ANALISIS DOSIS SERAP RADIASI FOTO THORAX PADA PASIEN ANAK DI INSTALASI RADIOLOGI RUMAH SAKIT PARU JEMBER
SKRIPSI
Oleh Evi Widayati NIM 081810201004
JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2013
ANALISIS DOSIS SERAP RADIASI FOTO THORAX PADA PASIEN ANAK DI INSTALASI RADIOLOGI RUMAH SAKIT PARU JEMBER
SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Fisika (S1) dan mencapai gelar Sarjana Sains
Oleh Evi Widayati NIM 081810201004
JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2013
PERSEMBAHAN
Skripsi ini saya persembahkan untuk: 1. Ibunda (almarhumah) Subaidah dan Ayahanda (almarhum) Muhammad tercinta, yang telah melahirkan dan membesarkan serta atas untaian dzikir dan doa yang mengiringi langkahku selama menuntut ilmu, dukungan, nasehat, bimbingan, perhatian, dan curahan kasih sayang tanpa batas yang telah diberikan sejak aku kecil, serta pengorbanan selama ini; 2. Paman Slamin dan bibi Naki, Suryati tercinta, atas do‟a, dukungan, nasehat, bimbingan, perhatian dan kasih sayang selama ini seperti layaknya anak sendiri. 3. Yunda Yuliana tercinta, atas doa dan kasih sayang serta motivasi yang telah diberikan kepada adikmu selama ini; 4. Kakanda Randhi Nanang Darmawan tersayang, yang selalu mendampingi, memberikan dukungan, motivasi, dan semangat setiap waktu; 5. guru-guru sejak taman kanak-kanak sampai dengan perguruan tinggi yang telah mendidik dengan penuh kesabaran; 6. Almamater Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.
iii
MOTO
Hai orang-orang yang beriman, mintalah pertolongan (kepada Allah) dengan sabar dan (mengerjakan) shalat, sesungguhnya Allah beserta orang-orang yang sabar. (terjemahan Surat Al-Baqarah ayat 153)*)
Jadilah seperti semut dalam ketekunannya. Dia berusaha merambat naik ke batang pohon hingga ratusan kali, dan jatuh sebanyak jumlah yang sama. Tapi dia terus berusaha naik kembali hingga akhirnya sampai pada tujuan yang diinginkan. Karena itu jangan cepat menyerah dan bosan.**)
*) Departemen Agama Republik Indonesia. 1998. Al Qur‟an dan Terjemahannya. Semarang: PT Kumudasmoro Grafindo. **) Al-Qarni, „Aidh. 2004. La Tahzan, jangan bersedih !. Jakarta: Qisthi Press.
iv
PERNYATAAN
Saya yang bertanda tangan di bawah ini: Nama : Evi Widayati NIM
: 081810201004
Menyatakan dengan sesungguhnya bahwa karya ilmiah yang berjudul ”Analisis Dosis Serap Radiasi Foto Thorax pada Pasien Anak di Instalasi Radiologi Rumah Sakit Paru Jember” adalah benar-benar hasil karya sendiri, kecuali kutipan yang telah saya sebutkan sumbernya, belum pernah diajukan pada institusi mana pun, dan bukan karya jiplakan. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi. Penelitian ini merupakan bagian dari penelitian bersama dosen dan mahasiswa, dan hanya dapat dipublikasikan dengan mencantumkan nama dosen pembimbing. Demikian pernyataan ini saya buat dengan sebenarnya, tanpa ada tekanan dan paksaan dari pihak mana pun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.
Jember, Maret 2013 Yang menyatakan,
Evi Widayati NIM 081810201004
v
SKRIPSI
ANALISIS DOSIS SERAP RADIASI FOTO THORAX PADA PASIEN ANAK DI INSTALASI RADIOLOGI RUMAH SAKIT PARU JEMBER
Oleh Evi Widayati NIM 081810201004
Pembimbing Dosen Pembimbing Utama
: Drs. Yuda Cahyoargo Hariadi, M.Sc, Ph.D
Dosen Pembimbing Anggota
: Dra. Arry Yuariatun Nurhayati
Pembimbing Lapangan
: Dwi Kirana L. S, Amd.Rad
vi
PENGESAHAN Skripsi yang berjudul ” Analisis Dosis Serap Radiasi Foto Thorax pada Pasien Anak di Instalasi Radiologi Rumah Sakit Paru Jember” telah diuji dan disahkan pada: hari, tanggal
:
tempat
: Fakultas Matematika dan Ilmu Pengetahuan Alam
Tim Penguji: Ketua,
Sekretaris,
Drs.Yuda Cahyoargo Hariadi, M.Sc., Ph.D NIP 19620311 198702 1 001
Dra. Arry Yuariatun Nurhayati NIP 19610909 198601 2 001
Pembimbing Lapangan
Anggota I,
Dwi Kirana L.S, Amd.Rad NIP 19740709 199703 1 007 Anggota II,
Endhah Purwandari, S.Si., M.Si NIP 19811111 200501 2 001
Nurul Priyantari, S.Si., M.Si. NIP 19700327 199702 2 001 Mengesahkan Dekan,
Prof. Drs. Kusno, DEA., Ph.D. NIP 19610108 198602 1 001
vii
RINGKASAN
Analisis Dosis Serap Radiasi Foto Thorax pada Pasien Anak di Instalasi Radiologi Rumah Sakit Paru Jember; Evi Widayati, 081810201004; 2013: 41 halaman; Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember.
Radiologi merupakan salah satu instalasi penunjang medik dengan menggunakan sumber radiasi pengion seperti Sinar-X. Salah satu jenis pemeriksaan yang dapat dilakukan adalah foto Thorax, dimana pemanfaatannya juga semakin meluas dalam beberapa kategori usia seperti pada pasien anak. Selain memberikan manfaat, sinar-X juga dapat memberikan ancaman yang merugikan manusia misalnya efek radiasi pada kulit. Namun akhir-akhir ini perhatian yang cukup serius adalah dampak dari radiasi sinar-X sebagai pencetus carsiogenik pada manusia, apalagi jika diterapkan pada anak-anak. Fungsi organ-organ tubuh anak belum matang, serta selnya masih dalam proses pertumbuhan sehingga sangat sensitif terhadap radiasi. Oleh karena itu, proteksi radiasi pada pasien anak perlu ditingkatkan dan mendapatkan perhatian yang serius terutama dalam pemberian dosis. Oleh karena itu perlu dilakukan pengukuran dosis serap yang diterima oleh pasien anak. Tujuan penelitian ini yaitu untuk mengetahui dan menganalisa dosis serap radiasi foto thorax yang diterima oleh pasien anak di Instalasi Radiologi Rumah Sakit Paru Jember. Dalam penelitian ini terdiri dari pasien laki dan wanita usia 1-15 tahun yang kemudian digolongkan menjadi 3 kelompok usia yaitu usia 1-5 tahun, 5-10 tahun, dan 10-15 tahun. Masing-masing kategori diambil sebanyak 50 data yang kemudian diolah dan dianalisis secara statistik dengan menggunakan metode oneway ANOVA. Dari hasil tersebut kemudian dibandingkan dengan nilai dosis yang
viii
direkomendasikan oleh UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Berdasarkan hasil analisis dan pembahasan, maka nilai dosis serap radiasi sinar-X yang dihasilkan baik untuk pasien anak jenis kelamin laki ataupun wanita, untuk setiap kategori usia yang berbeda diperoleh nilai rata-rata dosis serap yang beragam. Dalam hasil dosis serap baik untuk pasien laki ataupun pasien wanita terlihat bahwa pasien anak usia 1-5 tahun mendapatkan nilai rata-rata dosis yang terendah, sedangkan pasien anak usia 10-15 mendapatkan nilai dosis terbesar. Hasil penelitian ini menunjukkan bahwa usia berpengaruh terhadap pemberian faktor exposure. Berdasarkan hasil uji statistik oneway ANOVA untuk pasien laki atau wanita, diperoleh hasil Fhitung < Ftabel (3,8931) atau P(sig) >0,0500, hal ini menunjukkan bahwa tidak terdapat perbedaan rata-rata nilai dosis serap untuk usia 15 tahun dengan usia 5-10 tahun. Namun keduanya, usia 1-5 tahun dan usia 5-10 tahun ini memilki nilai rata-rata dosis serap yang berbeda dengan usia 10-15 tahun yang ditunjukkan oleh hasil uji statistik oneway ANOVA, dimana dihasilkan Fhitung>Ftabel (3,8931) atau P(sig)<0,0500. Untuk perbandingan nilai rata-rata dosis serap pada pasien anak laki dengan wanita pada masing-masing kategori usia, hasil output anova menunjukkan nilai signifikansi ≥0,0500. Hasil ini menunjukkan bahwa untuk pasien anak, jenis kelamin tidak menjadi pengaruh terhadap pemberian nilai dosis serap. Mengacu pada hasil dapat disimpulkan bahwa tidak terdapat perbedaan yang signifikan terhadap nilai dosis serap antara pasien usia 1-5 tahun dengan usia 5-10 tahun. Akan tetapi usia 1-5 tahun dan usia 5-10 tahun berbeda dengan pasien usia 1015 tahun, baik untuk pasien laki ataupun wanita. Secara umum nilai dosis keseluruhan yang diterima oleh pasien anak di Instalasi Radiologi Rumah Sakit Paru Jember masih dibawah batas maksimal yang diijinkan oleh UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation).
