Chapter 2
RISK AND RETURN Magsi UNS
Bandi, 2010
PENDAHULUAN
Building blocks keuangan meliputi:
time value of money, risk and rate of return model penilaian saham dan obligasi
Bab ini meliputi:
Basic return concepts Basic risk concepts Stand-alone risk Portfolio (market) risk Risk and return: CAPM/SML Magsi UNS
Bandi, 2010
DEFINISI RETURN
return Investasi: indikator unt mengukur hasil finansial dari investasi. Returns:
Returns dpt dinyatakan:
Historical, or prospective (anticipated). Uang (Dollar terms). Persentasi (Percentage terms).
Contoh: Berapa return atas investasi, dg kos $1,000 dan setelah 1 th dijual sebesar $1,100?
Dollar return:
= $100.
Percentage return:
•
$ Received - $ Invested $1,100 $1,000
$ Return/$ Invested $100/$1,000 = 0.10 = 10%.
Mungkin return investasi tak dapat diketahui secara pasti RISIKO Magsi UNS
Bandi, 2010
DEFINISI RISIKO
Risiko didefinisikan secara harfiah sebagai
Risiko merujuk pada kemungkinan terjadinya peristiwa yang tidak menguntungkan Dalam investasi risiko didefinisikan sebagai kemungkinan bahwa perolehan return lebih kecil daripada return harapan.
bahaya (a hazard), hambatan (a peril), lawan dari aman (security atau safety), mengarah ke rugi atau molor (injury).
Semakin besar kemungkinan bahwa return lebih rendah atau negatif, maka investasi lebih berisiko.
Risiko: 1.
Stand-alone risk (tunggal): risiko yg muncul jika ivestor hanya dg aset tunggal
2.
Portfolio risk: risiko dr aset pada portofolio investasi.
Magsi UNS
Bandi, 2010
Probability distribution Stock X
Stock Y
-20
0
15
50
Rate of return (%)
Saham yg lbh berisiko? Mengapa? Magsi UNS
Bandi, 2010
Investment Alternatives (Brigham & Gapinski, 2004)
Economy
Prob.
T-Bill
Alta
Recession
0.10
8.0% -22.0%
Below avg.
0.20
8.0
Average
0.40
Above avg. Boom
Repo
Am F.
MP
28.0%
10.0% -13.0%
-2.0
14.7
-10.0
1.0
8.0
20.0
0.0
7.0
15.0
0.20
8.0
35.0
-10.0
45.0
29.0
0.10
8.0
50.0
-20.0
30.0
43.0
1.00 Magsi UNS
Bandi, 2010
Apakah return Alta dan Repo berubah sesuai atau berlawanan dengan kondisi perekonomoian?
Alta berubah sesuai dg perekonomian, sehingga berhubungan scr positif dg kondisi perekonomian. Sesuai dg situasi perekonomian. Repo berubah berlawanan dg perekonomian, sehingga berhubungan negatif, dan tidak biasa (unusual).
Magsi UNS
Bandi, 2010
Menghitung return ekspektasian pd tiap alternatif ^ r = expected rate of return. n
∧
r=
∑ rP . i i
i=1
^ rAlta = 0.10(-22%) + 0.20(-2%) + 0.40(20%) + 0.20(35%) + 0.10(50%) = 17.4%. Magsi UNS
Bandi, 2010
Menghitung return ekspektasian pd tiap alternatif (Lihat Brigham & Gapinski, 2004)
Alta Market Am. Foam T-bill Repo Men
^r 17.4% 15.0 13.8 8.0 1.7
Alta memiliki return tertinggi Apakah Alta terbaik? lihat risiko! Magsi UNS
Bandi, 2010
RISIKO: Ukuran Statistik
Risiko dikuantitatifkan, dg memberi angka pd:
peristiwa yg terjadi probabilitas
Probabilitas: kemungkinan terjadinya (=0 s/d 1) Distribusi probabilitas:
daftar peristiwa yg mungkin, dan probabilitasnya. n
E (R) =
∑ ( Ri * ρ i ) i =1
R=return yg mungkin diterima p=probabilitas terjadinya. Varian mengukur simpangan return aktual dari return ekspektasi = rata-rata deviasi kuadrat n
σ = ∑((Ri − E(R))2 ρi 2
R=return
i =1 Magsi UNS
Bandi, 2010
Deviasi standar dari return untuk tiap alternatif? σ = Standard deviation σ = Variance = σ ∧ 2
= ∑ ri − r Pi . i =1 n
Magsi UNS
Bandi, 2010
2
(Brigham & Gapinski, 2004) ∧ 2
σ = ∑ ri − r Pi . i =1 n
Alta Inds: σ = ((-22 - 17.4)20.10 + (-2 - 17.4)20.20 + (20 - 17.4)20.40 + (35 - 17.4)20.20 + (50 - 17.4)20.10)1/2 = 20.0%. σT-bills = 0.0%. σAlta= 20.0%.
