 2 , ahol c a csúcsok, l a lapok, e élek száma. d. Def: Azokat a poliédereket, amelynek élei, élszögei, lapszögei egyenlők, szabályos testnek nev. e. TÉTEL: Öt szabályos test van.
f. Biz: l db lap van, aminek van n éle, minden csúcsba m él fut, ekkor nl 2e és mc 2e osztok 2e-vel és n, ill. m-mel
1 l 1 c és . Alkalmazzuk Euler összefüggését: n 2e m 2e c l e 2 mindekét oldalt osszuk el 2e-vel
l c 1 1 1 ebből következik hogy a balo. nagyobb mint . 2e 2e 2 e 2
Ezért:
1 1 1 . Mivel: n, m 0 ezért n m 2
2n 2m mn 0 mn 2n 2m 4 n 2 m 2
Mivel: Minden lapnak legalább 3 éle van és minden csúcsba legalább három él fut, ezért n 3 3 3 4 5 Név
Tetraéder
Hexaéder (Kocka)
m 3 4 5 3 3 Oktaéder
Dodekaéder
Ikozaéder
Kép
9. Sík transzformációi (egybevágósági és hasonlósági) a. Def: A sík önmagára történő bijektív leképezése b. Egybevágósági transzformáció ( AB A B : Tengelyes tükrözés, Eltolás, Pont körüli elforgatás, Csúsztatva tükrözés c. Hasonlósági AB AB 10. Affin transzformációk a. Def: A sík egyenestartó leképezése.
A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), "közte van" reláció, egybevágóság (szögeké, szakaszoké). Illeszkedési axiómák. 1. Két ponthoz mindig tartozik egy egyenes, amelyre mindkettő pont illeszkedik. 2. Bármely két ponthoz legfeljebb egy egyenes tartozik, amely mindkét pontra illeszkedik. 3. Minden egyenesre legalább 2 pont illeszkedik; s létezik 3 olyan pont, amelyek nem illeszkednek egyetlen egyenesre sem. 4. Bármely 3 nem egy egyenesre illeszkedő ponthoz tartozik olyan sík, amely mindhárom pontra illeszkedik; minden síknak legalább 3 pontja van. 5. Bármely három, nem egy egyenesen lévő ponthoz legfeljebb egy olyan sík tartozik, amelyre mindhárom pont illeszkedik. 6. Ha egy egyenes két pontja illeszkedik egy síkra, akkor az egyenes minden pontja illeszkedik a síkhoz. 7. Ha két síknak van közös pontja, akkor legalább még egy van. 8. Van legalább 4 olyan pont, amely nem illeszkedik egy síkhoz. Rendezési axiómák 1. Ha B az A és C pontok között van (A — B — C), akkor A,B,C egy egyenesre illeszkedik, és B a C és A pont között van. 2. Két ponthoz, A-hoz és C-hez létezik az AC egyenesnek legalább egy olyan B pontja, hogy C az A és B pont között van. 3. Egy egyenes három pontja közül legfeljebb egy van a másik kettő között. 4. (Pasch axióma) Legyen A, B, C három nem egy egyenesen lévő pont, s e az ABC síkjának olyan egyenese, amely nem megy át az A, B, C pontokon; ha az e egyenes tartalmazza az AB szakasz egy pontját, akkor tartalmazza vagy a BC szakasznak vagy az AC szakasznak egy pontját is. Egybevágósági axiómák 1. Ha A és B az e egyenes két pontja, és A' az e egyenesnek, vagy egy másik é egyenesnek egy pontja, akkor az A'-nak egyik megjelölt oldalán van olyan B' pont, hogy az AB és A'B' szakaszok egybevágóak. (Jelölés: AB AB )
2. Ha két szakasz egybevágó egy harmadikkal, akkor a két szakasz egymással is egybevágó. 3. Ha AB és BC egy e egyenes közös belső pont nélküli szakaszai, továbbá A'B', B'C pedig e-nek vagy egy másik e' egyenesnek közös belső pont nélküli szakaszai és AB AB , BC BC , akkor AC AC .
4. Legyen h, k az sík egy szöge, a' az sík egy egyenese, h' az egyenes 0' kezdőpontú adott félegyenese. Ebben az esetben az a' egyenes megjelölt oldalán egy és csakis egy olyan k' félegyenes létezik, amelyre a h, k egybevágó a h, k val. Minden szög egybevágó önmagával. 5. Ha az ABC és A'B'C háromszögekben és AB AB , AC AC BAC BAC akkor ABC ABC Folytonossági axiómák 1. Archimédeszi axióma. Ha AB és CD két adott szakasz, akkor van olyan n pozitív
egész szám, hogy a CD szakaszt A-ból kiindulva B irányába n-szer fölmérve, túljutunk B-n. 2. Cantor féle axióma. Ha az egyenesen adott az egymásba skatulyázott intervallumok
egy sorozata, akkor van olyan pont, amelyet minden intervallum tartalmaz. Párhuzamossági axióma 1. Legyen e egy egyenes és A egy rajta nem fekvő pont. Ekkor a pont és az egyenes által
meghatározott síkban legfeljebb egy olyan egyenes van A-n keresztül, amely nem metszi e-t.