ix
PRAKATA
Puji syukur ke hadirat Allah SWT atas segala rahmat dan karunia-Nya sehingga penulis dapat meyelesaikan skripsi ini yang berjudul “Analisis Dosis Serap Radiasi Foto Thorax pada Pasien Anak di Instalasi Radiologi Rumah Sakit Paru Jember”. Skripsi ini disusun untuk memenuhi salah satu syarat menyelesaikan Pendidikan strata satu (S1) pada Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember. Penyusunan skripsi ini tidak lepas dari bantuan berbagai pihak. Oleh karena itu, penulis mengucapkan terima kasih kepada: 1. Drs.Yuda Cahyoargo Hariadi, M.Sc., Ph.D., selaku Dosen Pembimbing Utama, Dra Arry Yuariatun Nurhayati, selaku Dosen Pembimbing Anggota, dan Dwi Kirana L.S, Amd.Rad, selaku pembimbing lapangan, yang telah meluangkan waktu, pikiran, dan perhatian dalam penulisan skripsi ini; 2. Endhah Purwandari, S.Si., M.Si., selaku Dosen Penguji I dan Nurul Priyantari, S.Si., M.Si., selaku Dosen Penguji II yang telah memberikan kritik dan saran demi kebaikan skripsi ini; 3. radiografer dan staff Instalasi Radiologi Rumah Sakit Paru Jember, yang telah membantu selama proses penelitian; 4. teman-teman seperjuangan angkatan 2008 dan teman-teman tim Biofisika Jurusan Fisika FMIPA Universitas Jember; 5. semua pihak yang tidak dapat disebutkan satu per satu. Penulis menerima segala kritik dan saran dari semua pihak demi kesempurnaan skripsi ini. Akhirnya penulis berharap semoga skripsi ini dapat bermanfaat.
Jember, Maret 2013
Penulis
x
DAFTAR ISI
Halaman HALAMAN SAMPUL ................................................................................... i HALAMAN JUDUL ...................................................................................... ii HALAMAN PERSEMBAHAN .................................................................... iii HALAMAN MOTO ....................................................................................... iv HALAMAN PERNYATAAN ........................................................................ v HALAMAN PEMBIMBINGAN ................................................................... vi HALAMAN PENGESAHAN ........................................................................ vii RINGKASAN ................................................................................................. viii PRAKATA ...................................................................................................... x DAFTAR ISI ................................................................................................... xi DAFTAR TABEL .......................................................................................... xiv DAFTAR GAMBAR ...................................................................................... xv DAFTAR LAMPIRAN .................................................................................. xvi BAB 1. PENDAHULUAN ............................................................................. 1 1.1 Latar Belakang ............................................................................ 1 1.2 Rumusan Masalah ...................................................................... 3 1.3 Tujuan .......................................................................................... 3 1.4 Manfaat ........................................................................................ 4 BAB 2. TINJAUAN PUSTAKA .................................................................... 4 2.1 Radiasi Sinar-X ........................................................................... 5 2.2 Interaksi Radiasi dengan Materi Fisik ..................................... 7 2.3 Pemeriksaan Thorax ................................................................... 9 2.3.1 Anatomi dan Fungsi Thorax................................................ 9 2.3.2 Teknik Radiografi Thorax ................................................... 11 2.4 Aspek Biologi Proteksi Radiasi .................................................. 13 2.4.1 Efek Paparan Radiasi terhadap Kesehatan .......................... 13 xi
2.4.2 Proteksi Radiasi ................................................................... 16 2.5 Pengukuran Dosis Serap Radiasi .............................................. 17 2.6 Penggolongan Usia dan Rekomendasi Dosis Radiasi pada pasien anak ................................................................................ 18 BAB 3. METODE PENELITIAN ................................................................. 20 3.1 Tempat dan Waktu Penelitian ................................................... 20 3.2 Alat dan Bahan ........................................................................... 20 3.3 Tahapan Penelitian ..................................................................... 21 3.3.1 Survey Literatur .................................................................. 23 3.3.2 Identifikasi Masalah ............................................................ 23 3.3.3 Studi Pustaka ....................................................................... 23 3.3.4 Observasi Lapangan dan Perijinan ...................................... 23 3.3.5 Pengambilan Data ............................................................... 24 3.3.6 Normalisasi Data ................................................................. 25 3.3.7 Pengolahan dan Analisa Data.............................................. 26 3.3.8 Pembahasan dan Kesimpulan .............................................. 26 BAB 4. HASIL DAN PEMBAHASAN ........................................................ 27 4.1 Hasil dan Analisa Data Penelitian ............................................. 27 4.1.1 Hasil Pengukuran Dosis Serap Radiasi Sinar-X pada Pasien Jenis Kelamin Laki ................................................. 27 4.1.2 Hasil Pengukuran Dosis Serap Radiasi Sinar-X pada Pasien Jenis Kelamin Wanita ........................................... 30 4.1.3 Analisis Dosis Serap Radiasi Sinar-X antara Pasien Anak Jenis Kelamin Laki dengan Wanita ......................... 31 4.2 Pembahasan ................................................................................ 33 BAB 5. PENUTUP ......................................................................................... 38 5.1 Kesimpulan ................................................................................. 38 4.2 Saran ........................................................................................... 38
xii
DAFTAR PUSTAKA .................................................................................... 39 DAFTAR ISTILAH ...................................................................................... 42 LAMPIRAN-LAMPIRAN A. Perhitungan Dosis Serap Radiasi Sinar-X pada Pasien Anak Laki dan Wanita ................................................................................................. 44 B. Hasil Uji Oneway ANOVA pada Pasien Anak Jenis Kelamin Laki dan Wanita untuk Setiap Penggolongan Usia ................................................ 54 C. Hasil Uji Oneway ANOVA pada Pasien Anak Jenis Kelamin Laki dengan Wanita untuk masing-masing Penggolongan Usia Pasien ....... 57 D. Tabel Statistik F......................................................................................... 59 E. Data Kalibrasi Alat ................................................................................... 60
xiii
DAFTAR TABEL
Halaman 2.1
Dosis serap radiasi oleh UNSCEAR (2000) ........................................... 19
4.1
Nilai rata-rata dosis serap radiasi sinar-X dan standar eror untuk setiap penggolongan usia pasien anak jenis kelamin laki ....................... 28
4.2
Hasil Fhitung uji statistik oneway ANOVA pada setiap penggolongan usia pada pasien laki ............................................................................... 29
4.3
Nilai rata-rata dosis serap radiasi sinar-X dan standar eror untuk setiap penggolongan usia pasien anak jenis kelamin wanita .................. 30
4.4
Hasil Fhitung uji statistik oneway ANOVA pada setiap penggolongan usia pada pasien wanita .......................................................................... 31
4.4
Hasil Fhitung uji statistik oneway ANOVA pada pasien laki dengan wanita untuk setiap penggolongan usia .................................................. 32
xiv
DAFTAR GAMBAR
Halaman 2.1
Tabung sinar-X........................................................................................ 5
2.2
Produksi sinar-X Bremsstrahlung ........................................................... 6
2.3
Ilustrasi terjadinya sinar-X karakteristik ................................................. 7
2.4
Proses efek fotolistrik.............................................................................. 8
2.5
Proses hamburan Compton ..................................................................... 8
2.6