σRepo = 13.4%. σAm Foam = 18.8%. σMarket = 15.3%. Magsi UNS
Bandi, 2010
Market
Prob.
T-bill
Am. F. Alta
0
8
13.8
17.4
Rate of Return (%)
15 (Sumber: Brigham & Gapinski, 2004) Magsi UNS
Bandi, 2010
Menghitung Risiko
Deviasi standar (Standard deviation =SD) mengukur risiko berdiri sendiri (standalone risk) dr suatu investasi.
Semakin besar SD, semakin tinggi probabilitas bhw return akan jauh di bawah return harapan (expected return).
Koefisien variasi=Kovarian (Coefficient of variation) = ukuran alternatif dari risiko berdiri sendiri. Magsi UNS
Bandi, 2010
Expected Return versus Risk (Brigham & Gapinski, 2004)
Security Alta Inds. Market Am. Foam T-bills Repo Men
Expected return 17.4% 15.0 13.8 8.0 1.7
Magsi UNS
Bandi, 2010
Risk, σ 20.0% 15.3 18.8 0.0 13.4
KOVARIAN, CV = Expected return/standard deviation. CVT-BILLS
= 0.0%/8.0%
= 0.0.
CVAlta Inds
= 20.0%/17.4%
= 1.1.
CVRepo Men
= 13.4%/1.7%
= 7.9.
CVAm. Foam
= 18.8%/13.8%
= 1.4.
CVM
= 15.3%/15.0%
= 1.0.
(Sumber: Brigham & Gapinski, 2004) Magsi UNS
Bandi, 2010
Expected Return versus Coefficient of Variation (Lihat Brigham & Gapinski, 2004)
Security Alta Inds Market Am. Foam T-bills Repo Men
Expected return 17.4% 15.0 13.8 8.0 1.7 Magsi UNS
Bandi, 2010
Risk: σ 20.0% 15.3 18.8 0.0 13.4
Risk: CV 1.1 1.0 1.4 0.0 7.9
Return vs. Risk (Std. Dev.): Mana investasi terbaik? 20.0% Alta
Return
15.0%
Mkt
USR
10.0% T-bills 5.0% Coll. 0.0% 0.0%
5.0%
10.0%
15.0%
Risk (Std. Dev.) (Lihat Brigham & Gapinski, 2004) Magsi UNS
Bandi, 2010
20.0%
25.0%
Portfolio Risk and Return Anggap ada portofolio dua saham dng $50,000 dlm Alta Inds. dan $50,000 dlm Repo Men. • Calculate^r and σ . p
p
n ^ ^ • rp is a weighted average: ^ rp = Σ wiri. i=1 ^ •rp = 0.5(17.4%) + 0.5(1.7%) = 9.6%. ^ ^ = antara ^r •r dan rRepo. p Alta Magsi UNS
Bandi, 2010
Metode Alternatif Estimated Return Economy Recession Below avg. Average Above avg. Boom
Prob. 0.10 0.20 0.40 0.20 0.10
Alta -22.0% -2.0 20.0 35.0 50.0
Repo 28.0% 14.7 0.0 -10.0 -20.0
Port. 3.0% 6.4 10.0 12.5 15.0
^ rp = (3.0%)0.10 + (6.4%)0.20 + (10.0%)0.40 + (12.5%)0.20 + (15.0%)0.10 = 9.6%. (Sumber: Brigham & Gapinski, 2004) Magsi UNS
Bandi, 2010
Metode Alternatif
σp = ((3.0 - 9.6)20.10 + (6.4 - 9.6)20.20 + (10.0 - 9.6)20.40 + (12.5 - 9.6)20.20 + (15.0 - 9.6)20.10)1/2 = 3.3%. σp jauh lbh rendah daripada:
Saham individual (Alta=20% dan Repo=13.4%). Rata-rata Alta dan Repo (16.7%).
Portofolio memberikan return rata-rata tetapi dg risiko jauh lbh rendah. Kunci pokok adalah hubungan negatif. Magsi UNS
Bandi, 2010
Two-Stock Portfolios
Dua saham dpt dikombinasikan unt membentuk portofolio bebas risiko jika ρ = -1.0.