Proses produksi pasangan ....................................................................... 9
2.7
Anatomi thorak pada manusia ................................................................ 10
2.8
Posisi pasien PA ...................................................................................... 11
2.9
Posisi pasien AP ...................................................................................... 12
2.10 Hasil foto rontgen pada anak .................................................................. 12 2.11 Penderita leukemia limfoid akut akibat paparan radiasi berlebih ........... 15 3.1
Satu set pesawat roentgen ....................................................................... 20
3.2
Meteran ................................................................................................... 21
3.3
Skema kegiatan penelitian....................................................................... 23
4.1
Grafik dosis serap radiasi sinar-X pada pasien anak laki untuk masing-masing kategori usia .................................................................. 29
4.2
Grafik dosis serap radiasi sinar-X pada pasien anak wanita untuk masing-masing kategori usia .................................................................. 30
4.3
Grafik dosis serap radiasi sinar-X pada pasien anak laki dan wanita untuk masing-masing penggolongan usia pasien ................................... 31
4.4
Grafik perbandingan-X nilai dosis serap radiasi sinar-X pada pasien laki dan wanita dengan dosis maksimal yang direkomendasikan oleh UNSCEAR.............................................................................................. 32
xv
DAFTAR LAMPIRAN
Halaman A. Perhitungan Dosis Serap Radiasi Sinar-X pada Pasien Anak Laki dan Wanita ........................................................................................ 44 A.1 Pasien Laki .......................................................................................... 44 A.1.1 Usia 1-5 tahun ............................................................................ 44 A.1.2 Usia 5-10 tahun .......................................................................... 45 A.1.3 Usia 10-15 tahun ........................................................................ 47 A.2 Pasien Wanita ..................................................................................... 49 A.2.1 Usia 1-5 tahun ............................................................................ 49 A.2.2 Usia 5-10 tahun .......................................................................... 50 A.2.3 Usia 10-15 tahun ........................................................................ 52 B. Hasil Uji One Way Anova pada Pasien Anak Jenis Kelamin Laki dan Wanita untuk Setiap Penggolongan Usia ........................................ 54 B.1 Pasien Laki .......................................................................................... 54 B.1.1 Usia 1-5 tahun dengan usia 5-10 tahun ...................................... 54 B.1.2 Usia 1-5 tahun dengan usia 10-15 tahun .................................... 54 B.1.3 Usia 5-10 tahun dengan usia 10-15 tahun .................................. 55 B.2 Pasien Wanita...................................................................................... 55 B.2.1 Usia 1-5 tahun dengan usia 5-10 tahun ...................................... 55 B.2.2 Usia 1-5 tahun dengan usia 10-15 tahun .................................... 55 B.2.3 Usia 5-10 tahun dengan usia 10-15 tahun .................................. 56 C. Hasil Uji Oneway ANOVA pada Pasien Anak Jenis Kelamin Laki dengan Wanita untuk masing-masing Penggolongan Usia Pasien ....... 57 C.1 Usia 1-5 tahun ..................................................................................... 57 C.2 Usia 1-5 tahun ..................................................................................... 57 C.3 Usia 1-5 tahun ..................................................................................... 58 D. Tabel Statistik F ........................................................................................ 59 E. Data Kalibrasi Alat .................................................................................. 60 xvi
BAB 1. PENDAHULUAN
1.1 Latar Belakang Kemajuan teknologi nuklir pada saat ini berkembang begitu cepat. Hal ini ditunjukkan dengan peningkatan pemanfaatan hasil teknologi nuklir dalam berbagai sektor, seperti pertanian, perindustrian dan kesehatan. Dalam sektor kesehatan, pemanfaatan teknik nuklir ini meliputi radioterapi dan tindakan radiodiagnostik di bagian radiologi (Yondri, 2008). Unit pelayanan radiologi merupakan salah satu instalasi penunjang medik yang berhubungan dengan studi dan penerapan berbagai teknologi pencitraan dengan menggunakan sumber radiasi pengion (Maryanto et al., 2008). Sumber radiasi pengion tersebut harus mempunyai daya tembus yang sangat besar sehingga mampu menembus bahan yang dilaluinya, salah satunya yaitu berasal dari pesawat sinar-X (Trikasjono et al., 2007). Dengan adanya pemanfaatan sinar-X ini informasi mengenai tubuh manusia lebih mudah diketahui tanpa harus melakukan operasi bedah terlebih dahulu (Milvita et al., 2009). Berbagai jenis pemeriksaan yang dapat dilakukan meliputi: foto abdomen, extremity, skull, thorak, dan organ tubuh yang lainnya. Selain itu, pemanfaatannya juga semakin meluas dalam segala kategori usia, baik usia dewasa maupun anak-anak. Selain memberikan manfaat, beberapa aplikasi teknik nuklir ini dapat pula memberikan ancaman bahaya radiasi yang merugikan pada manusia (Rahayuningsih et al., 2010). Salah satu contoh bahaya radiasi yang ditimbulkan yaitu munculnya efek radiasi pada kulit, antara lain : deskuamasi, epilasi, dan eritema (Alatas, 1998). Namun akhir – akhir ini yang menjadi perhatian yang cukup serius dampak terhadap efek jangka panjang (efek tertunda) yang ditimbulkan akibat paparan radiasi sinar-X, yaitu sebagai pencetus carsiogenik atau induksi kanker pada manusia (Hall dan Benner, 2008).
2
Hasil tim peneliti efek medik kecelakaan PLTN Chernobyl melaporkan adanya peningkatan kasus kanker tiroid pada anak-anak, dimana angka kanker tiroid tersebut ternyata lebih besar dari yang diperkirakan sebelumnya (Akhadi, 2000:142). Menurut Mooney dan Thomas (1998), sinar-X memiliki bahaya yang melekat yang menjadi perhatian khusus ketika diterapkan pada anak-anak. Studi menunjukkan bahwa anak kurang dari sepuluh tahun lebih sensitif terhadap radiasi pengion dari pada orang dewasa. Hal ini karena radiasi pengion dapat menyebabkan mutasi genetik dan cacat bawaan pada janin. Secara umum anak-anak memiliki harapan hidup yang lebih lama, oleh karena itu resiko efek jangka panjang dari radiasi juga lebih besar dari pada orang dewasa. Berdasarkan United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2008, kemungkinan terjadinya efek jangka panjang (efek tertunda) dari paparan radiasi untuk anak-anak adalah 2-3 kali lebih besar dari orang dewasa. Anak bukanlah orang dewasa dalam bentuk kecil. Terdapat perbedaan fisik fisiologi maupun psikologi antara anak dengan orang dewasa (Raudhah, 2008). Salah satu fisik fisiologi anak yang sangat mempengaruhi peran dalam perkembangan dan pertumbuhan adalah tiroid dan timus. Tiroid memiliki fungsi untuk membantu dan mengatur metabolisme tubuh serta proses pertumbuhan, sedangkan timus berfungsi untuk pertahanan tubuh terhadap infeksi (Edwards et al.,1990:114). Fungsi organorgan tubuh anak tersebut belum matang, demikian juga dengan fungsi pertahanan tubuhnya yang belum sempurna serta sel-sel tersebut masih dalam proses pertumbuhan sehingga sangat sensitif terhadap radiasi. Apabila sel-sel tersebut terpapar radiasi maka akan mudah rusak sehingga mempengaruhi pertumbuhan selanjutnya. Oleh karena itu, proteksi radiasi pada pasien anak harus ditingkatkan dan perlu mendapatkan perhatian yang serius terutama dalam pemberian dosis. Yuliati dan Kusumawati (2006), melakukan penelitian untuk mengetahui dosis yang diterima oleh pasien anak dengan tujuan untuk melindungi anak dari radiasi yang berlebihan saat menjalani pemeriksaan radiodiagnostik. Nilai dosis yang diterima berbeda jauh dengan batasan nilai dosis yang direkomendasikan. Sofyan et
3
al (2009), menambahkan bahwa terimaan dosis untuk pasien anak di kota Padang terlihat perbedaan nilai dosis yang diterima yaitu mencapai lebih dari 4-6 kali lebih besar dari nilai dosis maksimum yang direkomendasikan oleh badan yang berwenang mengatur nilai dosis. Dalam rangka meningkatkan penerapan aspek keselamatan dan kesehatan yang sesuai dengan PP No. 63 tahun 2000 serta untuk menyimpan data dosis yang diterima oleh pasien maka perlu dilakukan pengukuran besarnya dosis radiasi pada pasien foto thorax, khususnya pasien anak, dimana penelitian ini dilakukan di Instalasi Radiologi Rumah Sakit Paru Jember.
1.2 Rumusan Masalah Berdasarkan uraian di atas maka rumusan masalah dalam penelitian ini yaitu berapakah dosis serap radiasi foto thorax yang diterima oleh pasien anak laki ataupun wanita di Instalasi Radiologi Rumah Sakit Paru Jember ?
1.3 Tujuan Penelitian Tujuan yang ingin dicapai dalam penelitian ini adalah: 1. Mengetahui dan menganalisa dosis serap radiasi foto thorax yang diterima oleh pasien anak pada saat menjalani pemeriksaan radiodiagnostik. 2. Menjelaskan kesesuaian nilai dosis serap yang diperoleh dengan standart dosis yang dikeluarkan oleh United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), sehingga tidak membahayakan pasien ataupun masyarakat umum yang sedang menjalani pemeriksaan radiodiagnostik di Instalasi Radiologi Rumah Sakit Paru Jember.
4
1.4 Manfaat Penelitian Manfaat yang dapat diambil dari penelitian ini yaitu sebagai berikut: 1. Manfaat Teoritis Penelitian ini diharapkan dapat memberikan masukan dan kajian pustaka yang berguna bagi akademis khususnya di bidang Fisika Radiasi dalam lingkup penerimaan dosis serap radiasi pada pemeriksaan foto thorax untuk pasien anak. 2. Manfaat Aplikasi Teknik Penelitian ini diharapkan dapat memberikan informasi nilai dosis kepada pasien maupun masyarakat umum, memberikan masukan yang berguna bagi pelayanan diagnostik di rumah sakit dalam melakukan eksposi pada pemeriksaan thorax khususnya pasien anak, sehingga dapat diterima dosis radiasi yang serendah mungkin terhadap pasien, pekerja radiasi dan masyarakat umum. Selain itu dengan data yang diperoleh dimaksudkan dapat dijadikan acuan atau referensi ketika melakukan pemeriksaan pada pasien.
1.5 Batasan Masalah Dalam penelitian ini, penulis melakukan pengukuran dosis radiasi pemeriksaan thorax pada pasien anak yang berusia 1-15 tahun dengan menggunakan teknik penyinaran PA (Posterior-Anterior) atau AP (Anterior-Posterior).
BAB 2. TINJAUAN PUSTAKA
2.1 Radiasi Sinar-X Radiasi merupakan pancaran energi melalui suatu materi dalam bentuk partikel atau gelombang. Ketika radiasi
melewati suatu materi, kemudian membentuk
partikel bermuatan positif dan negatif, maka proses ini disebut radiasi ionisasi. Salah satu contoh radiasi ionisasi yaitu radiasi sinar-X (Edward et al.,1990: 4). Radiasi sinar-X merupakan radiasi elektromagnetik dengan rentang panjang gelombang kurang lebih dari 0,01 hingga 10 nm dan energinya kurang lebih dari 100 eV hingga 100 keV (Krane,1992:318). Radiasi sinar-X ini dipakai secara meluas dalam bidang kedokteran terutama untuk tujuan diagnostik (Beiser, 1992: 60). Terdapat sebuah sumber radiasi sinar-X, yaitu sinar-X dapat dibangkitkan dari tabung sinar-X (gambar 2.1). Sinar-X ini dihasilkan jika katoda di dalam tabung rontgen dipanaskan. Bila antara anoda dan katoda diberi beda potensial yang tinggi, maka awan elektron dari katoda akan bergerak ke anoda dengan kecepatan tinggi. Elektron yang bergerak dengan kecepatan tinggi itu menumbuk sasaran (target) pada anoda sehingga terciptalah sinar-X (Beiser, 1992:60).
Gambar 2.1 Tabung sinar-X (Beiser, 1992 :62)
6
Berdasarkan proses terjadinya, maka sinar-X dibedakan menjadi 2 jenis yaitu : 1. Sinar-X Bremsstrahlung Sebuah elektron dipercepat atau diperlambat, maka ia akan memancarkan energi elektromagnetik. Ketika menumbuk suatu sasaran, elektronnya diperlambat sehingga pada akhirnya berhenti, karena bertumbukan dengan atom-atom materi sasaran. Karena pada tumbukan seperti itu terjadi transfer momentum dari elektron ke atom, maka kecepatan elektron menjadi berkurang sehingga elektron memancarkan foton. Pada peristiwa perlambatan elektron tersebut akan disertai dengan pembentukan spektrum radiasi sinar-X yang bersifat kontinu (Krane, 1992:111). Sinar-X yang terbentuk melalui proses ini disebut proses sinar-X Bremsstrahlung (Akhadi, 2000:33). Bremsstrahlung merupakan sinar-X yang terpancar bilamana partikel-partikel dengan laju tinggi mengalami suatu percepatan yang cepat (Cember, 1983:133). Berikut ilustrasi terjadinya proses sinar-X Bremsstrahlung :
Gambar 2.2 Produksi sinar-X Bremsstrahlung (Krane, 1992:111)
2. Sinar-X Karakteristik Sinar-X dapat pula terbentuk melalui proses perpindahan elektron atom dari tingkat energi yang lebih tinggi menuju ke tingkat energi yang lebih rendah (Krane, 1992:318; Akhadi, 2000:35). Sinar-X yang terbentuk melalui proses ini mempunyai energi sama dengan selisih energi antara kedua tingkat energi elektron tersebut. Karena setiap jenis atom memiliki tingkat-tingkat energi elektron yang berbeda-beda,
7
maka sinar-X yang terbentuk dari proses ini disebut sinar-X karakteristik (Suyati dan Akhadi, 1998). Sinar-X karakteristik ini timbul karena elektron atom yang berada pada kulit K terionisasi. Kekosongan kulit K ini diisi oleh elektron dari kulit di atasnya. Semua sinar-X yang dipancarkan dalam proses mengisi kekosongan dikenal sebagai sinar-X kulit K atau secara singkat sinar-X K. Sinar-X K yang berasal dari kulit n=2 (kulit L) dikenal sebagai sinar-X Kα, dan sinar-X K yang berasal dari tingkat-tingkat yang lebih tinggi dikenal sebagai Kβ , dan seterusnya (Krane, 1992:319). Ilustrasi terjadinya sinar-X karakteristik seperti ditunjukkan pada gambar 2.3 berikut :
Gambar 2.3 Ilustrasi terjadinya sinar-X karakteristik (Kaplan, 1979)
2.2 Interaksi Radiasi dengan Materi Fisik Berkurangnya energi dari sinar-X pada saat melewati suatu materi fisik terjadi karena tiga proses utama, yaitu efek fotolistrik, hamburan Compton, dan produksi pasangan (Akhadi, 2000:59). a. Efek fotolistrik Pada efek fotolistrik, energi foton diserap oleh elektron orbit, sehingga elektron tersebut terlepas dari atom. Elektron yang dilepaskan akibat efek fotolistrik disebut fotoelektron. Efek fotolistrik merupakan suatu interaksi sebuah foton dan elektron yang terikat kuat dimana energinya sama atau lebih kecil dari energi foton. Efek fotolistrik terutama terjadi pada foton berenergi rendah yaitu antara energi 0,01 MeV hingga 0,5 MeV. Disamping itu efek fotolistrik banyak terjadi pada material dengan nomor atom (Z) yang besar. Sebagai contoh efek fotolistrik lebih banyak terjadi pada
8
timah hitam (Z=82) dari pada tembaga (Z=29). Z inilah yang membuat timbal menjadi bahan pelindung yang baik terhadap sinar-X (Cember, 1983:151). Proses terjadinya efek fotolistrik ditunjukkan pada gambar 2.4 berikut:
Gambar 2.4 Proses efek fotolistrik (Gabriel, 1996: 284)
b. Hamburan Compton Hamburan Compton terjadi karena interaksi antara foton dengan elektron yang tidak terikat secara kuat oleh inti, sehingga menghasilkan foton lain yang berenergi lebih rendah dari foton datang. Foton lain itu disebut foton hamburan dengan energi sebesar hv’(Akhadi, 2000:61). Berikut ilustrasi terjadinya hamburan Compton.