Risiko tdk dpt dikurangi pd semua shm jika dua saham memiliki ρ = +1.0.
Scr umum, saham memiliki ρ ≈ 0.65, sehingga risiko dpt diturunkan tetapi tak dpt dieliminasi.
Investor mungkin memegang banyak saham.
Magsi UNS
Bandi, 2010
(Lihat Brigham & Gapinski, 2004)
Prob. Large 2
1
0
15
Return
σ1 ≈ 35% ; σLarge ≈ 20%. Magsi UNS
Bandi, 2010
(Lihat Brigham & Gapinski, 2004)
σp (%)
Company Specific (Diversifiable) Risk
35
Stand-Alone Risk, σp 20
Market Risk 0
10
20
30
40
2,000+
# Stocks in Portfolio Magsi UNS
Bandi, 2010
Stand-alone = Market Risk + Diversifiable Risk Risiko pasar = Market risk, bagian dari risiko berdiri sendiri (security’s standalone risk) yg tdk dpt dieliminasi dg diversifikasi. Risiko perushaan = Firm-specific, diversifiable, risiko bagian dari risiko berdiri sendiri yg dpt dieliminasi dg diversifikasi. Magsi UNS
Bandi, 2010
Risiko Pasar untuk Sekuritas individual
Risiko pasar (Market risk), yang relevan dg shm yang dimiliki dalam portofolio diversifikasian (well-diversified portfolios), mrp kontribusi sekuritas pada risiko keseluruhan dari portofolio. Risiko pasar untuk suatu saham diukur dg koefisien beta saham (stock’s beta coefficient). Beta juga mengukur naik-turunnya return saham pada relatif pada return pasar. Untuk saham-i, besarnya beta adalah: bi = (ρiM σi) / σM Magsi UNS
Bandi, 2010
Mengestimasi Beta: dengan Regresi
Lakukan regresi:
Return saham pada sumbu Y (Y axis), dan Return pd portofolio pasar pd sumbu x X axis.
Slope garis regresi, yg mengukur valatilitas relatif (relative volatility), merupakan koefisien beta saham, atau b. Magsi UNS
Bandi, 2010
Mengestimasi Beta Dengan Regresi-Contoh (Brigham & Gapinski, 2004) Year 1 2 3 4 5 6 7 8 9 10
Market 25.7% 8.0% -11.0% 15.0% 32.5% 13.7% 40.0% 10.0% -10.8% -13.1% Magsi UNS
Bandi, 2010
PQU 40.0% -15.0% -15.0% 35.0% 10.0% 30.0% 42.0% -10.0% -25.0% 25.0%
Menghitung Beta Untuk PQU (Brigham & Gapinski, 2004)
40%
r KWE
20% rM
0% -40%
-20%
0%
20%
40%
-20% -40%
r PQU = 0.83r M + 0.03
Magsi UNS
2
R = 0.36 Bandi, 2010
Menghitung Beta Untuk PQU
Garis regresi, dan beta, dpt dihitung dg kalkulator dg fungsi regresi atau program exell. Pada contoh ini, untuk PQU--b= 0.83.
Magsi UNS
Bandi, 2010
Menghitung Beta Dalam Praktik
Banyak analis menggunakan S&P 500 sbg return pasar. Para analis mungkin menggunakan empat atau lima tahun dari return bulanan untuk membuat regresi. Ada juga analis yang menggunakan 52 minggu dari return mingguan.
Magsi UNS
Bandi, 2010
Interpretasi Beta
Jika b = 1.0, saham memiliki risiko rata-rata. Jika b > 1.0, saham lbh berisiko daripada rata-rata. Jika b < 1.0, saham kurang berisiko daripada rata-rata. Umumnya saham memiliki beta dalam kisaran 0.5 s/d 1.5.
Magsi UNS
Bandi, 2010
Return Harapan vs Return Pasar (Lihat Brigham & Gapinski, 2004)
Security HT Market USR T-bills Collections
Expected return 17.4% 15.0 13.8 8.0 1.7
Mana yg terbaik? Magsi UNS
Bandi, 2010
Risk, b 1.29 1.00 0.68 0.00 -0.86
SML untuk Menghitung return yg disyaratkan tiap alternatif
Garis Pasar Sekuritas (Security Market Line =SML) mrp bagian dari model penilaian aset modal (Capital Asset Pricing Model =CAPM). SML: ri = rRF + (RPM)bi . Asumsi rRF = 8%; ^rM = rM = 15%. RPM = (rM - rRF) = 15% - 8% = 7%. (Lihat Brigham & Gapinski, 2004) Magsi UNS
Bandi, 2010
Return yg Disyaratkan (Required Rates of Return) (Brigham & Gapinski, 2004)
rAlta = 8.0% + (7%)(1.29) = 8.0% + 9.0% = 17.0%. = rM rAm. F. = rT-bill = rRepo =
8.0% + (7%)(1.00) 8.0% + (7%)(0.68) 8.0% + (7%)(0.00) 8.0% + (7%)(-0.86)
Magsi UNS
Bandi, 2010
= 15.0%. = 12.8%. = 8.0%. = 2.0%.
Return Harapan vs Syaratan (Required) (Brigham & Gapinski, 2004)
^r
Alta
17.4%
r 17.0% Undervalued
Market
15.0
15.0
Fairly valued
Am. F.
13.8
12.8
Undervalued
T-bills
8.0
8.0
Fairly valued
Repo
1.7
2.0
Overvalued
Magsi UNS
Bandi, 2010
ri (%) SML: ri = rRF + (RPM) bi ri = 8% + (7%) bi
.
Alta
rM = 15 rRF = 8
.
. .
. T-bills
Market
Am. Foam
Repo -1
0
1
2
Risk, bi
SML dan Alternatif Investasi Magsi UNS
Bandi, 2010
Menghitung beta portfolio • Anggap portofolio dg 50% Alta dan 50% Repo bp = Weighted average = 0.5(bAlta) + 0.5(bRepo) = 0.5(1.29) + 0.5(-0.86) = 0.22.
Magsi UNS
Bandi, 2010
Return yg disyaratkan pd portofolio (Brigham & Gapinski, 2004)
• portofolio dg 50% Alta dan 50% Repo rp = Weighted average r = 0.5(17%) + 0.5(2%) = 9.5%. Atau dg SML: rp = rRF + (RPM) bp = 8.0% + 7%(0.22) = 9.5%. Magsi UNS
Bandi, 2010
(Lihat Brigham & Gapinski, 2004)
Dampak perubahan Inflasi pd SML Required Rate of Return r (%)
∆ I = 3%
New SML
SML2 SML1
18 15 11 8
Original situation
0
0.5
1.0 Magsi UNS
1.5 Bandi, 2010
2.0
Dampak ketidaksukaan risiko (Risk Aversion)
Required Rate of Return (%)
Stlh peningkatan risk aversion SML2
rM = 18% rM = 15%
SML1
18 15
∆ RPM = 3%
8
Situasi awal
(Sumber Brigham & Gapinski, 2004)
Risk, bi
1.0 Magsi UNS
Bandi, 2010
Pengujian Empiris CAPM: Konfirmasi atau Menolak
Belum ada uji secara sempurna Uji statistikal memiliki problema yg menyebabkan verifikasi atau penolakan scr benar tidak mungkin
Return yg disyaratkan investor didasarkan pd risiko mendatang (future risk), tetapi beta dihitung dg data historis. Investor mungkin berkenaan dengan risiko stand-alone maupun market risk.
Magsi UNS
Bandi, 2010
Chap 3 RISK AND RETURN: Part II
Capital Asset Pricing Model (CAPM)
Efficient frontier Capital Market Line (CML) Security Market Line (SML) Beta calculation
Arbitrage pricing theory Fama-French 3-factor model Magsi UNS
Bandi, 2010
Model Penilaian Aset Modal (Capital Asset Pricing Model=CAPM) CAPM = model equilibrium yg menetapkan hubungan antara risiko dan return yg disyaratkan (required rate of return) unt aset yg dipegang dlm portofolio (well-diversified portfolios) diperkenalkan pertama kali oleh William Sharpe tahun 1964, dia memperoleh anugerah Nobel dalam bidang ekonomi pd th 1990 Fokus pd hubungan ekuilibrium antara risiko dan return pd aset berisiko Dibangun atas teori portofolio Markowitz Tiap investor dianggap mendiversifikasi portofolionya sesuai dg model Markowitz
CAPM didasarkan pd premis bhw hanya satu faktor yg mempengaruhi risiko. Faktor? Investor rasional: memilih suatu portofolio dengan return ekspektasi tertinggi pd tingkat risiko tertentu (=portofolio optimal) Magsi UNS
Bandi, 2010
Asumsi CAPM
Asumsi
Semua investor:
Semua aset berisiko dimiliki oleh semua investor Semua investor akan memiliki portofolio aset berisiko yang sama portfolio adalah portofolio pasar—>nilai portofolio tertimbang dari semua aset berisiko. Menggunakan informasi sama untuk menghasilkan batas investasi yang efisien (efficient frontier) Memiliki horison waktu satu-periode Dapat pinjam atau meminjamkan uang pada tingkat return bebas risiko
Tidak ada biaya transaksi, tidak ada pajak pribadi, tidak ada inflasi Tak ada investor tunggal yang dapat mempengaruhi harga saham Pasar modal dalam ekuilibrium
Magsi UNS
Bandi, 2010
Return Portfolio Harapan, rp
Efficient Set
Feasible Set
Portofolio Feasibel dan Efisien Magsi UNS
Bandi, 2010
Risiko, σp
Portofolio Feasibel dan Efisien
Portofolio feasibel (feasible set of portfolios) = semua portofolio yg dpt dibangun dr sejumlah saham tertentu.