Gambar 2.5 Proses hamburan Compton (Krane, 1992:104)
9
c. Produksi pasangan Sebuah foton yang berenergi lebih dari 1,02 MeV, pada saat bergerak dekat dengan sebuah inti, secara spontan akan menghilang dan energinya akan muncul kembali sebagai sebuah positron dan sebuah elektron (Cember, 1983:145) seperti yang digambarkan dalam gambar 2.6 berikut :
Gambar 2.6 Proses produksi pasangan (Akhadi, 2000:63)
Elektron dan positron memiliki energi yang sama, bedanya adalah salah satu partikel bermuatan positif dan yang lain bermuatan negatif. Untuk menghasilkan massa dari dua buah partikel (positron dan elektron), maka foton harus mempunyai energi yang cukup (Edwards, 1990:24). Ini sesuai dengan teori Einstein yang menyatakan bahwa energi ekivalen dengan massa yang dapat dirumuskan sebagai berikut (Gabriel, 1996:285): E = mc2
(2.1)
dimana , E = energi (Joule) m = massa elektron (me = 9,11 x 10-31 kg) c = kecepatan cahaya (c = 3x 108 m/s)
2.3 Pemeriksaan Thorax 2.3.1 Anatomi dan Fungsi Thorax Thorax merupakan rongga yang berbentuk kerucut, pada bagian bawah lebih besar dari pada bagian atas dan pada bagian belakang lebih panjang dari pada bagian
10
depan serta tersusun dari tulang dada, ruas tulang belakang, dan tulang rusuk. Rongga dada berisi paru-paru dan mediastinum. Mediastinum adalah rongga yang terletak di antara dua kantung pleura (Faiz dan Moffat, 2002: 7). Di dalam rongga dada terdapat beberapa sistem diantaranya yaitu sistem pernafasan dan peredaran darah. Organ pernafasan yang terletak dalam rongga dada yaitu esofagus dan paru, sedangkan pada sistem peredaran darah yaitu jantung, pembuluh darah dan saluran linfa. Pembuluh darah pada sistem peredaran darah terdiri dari arteri yang membawa darah dari jantung, vena yang membawa darah ke jantung dan kapiler yang merupakan jalan lalu lintas makanan dan bahan buangan (Pearce, 2003 : 53).
Gambar 2.7 Anatomi thorak pada manusia
11
2.3.2 Teknik Radiografi Thorax Foto thorax merupakan foto radiologi yang
sering dilakukan
pada
setiap
pemeriksaan radiodiagnostik. Foto thorax atau sering disebut chest X-ray merupakan suatu proyeksi radiografi dari thorax untuk mendiagnosis kondisi-kondisi yang mempengaruhi thorax, isi dan struktur-struktur di dekatnya. Foto thorax menggunakan radiasi terionisasi dalam bentuk sinar-X. Foto thorax digunakan untuk mendiagnosis banyak kondisi yang melibatkan dinding thorax, tulang thorax dan struktur yang berada di dalam kavitas thorax termasuk paru-paru, jantung dan saluran-saluran yang besar (Pearce, 2009). Fungsi lain dari pemeriksaan foto thorax yaitu sebagai standar general chek up yang tujuannya untuk mengetahui kondisi tubuh secara menyeluruh, membantu penegakan diagnosis, serta membantu proses evaluasi. Contohnya yaitu pada anak yang menderita flek paru atau TBC primer sudah mendapat penyinaran, maka setelah beberapa bulan lagi anak tersebut perlu melakukan foto lagi untuk mengetahui ada perbaikan atau tidak. Gambaran yang berbeda dari thorax dapat diperoleh dengan merubah orientasi relatif tubuh dan arah pancaran sinar-X. Gambaran yang paling umum digunakan adalah posterior-anterior (PA) atau anterior-posterior (AP). a. Posterior-anterior (PA) Pada posisi ini sumber sinar-X diposisikan sehingga sinar-X masuk melalui posterior dari thorax dan keluar dari anterior dimana sinar-X tersebut terdeteksi. Untuk mendapatkan gambaran ini, pasien diposisikan menghadap bucky stand (kaset vertikal), kedua punggung tangannya diletakkan di atas panggul dan siku di tekan ke depan atau merangkul bucky (seperti gambar 2.8). Sumber radiasi diposisikan di belakang pasien dengan jarak fokus film sejauh 150 cm, dan pancaran sinar-X ditransmisikan ke pasien (WHO, 1990).
12
Gambar 2.8 Posisi pasien PA
b. Anterior-posterior (AP) Pada posisi AP sumber sinar-X berkebalikan dengan PA. Posisi AP lebih sulit diinterpretasi dibandingkan dengan posisi PA. Posisi ini digunakan pada pasien yang tidak bisa bangun dari tempat tidur atau pada bayi. Pada situasi seperti ini, pasien diposisikan setengah duduk atau supine di atas meja pemeriksaan/brandcare, kedua lengan lurus disamping tubuh, kaset di belakang tubuh dengan jarak fokus film ke objek sebesar 100 cm.
Gambar 2.9 Posisi pasien AP (European Commission, 1996)
13
Foto thorax pada bayi dan anak-anak berbeda dengan foto thorax orang dewasa karena banyak sebab. Beberapa diantaranya karena sulitnya memperoleh foto dengan inspirasi yang baik dan juga adanya perbedaan anatomi antara bayi anak dan dewasa (WHO, 1990: 81). Di bawah ini merupakan contoh hasil foto rontgen pada anak dengan posisi PA.
Gambar 2.10 Hasil foto rontgen pada anak (Arthur, 2003)
2.4 Aspek Biologi Proteksi Radiasi 2.4.1 Efek Paparan Radiasi terhadap Kesehatan Radiasi sinar-X dapat memberikan dampak negatif terhadap tubuh manusia salah satunya yaitu dapat merusak jaringan sel (Edwards et al., 1990:71). Menurut Beiser (1992:473), semua radiasi ionisasi berbahaya bagi jaringan hidup, walaupun jika kerusakannya sedikit, jaringan tersebut masih dapat memperbaiki dirinya sehingga tidak ada pengaruh yang permanen. Berbagai radiasi dari radioaktif dapat mengionisasi materi yang dilaluinya. Bahaya radiasi ini tidak tampak tetapi berbahaya (Beiser, 1992:473).
Untuk kepentingan proteksi radiasi, International
Commission on Radiological Protection (ICRP) membagi efek radiasi pengion terhadap tubuh manusia menjadi dua, yaitu efek stokastik dan efek deterministik. a. Efek stokastik Akhadi (2000:138) menyatakan, efek stokastik berkaitan dengan paparan radiasi dosis rendah yang dapat muncul pada tubuh manusia, dimana kemunculannya tidak
14
dapat dipastikan. Selain itu juga dapat menimbulkan perubahan genetik yang dapat mengakibatkan berbagai cacat pada anak-anak. Hal yang menyedihkan mengenai hal ini ialah sifat carsinogenic sinar-X (sifat yang dapat menimbulkan kanker) yang sudah diketahui sejak tahun 1902, tujuh tahun setelah penemuannya (Beiser, 1992). Menurut Edwards (1990:113), kanker pada manusia dapat timbul setelah 5 tahun atau lebih. Efek dosis yang menyebabkan kanker dari radiasi sebanyak 1 Gray (100 rad). Kanker yang disebabkan akibat radiasi dapat teramati dalam sistem hemopoetik, tiroid (gondok), tulang, dan pada kulit (Cember, 1983:233). Pada anakanak, terungkap bahwa dampak negatif radiasi dari sinar-X atau CT Scan dapat meningkatkan resiko penyakit leukemia dan beberapa jenis kanker. Kejadian spontan kanker dan leukemia yaitu pada usia 0-18 tahun (Alatas, tanpa tahun). Leukemia adalah salah satu bentuk dari kanker yang menyerang sumsum tulang dan darah, dimana kondisi sel-sel darah putih yang lebih banyak daripada sel darah merah tapi sel-sel darah putih ini bersifat abnormal. Leukemia digambarkan berdasarkan jenis sel yang berproliferasi. Sebagai contoh, leukemia limfoid akut yang merupakan leukemia yang paling sering dijumpai pada anak ditunjukkan pada gambar 2.11 (Corwin, E. J., 2009: 430).
Gambar 2.11 Penderita leukemia limfoid akut akibat paparan radiasi berlebih
15
b. Efek deterministik Efek deterministik (reaksi jaringan yang berbahaya) yaitu sebagian besar sel jaringan mengalami kematian atau fungsi sel rusak karena dosis radiasi tinggi (BATAN, 2011:14). Efek deterministik berkaitan dengan paparan radiasi dosis tinggi yang kemunculannya dapat langsung dilihat atau dirasakan oleh individu yang terkena radiasi. Efek tersebut dapat muncul seketika hingga beberapa minggu setelah penyinaran (Akhadi, 2000:143). Jika manusia terpapar radiasi secara terus menerus, maka paparan radiasi tersebut dapat menyebabkan terjadinya kerusakan baik pada tingkat molekul, sel, jaringan ataupun organ tubuh.
Efek deterministik ini
mempunyai dosis ambang, umumnya timbul beberapa saat setelah penerimaan dosis radiasi, keparahannya
tergantung
dari dosis
radiasi
yang
diterima, serta
kesembuhannya dapat dilakukan secara spontan. Efek deterministik ini ditandai dengan munculnya keluhan berupa: demam, rasa lemah dan lesu, mual dan ingin muntah, nafsu makan berkurang, nyeri kepala, keringat berlebihan hingga menyebabkan shock (Gabriel, 1996: 297). Beberapa kemudian muncul keluhan khusus berupa efek radiasi pada kulit seperti epilasi (rambut rontok) yang bersifat sementara dimana terjadi pada dosis 3-5 Gy yang mulai berlangsung sekitar minggu ke 3 sampai 1 tahun. sedangkan epilasi yang bersifat tetap terjadi bila dosis serap yang diterima lebih besar dari 6 Gy (Alatas, 1998). Keluhan yang lain dapat berupa eritema (kulit memerah) dimana akan terjadi setelah beberapa menit pada eritema awal dan 2-3 minggu pada eritema ke dua, dimana batas ambang dosis antara 6-8 Gy (Alatas, 1998). Efek deterministik pada organ reproduksi yang dapat timbul adalah sterilitas atau kemandulan. Pengaruh radiasi pada sel telur bervariasi berdasarkan usia. Semakin tua usia pasien, semakin sensitif terhadap radiasi. Hal ini dikarenakan jumlah sel telur yang semakin sedikit yang tersisa dalam ovarium. Selain timbulnya sterilitas efek radiasi pada organ reproduksi adalah menopause dini yang diakibatkan adanya gangguan hormonal sistem reproduksi. Dosis ambang menurut ICRP 60 adalah 2,5-6 Gy, sedangkan apabila radiasi terkena pada wanita yang lebih muda,
16
sterilitas permanen akan terjadi pada dosis yang lebih tinggi yaitu mencapai 12-15 Gy (Gabriel, 1996: 297). 2.4.2 Proteksi Radiasi Proteksi radiasi merupakan tindakan yang dilakukan untuk mengurangi pengaruh radiasi yang merusak akibat paparan radiasi (Bapeten, 2011). Tujuan proteksi radiasi adalah mencegah terjadinya efek non stokastik yang membahayakan dan mengurangi frekuensi terjadinya efek stokastik ke tingkat yang cukup yang masih dapat diterima oleh setiap anggota masyarakat Untuk mencapai tujuan proteksi radiasi, yaitu terciptanya keselamatan dan kesehatan bagi pekerja, masyarakat dan lingkungan, maka dalam proteksi radiasi dikenalkan tiga asas proteksi radiasi, yaitu : 1. Asas justifikasi Justifikasi adalah semua kegiatan yang melibatkan paparan radiasi
hanya
dilakukan jika menghasilkan nilai lebih atau memberikan manfaat yang nyata (azas manfaat). Justifikasi dari suatu rencana kegiatan atau operasi yang melibatkan paparan
radiasi
dapat
ditentukan
dengan mempertimbangkan
keuntungan dan kerugian dengan menggunakan analisa untung-rugi
untuk
meyakinkan bahwa akan terdapat keuntungan lebih dari dilakukannya kegiatan tersebut (BATAN, 2011:29). 2. Asas optimasi Asas ini menghendaki agar paparan radiasi yang berasal dari suatu kegiatan harus ditekan dosis serendah mungkin. Asas ini juga dikenal dengan sebutan ALARA (As Low As Reasonably Achieveble) (Akhadi, 2000:154). 3. Asas limitasi Asas ini menghendaki agar dosis radiasi yang diterima oleh pekerja radiasi atau masyarakat tidak boleh melampaui nilai batas dosis yang ditetapkan oleh instansi yang berwenang (Maryanto, dkk, 2008). Pembatasan dosis ini dimaksud untuk menjamin bahwa tidak ada seorang pun terkena resiko radiasi baik efek
17
stokastik maupun efek deterministik akibat dari penggunaan radiasi maupun zat radioaktif dalam keadaan normal (BATAN, 2011:29). 2.5 Pengukuran Dosis Serap Radiasi Radiasi mempunyai ukuran atau satuan untuk menunjukkan besarnya pancaran radiasi dari suatu sumber, atau menunjukkan banyaknya dosis radiasi yang diberikan atau diterima oleh suatu medium yang terkena radiasi. Dosis radiasi merupakan jumlah energi radiasi yang diserap atau diterima oleh materi yang dilaluinya (Bapeten, 2011). Untuk mengukur besarnya enegi radiasi yang diserap oleh medium perlu diperkenalkan suatu besaran yang tidak bergantung pada jenis radiasi, energi radiasi maupun sifat bahan penyerap, tetapi hanya bergantung pada jumlah energi radiasi yang diserap persatuan massa yang menerima penyinaran radiasi tersebut (Akhadi, 2000). Bila sinar-X masuk ke suatu bahan, sinar akan bergabung dengan atom-atom bahan tersebut, sehingga energinya akan diteruskan dari sinar-X ke atom bahan. Penerusan energi ini disebut penyerapan dan jumlah energi yang terserap disebut dosis serap. Makin besar energi yang diserap oleh tubuh pasien, makin besar kemungkinan terjadinya kerusakan biologi pada pasien tersebut, jadi untuk keamanan pasien, jumlah energi yang diteruskan harus dibuat sekecil mungkin (Edwards dkk, 1990:15). Pada pemeriksaan radiodiagnostik pengukuran dosis pada pasien dapat dilakukan dalam tiga cara yaitu, permukaan dosis masuk yang dikenal sebagai Entrance Surface/Skin Dose (ESD), dosis gonad serta dosis pada sumsum tulang (Dhahryan, 2009). Permukaan dosis masuk merupakan parameter penting untuk menilai dosis yang diterima oleh pasien dalam paparan radiografi (Compagnone et al, 2004). Menurut Sharifat (2009), permukaan dosis masuk didefinisikan sebagai dosis serap di udara ketika sinar-X mengenai permukaan kulit pasien. Dalam praktek sehari-hari, faktor eksposi mempengaruhi jumlah radiasi yang dihasilkan, baik itu radiasi primer maupun radiasi sekunder. Dalam hal ini hubungan faktor eksposi dengan dosis radiasi, apabila nilai tegangan mengalami peningkatan