Portofolio efisien= portofolio yg menawarkan:
Return tertinggi pd jumlah risiko tertentu, atau
Risiko terkecil pd sejumlah return tertentu.
Kumpulan portofolio efisien disebut set efisien atau garis efisien (efficient set or efficient frontier)
Magsi UNS
Bandi, 2010
Return harapan, rp
IB I 2 B 1
Optimal Portfolio Investor B
IA2 IA1
Optimal Portfolio Investor A
Portofolio Optimal Magsi UNS
Bandi, 2010
Risiko σp
Portofolio Optimal
Kurve indeferen (Indifference curves) merefleksikan sikap investor terhadap risiko sbg refleksian fungsi sulih ganti risiko/return-nya (risk/return tradeoff function).
Kurve tsb berbeda di antara investor disebabkan oleh perbedaan dlm ketidaksukaanya pd risiko.
Portofolio optimal investor= titik tangen (tangency point) antara set efisien dan kurve indiferen.
Magsi UNS
Bandi, 2010
Return Bebas risiko (rRF) dan Batas efisien (efficient frontier)
Jika aset bebas risiko (risk-free) ditambahkan pd set portofolio feasibel, investor dpt menciptakan portofolio yg mengkombinasi aset bebas risiko dg aset berisiko (risky assets)
Hubungan garis lurus rRF dg M, titik tangen antara garis tsb dg set efisien sebelumnya, menjadi batas efisien baru (new efficient frontier) Magsi UNS
Bandi, 2010
Set Efisien dan Asset Bebas Risiko Return harapan, rp
Z
.
B
M
^ rM
rRF
.
A
The Capital Market Line (CML): New Efficient Set
. σM Magsi UNS
Risiko, σp Bandi, 2010
Garis Pasar Modal (Capital Market Line)
Garis pasar modal (Capital Market Line =CML) = kombinasi linier dari aset bebas risiko dan portofolio pasar (Portfolio M) Portofolio di bawah CML adalah jelek (inferior)
CML menentukan set efisien baru. Semua investor akan memilih portofolio pd CML.
Magsi UNS
Bandi, 2010
Persamaan CML
^ rp =
rRF +
Intercep
Magsi UNS
^ rM - rRF
σM Slope
Bandi, 2010
σp.
Ukuran Risiko
Capital Market Line L
M
E(RM)
x RF
y
σM
Risk Magsi UNS
Garis dari RF ke L adalah capital market line (CML) x = risk premium = E(RM) - RF y =risiko =σM Slop = x/y =[E(RM) - RF]/σM RF = y - intersep
Bandi, 2010
Makna CML
Return harapan pd berbagai portofolio efisien adl sama dg return bebas risiko ditambah risiko tambahan (risk premium) Portofolio optimal unt berbagai investor adl titik tangen (point of tangency) antara CML dan kurve indeferen investor
Magsi UNS
Bandi, 2010
Expected Return, rp
CML I2
^ rM ^r
R
I1
. .
M
R
R = Optimal Portfolio
rRF
Risk, σp
σR σ M Magsi UNS
Bandi, 2010
Garis Pasar Sekuritas Security Market Line (SML)
CML menggambarkan hubungan risk/return untuk portofolio efisien (efficient portfolios) Garis Pasar sekuritas (SML), bagian dari CAPM, menggambarkan hubungan risk/return untuk saham individual
Magsi UNS
Bandi, 2010
Persamaan SML
Ukuran risiko yg digunakan dalam SML adalah koefisien beta perusahaan-i, bi.