18
dan arus mengalami penurunan maka dosis radiasi yang akan diterima oleh pasien akan berkurang tetapi radiasi hambur akan mengalami peningkatam. Tetapi apabila nilai tegangan berkurang, nilai arus bertambah maka dosis radiasi yang diterima pasien menjadi bertambah tetapi radiasi hambur menjadi berkurang (Waseso, 1998). Besarnya terimaan dosis paparan radiasi secara matematis dapat dihitung seperti pada persamaan berikut ini (Fahmi, 2008): X=
𝑣2 𝑖 𝑡
(2.2)
𝑑2
dimana, 𝑋 = Dosis paparan radiasi (mR) 𝑣 = Tegangan tabung (kV) 𝑖 = Arus tabung (mA) 𝑡 = Waktu penyinaran (s) 𝑑 = Jarak Fokus ke Film (cm) Dari rumus di atas maka dapat diketahui masing-masing besar atau jumlah dosis paparan radiasi yang akan diterima pasien. Karena 1 Roentgen sama dengan 0,877 rad dosis di udara, sehingga untuk mengetahui dosis serap yang diterima oleh pasien yaitu dengan cara mengalikan dosis paparan radiasi dengan 0,877 rad (Camber, 1983). Dari satuan dosis rad kemudian dikonversi kedalam satuan dosis Gray. Dari kedua satuan dosis serap tersebut diperleh hubungan sebagai berikut: 1 mR
= 10-3 R
1R
= 0,877 Rad
1 Rad
= 10-2 Gray
1 Gy
= 100 Rad
(Akhadi, 2000:84)
2.6 Penggolongan Usia dan Rekomendasi Dosis Radiasi pada Pasien Anak Data dosis pada anak sangat sulit untuk didapatkan, karena tinggi dan berat badan anak sangat tergantung pada usia. Oleh karena itu, untuk membandingkannya
19
maka dibuat sebuah kesepakatan yang dicapai dalam Serikat Eropa untuk mengumpulkan data dari lima standart usia, yaitu usia <1 tahun (bagi bayi), 1-5 tahun, 5-10 tahun, dan anak usia 10-15 tahun (UNSCEAR, 2008:56). United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) yang merupakan suatu lembaga dengan mandat untuk menilai dosis dan melaporkan tingkat serta efek paparan dari radiasi pengion. Nilai dosis yang direkomendasikan disajikan dalam tabel 2.1 di bawah ini. Tabel 2.1 Dosis serap radiasi oleh UNSCEAR (2000) Umur Pasien (tahun)
Dosis Serap (mGy)
<1
0,0200
1-5 th
0,0300
5-10 th
0,0400
10 - 15 th
0,0500
Rekomendasi dosis inilah yang akan menjadi acuan batas dosis yang akan diberikan kepada pasien dalam penelitian ini.
BAB 3. METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian. Penelitian ini dilakukan di Instalasi Radiologi Rumah Sakit Paru Jember pada bulan Oktober 2012 sampai bulan Januari 2013. Observasi lapang telah dilakukan pada bulan Februari 2012.
3.2 Alat dan Bahan Alat dan bahan yang digunakan dalam penelitian ini adalah : a. Satu set pesawat roentgen yang terdiri dari tabung sinar-X, control table, dan bucky (gambar 3.1)
1
a
b 2 6
3 7
5
4 8
9
c d
a Gambar 3.1 Satu set pesawat roentgen (a) tabung sinar-X, (b) stand bucky, (c) brandcar (d) control table (1) lampu ready, (2) tombol on/off, (3) tombol bucky, (4) tombol second, (5) tombol miliampere, (6) tombol LV, (7) tombol mayor, (8) tombol minor, (9) tombol expose
21
1) Tabung sinar-X (gambar 3.1 a) Merk
: Toshiba
No. Seri
: OD-270
Tahun Pembuatan : 2000 Kondisi Maksimum a) tegangan
: 150 kV
b) arus
: 300 mA
c) waktu
:6s
2) Bucky Bucky yang digunakan ada 2 yaitu stand bucky (gambar 3.1 b) dan brandcar (gambar 3.1 c). Bucky berfungsi sebagai tempat kaset yang berisi film. 3) Control table (gambar 3.1 d) Control table yang digunakan adalah merk Daeyoung dengan tipe DC-325 R.
b. Meteran Meteran disini digunakan untuk mengukur jarak antara sumber sinar-X dan film radiograf.
Gambar 3.2 Meteran
c. Objek Objek dalam penelitian ini yaitu pasien anak usia 1-15 tahun.
3.3 Tahapan Penelitian Skema diagram alir dalam tahapan penelitian analisis terimaan dosis serap radiasi pada pasien anak usia 1-15 tahun dapat dilihat pada gambar 3.3 (halaman 22).
22
Mulai Survey literatur Identifikasi masalah
Studi pustaka
Observasi lapangan dan perijinan
Pengambilan data Data kalibrasi alat dari BPFK Normalisasi data
Pengolahan dan Analisa data Hasil penelitian
Teori Pembahasan dan kesimpulan
Selesai Gambar 3.3 Skema tahapan penelitian
23
Tahapan penelitian (gambar 3.3) dijelaskan secara umum sebagai berikut: 3.3.1 Survey Literatur Tahap ini adalah melakukan pengumpulan bahan literatur dan informasi berkaitan dengan judul penelitian.
3.3.2 Identifikasi Masalah Melakukan identifikasi tentang masalah apa yang akan dibahas berdasarkan literatur dan informasi yang telah diperoleh.
3.3.3 Studi Pustaka Mempelajari literatur yang akan digunakan sebagai kajian teori dalam penelitian ini.
3.3.4 Observasi Lapangan dan Perijinan Melakukan pencarian sumber data dan perijinan kepada pihak-pihak yang berkompeten dan observasi ini dilakukan di Instalasi Radiologi Rumah Sakit Paru Jember, yaitu mengenai pengenalan pesawat sinar -X, spesifikasi pesawat sinar-X, cara kerja pesawat sinar-X serta pengaturan faktor exposure. Selain itu, observasi juga dilakukan untuk lebih mengenal jenis-jenis pasien yang menjalani pemeriksaan di Instalasi Radiologi Rumah Sakit Paru Jember. Di Instalasi Radiologi terdiri dari berbagai jenis usia mulai dari pasien anak, dewasa hingga lanjut usia. Pemeriksaan yang dilakukan berupa pemeriksaan foto thorax untuk berbagai jenis posisi, misalnya posisi PA (Posterior-Anterior) atau AP (Anterior-Posterior), Lateral yaitu miring menyamping ke kiri / kanan (membentuk sudut 900). Pesawat yang digunakan adalah pesawat roentgen type Daeyoung 325 merk toshiba No. Seri OD-270 dan panel control pesawat roentgen type DC-325 R. Cara kerja pesawat sinar-X ini yaitu sebelum pesawat sinar-X dioperasikan maka perlu diatur parameter-parameternya antara lain tegangan tinggi, arus tabung dan waktu
24
expose. Pesawat sinar-X dihidupkan dengan menekan tombol power utama (ON), selanjutnya tegangan diatur melalui kV selektor, arus tabung diatur melalui mA control dan waktu expose lewat timer. Besaran hasil pengaturan akan ditampilkan di display pada panel kontrol. Setelah pengaturan parameter selesai, selanjutnya menekan tombol ekspos satu kali maka lampu ready akan menyala kemudian dengan menekan tombol expose dua kali, maka tabung akan memancarkan sinar-X. Dari observasi ini maka didapatkan objek penelitian yaitu penelitian ini dilakukan pada pasien anak dengan posisi PA (Posterior-Anterior) atau AP (AnteriorPosterior).