Persamaan SML :
ri = rRF + (RPM) bi
Magsi UNS
Bandi, 2010
Security Market Line
SML E(R)
A
kM
B
kRF
0
C
0.5
Beta = 1.0 mengimplikasikan risiko pasar Sekuritas A dan B lebih berisiko daripada pasar
1.0 1.5 BetaM Magsi UNS
2.0
Bandi, 2010
Beta >1.0
Sekritas C kurang berisiko daripada pasar
Beta <1.0
Menghitung beta
Buat garis regresi return yg lalu sahami (past returns on Stock i) vs return yg lalu pasar (returns on the market) Garis regresi disebut garis karakteristik (characteristic line) Koefisien slope dari garis karakteristik dianggap sbg koefisien beta
Magsi UNS
Bandi, 2010
Menghitung beta _ ri
. .
20 15
Year rM ri 1 15% 18% 2 -5 -10 3 12 16
10 5
-5
0 -5
.
-10
5
10
15
20
^ ri = -2.59 + 1.44 k^M Magsi UNS
Bandi, 2010
_ rM
Metode Penghitungan
Para analis menggunakan komputer dg sofware statistik atau spreadsheet unt melalukan regresi.
Menggunakan data Minimal 3 tahun dari return bulanan atau 1 tahun dari return mingguan. Beberapa analis menggunakan 5 tahun return bulanan. Magsi UNS
Bandi, 2010
Metode Penghitungan
Jika beta = 1.0, shm berada pd risiko ratarata, =risiko pasar
Jika beta > 1.0, shm lbh berisiko daripada pasar
Jika beta < 1.0, shm kurang berisiko daripada pasar
Umumnya saham memiliki beta dalam kisaran 0.5 s/d 1.5.
Magsi UNS
Bandi, 2010
Interpretasi Hasil Regresi
Angka R2 mengukur persentasi varian saham yg dijelaskan oleh pasar. Angka khas R2 adl:
0.3 untuk saham individual Lebih dari 0.9 unt portofolio diversifikasian (well diversified portfolio)
Magsi UNS
Bandi, 2010
Interpretasi Hasil Regresi
Interval keyakinan 95% menunjukkan kisaran yg didalamnya kita yakin 95% bhw nilai beta yg benar berada di dalamanya Kisaran khas (typical range):
Dari sekitar 0.5 s/d 1.5 unt saham individual Dari sekitar 0.92 s/d 1.08 unt portofolio diversifikasian
Magsi UNS
Bandi, 2010
Hubungan antara Risiko Standalone, Pasar, dan diversifiabel σ2j = b2j σM2 + σe2j . σ2j = varian = risiko stand-alone Shm j. 2 = risiko pasar Shm j. b2j σM
σe2j = varian angka eror = risiko diversifiabel Shm j. Magsi UNS
Bandi, 2010
Verifikasi CAPM
Ada dua uji potential yg dpt dilakukan untuk memverifikasi CAPM:
Uji stabilitas beta (Beta stability tests) Uji yg didasarkan pda kemiringan garis SML (slope of the SML)
Magsi UNS
Bandi, 2010
UJi SML
Uji SML mengindikasikan:
Hubungan yg lebih-kurang linier (more-less linear relationship) antara return realisasian dan risiko pasar
Slope lebih kecil daripad yang diprediksikan
Ketidak relevanan risiko diversifiabel (Irrelevance of diversifiable risk) yg dispesifikasi dalam model CAPM dpg dipertanyakan (More...) Magsi UNS
Bandi, 2010
UJi SML
Beta sekuritas individual mrp estimator yg kurang baik tentang risko mendatang
Beta portofolio dari 10 atau lebih saham yg dipilih scr random adl stabel (reasonably stable)
Beta portofolio masa lalu (Past portfolio betas) merp estimasi yg bagus tentang perubahan portofolio mendatang (future portfolio volatility)
Magsi UNS
Bandi, 2010
Problema Uji CAPM
Adakah problema dg uji CAPM?
Yes.
Richard Roll mempertanyakan apakah mungkin untuk menguji scr konseptual CAPM (was even conceptually possible to test the CAPM).
Roll menunjukkan bahwa tidak meungkin membuktikan bahwa investor berperilaku sesuai dg teori CAPM. Magsi UNS
Bandi, 2010
Konklusi Berkenaan dengan CAPM
Tidak mungkin untuk memverifikasi.
Studi yg ada tlh mempertanyakan validitas.
Investor tampak peduli pd risiko pasar maupun risiko berdiri sendiri (standalone risk). Maka SML mungkin tidak menghasilkan estimasi benar tentang ri. Magsi UNS
Bandi, 2010
Konklusi Berkenaan dengan CAPM
Konsep CAPM/SML didasarkan pd ekspektasian, sedangkan beta dihitung dg menggunakan data historis. Data historis suatu perusahaan mungkin tidak merefleksikan ekspektasi investor tentang tingkat risiko mendatang (future riskiness).
Model lain sedang dikembangkan yg suatu saat bisa menggantikan CAPM, tetapi masih tetap memberikan rerangka yg baik unt berfikir tentang risiko dan return.
Magsi UNS
Bandi, 2010
CAPM dan Arbitrage Pricing Theory (APT)
Apa perbedaan antara CAPM dan APT (Arbitrage Pricing Theory?
CAPM adalah model faktor tunggal (single factor model).
APT menganjurkan hubungan antara risiko dan return adl lebih kompleks dan disebabkan oleh banyak faktor (multiple factors) seperti petumbuhan GDP, inflasi harapan, perubahan tarif pajak, dan tingkat penghasilan dividen (dividend yield) Magsi UNS
Bandi, 2010
CAPM dan Arbitrage Pricing Theory (APT)
Kritik CAPM adl hanya menggunakan faktor tunggal dlm menentukan return suatu portofolio, yaitu beta portofolio. Untuk mengatasi kritik atas CAPM, model baru dikembangkan, yg didasarkan pada teori penilaian arbitrase (arbitrage pricing theory/APT). Seperti CAPM, APT berasums: ada hubungan antara risiko dan return. Namun demikian, APT memiliki asumsi lebih sedikit. Berikut ini asumsi yg diperlukan CAPM tetapi tidak diperlukan untuk APT: 1. 2. 3.
Horison investasi periode tunggal Meminjam atau memberi pinjaman pada tingkat bebas risiko Investor merupakan pengoptimasi rerata-varian
Magsi UNS
Bandi, 2010
Arbitrage Pricing Theory APT
APT digunakan unt beberapa aplikasi praktik sesungguhnya (real world applications) Akseptasi (acceptance) lambat, sebab model ini tidak menspesifikasi faktor apa yg mempengaruhi return saham. Diperlukan lbh banyak riset atas model risiko dan return untuk menemukan suatu model yg scr teoretikal tepat, scr empiris terverifikasi, dan mudah unt digunakan
Magsi UNS
Bandi, 2010
Arbitrage Pricing Theory
Berdasarkan pada Law of One Price
Berbeda dengan CAPM, APT tidak mengasumsikan
Dua aset identik lainnya tak dapat menjual pada harga berbeda Harga Ekuilibrium menyesuaiakanuntuk mengeliminasi semua kesempatan arbitrase Horison investasi periode-tunggal, ketiadaan pajak peribadi, tak ada risiko pinjam atau memberi pinjaman, keputusan varian-rerata (meanvariance decisions )
Rumus APT dapat ditunjukkan sebagai berikut:
[
] [
]
[
E(ri ) = rrf + β1 E(r1 ) − rrf + β2 E(r2 ) −rrf +...+ βn E(rn ) − rrf
Notasi i = 1, 2, …, n = menunjukkan faktor berbeda yang memiliki dampak meliputi (over) suatu reutn investasi.
Magsi UNS
Bandi, 2010
]
Factors
APT berasumsi return dihasilkan dengan suatu model faktor Karakteristik Factor
Tiap risiko harus memiliki pengaruh pervasif pada return saham Faktor Risiko harus mempengaruhi return harapan dan memiliki harga nonzero Faktor risiko harus unpredictabel untuk pasar
APT merupakan model faktor berganda, yang menggunakan faktor-faktor dalam menentukan return portofolio, selain (in addition to) beta portofolio, yaitu:
seperti tingkat inflasi, tingkat pertumbuhan ekonomi, slop kurve penghasilan investasi (slope of the yield curve), dst.,
Magsi UNS
Bandi, 2010
APT Model Hal yang paling penting adalah penyimpangan faktor dari nilai harapannya Hubungan return-risiko untuk APT dapat digambarkan sebagai: E(Ri) =RF +bi1 (risk premium for factor 1) +bi2 (risk premium for factor 2) +… +bin (risk premium for factor n)
Magsi UNS
Bandi, 2010
Most use factors in APT Model
Umumnya penelitian empiris menunjukkan 3 – 5 faktor mempengaruhi return sekuritas dan diberi harga di pasar. Roll dan Ross mengidentifikasi 5 faktor sistematik
Perubahan Perubahan Perubahan Perubahan Perubahan
dalam inflasi harapan bukan antisipasan (Unanticipated changes) dalam inflasi bukan antisipasi dalam produksi industrial bukan antisipasian dalam tambahan risiko-tak terbayar bukan antisipasian dilihat dari struktur tingkat bunga
Tiga faktor pertama di atas berpengaruh pada arus kas perusahaan Dua faktor terakhir berpengaruh pada tingkat diskonto. Roll dan Ross mengindikasikan bahwa APT adalah untuk mengakui sedikit faktor sistematik yang berpengaruh pada return rata-rata jangka panjang.
Magsi UNS
Bandi, 2010
Most use factors in APT Model
Berry, Michael A., Edwin Burmeister and Marjorie B. McElroy. "Sorting Out Risks Using Known APT Factors," Financial Analyst Journal, 1988, v44(2), 2942.
Perubahan bukan antisipasian dalam (Unanticipated changes ) dalam
Risiko tak terbayar Unsur struktur suku bungan (term structure of interest rates ) Inflasi atau deflasi Pertumbuhan harapan jangka panjang tingka laba untuk perekonomian tersebut Risiko pasar Residual
Magsi UNS
Bandi, 2010
Return Diminta (Required Return) Di bawah APT ri = rRF + (r1 - rRF)b1 + (r2 - rRF)b2 + ... + (rj - rRF)bj. rj = return yg diminta pd suatu portofolio yg sensitif hanya pd faktor ekonomik j. bj = sensitivitas shm i pd faktor ekonomik j. Magsi UNS
Bandi, 2010
Model 3-Factor Fama-French
Fama dan French mengemukakan 3 faktor:
Ekses Return pasar, rM-rRF. Return pada shm S, suatu portofolio perusahaan kecil (dimana ukuran-size didasarkan pd nilai pasar ekuitas) dikurangi return pada shm B, suatu portofolio perusahaan besar. Return ini disebut rSMB, untuk S dikurangi B. Return pd H, suatu portofolio perusahaan dg rasio nilai buku-harga pasar (book-to-market ratio) tinggi, (dg menggunakan nilai ekuitas pasar dan ekuitas nilai buku) dikurangi return pd shm L, sutau portofolio perusahaan dengan rasio nilai buku-harga pasar rendah. Return ini disebut rHML, untuk shm H dikurangi shm L. Magsi UNS
Bandi, 2010
Return Diminta (Required Return) Di bawah Model 3-Faktor Fama-French ri = rRF + (rM - rRF)bi + (rSMB)ci + (rHMB)di bi = sensitivitas saham-i pd return pasar. cj = sensitivitas saham-i pd faktor ukuran (size factor). dj = sensitivitas saham-i pd faktor rasio nilai buku-harga pasar (book-to-market factor).
Magsi UNS
Bandi, 2010
Menghitung Return Yg Diminta Return diminta (Required Return) unt saham-i: risiko beta, bi=0.9; return bebas risiko, rRF=6.8%; premium risiko pasar (risiko di atas risiko bebas risiko= market risk premium), rM = 6.3%,, ci=-0.5, nilai ekspektasian untuk faktor ukuran (size factor) sebesar 4%, di=-0.3, dan nilai ekspektasian untuk faktor rasio nilai bukuharga pasar (book-to-market factor) sebesar 5%.
ri = rRF + (rM - rRF)bi + (rSMB)ci + (rHMB)di ri = 6.8% + (6.3%)(0.9) + (4%)(-0.5) + (5%)(-0.3) = 8.97% Magsi UNS
Bandi, 2010
Return Diminta (Required Return) CAPM untuk Saham i CAPM: ri = rRF + (rM - rRF)bi ri = 6.8% + (6.3%)(0.9) = 12.47% Fama-French ( slide sebelumnya): ri = 8.97% Magsi UNS
Bandi, 2010
Problems with APT
Faktor-faktor bukan spesifikasian fakta yang lalu (are not well specified ex ante)
Untuk mengimplementasikan model APT, perlu faktor yang menjelaskan di antara return sekuritas
CAPM mengindentifikasi portofolio pasar sebagai faktor tunggal
Tak satupun CAPM maupun APT yang telah terbukti unggul
Keduanya mengandalkan pada harapan yang tak observabel
Magsi UNS
Bandi, 2010
Referensi
Brigham, Eugene F. dan Louis C. Gapenski. 2004. Financial Management: Theory and Practice. Eighth Edition. USA: The Dryden Press
Magsi UNS
Bandi, 2010