3.3.5 Pengambilan Data Objek dalam penelitian ini yaitu pasien anak dengan umur 1-15. Berikut prosedur dalam pengambilan data untuk penelitian ini : a. Pembagian pasien Pasien yang akan menjalani pemeriksaan dikategorikan berdasarkan usia dan jenis kelamin, yaitu pasien laki dan wanita dengan usia 1-5 tahun, 5-10 tahun, dan 1015 tahun. b. Pengaturan posisi pasien Dalam melakukan penyinaran, maka posisi pasien perlu diatur sedemikian rupa, sehingga memudahkan pelaksanaan penyinaran pada bagian yang diperlukan. Posisi pasien merupakan letak atau kedudukan pasien Secara keseluruhan dalam suatu penyinaran. Posisi pasien ini bervariasi bergantung dari jenis pemeriksaan yang diminta, salah satu contoh yaitu posisi PA (Posterior-Anterior). Pada posisi PA ini pasien diposisikan berdiri tegak dengan menghadap bucky stand , kedua tangannya diletakkan diatas bucky atau merangkul bucky sesuai dengan kenyamanan pasien (gambar 2.8).
25
c. Pengaturan jarak fokus ke film Jarak antara sumber sinar (fokus) ke film, perlu diatur pada setiap pelaksanaan penyinaran. Pada pemeriksaan foto thorax ini jarak fokus film yang digunakan yaitu sebesar 150 cm untuk posisi PA dan 100 cm untuk posisi AP. d. Pengaturan sinar Sinar-X yang akan digunakan dalam pemotretan perlu diarahkan secara tepat pada obyek yang akan difoto. Disamping itu jumlah sinar perlu diatur agar sesuai dengan besarnya obyek yang akan difoto. e. Pengaturan faktor exposure Faktor exposure atau penyinaran terdiri dari tegangan tabung (kV), arus (mA) dan waktu penyinaran (s). Pengaturan faktor exposure ini terdapat di control table pesawat rontgen (gambar 3.1d) . g. Penyinaran pasien Proses penyinaran ini dilakukan oleh petugas (radiografer), dimana selama proses penyinaran pasien diinstruksikan menarik nafas kemudian menahan nafas kemudian dilakukan penyinaran dan pasien dapat bernafas biasa. Penyinaran pasien ini dilakukan dari arah belakang atau di ruang operator. h. Mencatat faktor eksposi dan posisi yang diberikan pada pasien.
3.3.6 Normalisasi Data Setiap selang waktu tertentu pesawat sinar-X perlu dilakukan pengujian Quality Control. Pengujian ini dilakukan oleh petugas dari Balai Pengamanan Fasilitas Kesehatan Surabaya antara lain berupa pengujian kV dan timer. Data yang diperoleh yaitu berupa data hasil kesesuaian alat. Berdasarkan data tersebut maka antara data masukan dan keluaran dari faktor exposure yang digunakan dalam penyinaran pasien perlu dinormalisasi. Normalisasi diperoleh dengan cara memasukkan data faktor exposure yang diberikan kepada pasien ke dalam rumus persamaan normalisasi yang telah dihitung dengan program excel (Lampiran E).
26
3.3.7 Pengolahan dan Analisa Data Data-data hasil penelitian yang berupa nilai tegangan (kv), waktu penyinaran (s) yang telah dinormalisasi, arus (mA), serta jarak fokus ke film (cm), kemudian diolah berdasarkan persamaan 2.2 untuk mengetahui besarnya dosis paparan yang diterima oleh pasien anak. Data hasil dosis paparan tersebut kemudian dikonversi ke dalam dosis serap radiasi (persamaan 2.3), kemudian data dikelompokkan sesuai dengan kategori pasien dalam bentuk tabel untuk setiap penggolongan usia dan jenis kelamin pasien kemudian dirata-rata. Dari data-data tersebut kemudian dibuat grafik hubungan antara besarnya dosis serap yang diterima pasien dengan usia pasien dengan program excel. Hasil terimaan dosis tersebut dianalisis secara statistik menggunakan metode oneway ANOVA (analysis of variance) pada program SPSS. Metode ini digunakan untuk mengetahui ada atau tidaknya perbedaan rata-rata nilai dosis serap untuk setiap penggolongan usia baik pasien laki ataupun wanita, serta untuk mengetahui ada atau tidaknya nilai rata-rata dosis serap antara pasien laki atau wanita untuk setiap penggolongan usia pasien. Adapun langkah-langkah dalam analisa uji ANOVA adalah sebagai berikut : 1. Menentukan hipotesis Hipotesa yang digunakan dalam uji statistik menggunakan metode oneway ANOVA adalah sebagai berikut: a. Uji ANOVA untuk perbandingan setiap penggolongan usia baik pasien laki ataupun wanita Ho (Hipotesa awal)
: Tidak terdapat perbedaan rata-rata nilai dosis serap dari penggolongan usia pasien.
H1 (Hipotesa alternatif)
: Terdapat perbedaan rata-rata nilai dosis serap dari penggolongan usia pasien.
27
b. Uji ANOVA antara pasien laki dan wanita pada setiap penggolongan usia Ho (Hipotesa awal)
: Tidak terdapat perbedaan rata-rata nilai dosis serap antara pasien laki dan wanita.
H1 (Hipotesa alternatif)
: Terdapat perbedaan rata-rata nilai dosis serap antara pasien laki dan wanita.
2. Menentukan tingkat signifikansi (α) yaitu sebesar 5% atau 0,0500. 3. Menentukan F tabel yang diperoleh dari tabel statistik F dengan cara melihat nilai α (= 0,0500) dan nilai derajat kebebasan (1; 98). Dimana nilai F tabel dalam penelitian ini diperoleh sebesar 3,9381 (Lampiran D). 4. Kriteria pengujian, Jika Fhitung >Ftabel atau P (sig) < 0,0500 berarti Ho ditolak, Jika Fhitung < Ftabel atau P (sig) >0,0500 berarti Ho diterima. 3.3.8 Pembahasan dan Kesimpulan Setelah dihasilkan grafik hubungan antara dosis serap yang diterima pasien dengan umur pasien maka dapat dijadikan sebuah pembahasan yaitu menganalisa hasil terimaan dosis serap yang diterima pasien anak dengan membandingkan terimaan dosis serap antara pasien laki dan perempuan antara umur 1-5 tahun, 5-10 tahun, dan 10-15 tahun. Selain itu hasil terimaan dosis serap pasien anak akan dibandingkan dengan dosis yang direkomendasikan oleh UNSCEAR pada tabel 2.1. Kesimpulan diambil berdasarkan analisa data dan diperiksa apakah sesuai dengan maksud dan tujuan penelitian ini.
BAB 4. HASIL DAN PEMBAHASAN
4.1 Hasil dan Analisis Data Penelitian Penelitian ini terdiri dari 2 kategori,yaitu pasien anak jenis kelamin laki dan wanita. Setiap kategori, pasien dibagi menjadi 3 berdasarkan penggolongan usia pasien, yaitu usia 1-5 tahun, 5-10 tahun, dan 10-15 tahun. Dalam pengambilan data, setiap penggolongan usia pasien tersebut diambil sebanyak 50 data baik kategori laki maupun kategori wanita. 4.1.1 Hasil Pengukuran Dosis Serap Radiasi pada Pasien Jenis Kelamin Laki Hasil pengukuran rata-rata dosis serap pada pasien anak laki untuk setiap penggolongan usia disajikan dalam tabel 4.1. Dari tabel tersebut terlihat bahwa nilai rata-rata dosis serap dari tiga penggolongan usia pasien tersebut, menunjukkan hasil rata-rata dosis serap yang beragam. Tabel 4.1 Nilai rata-rata dosis serap radiasi dan standar eror untuk setiap penggolongan usia pasien anak jenis kelamin laki (n=50) Usia (tahun) 1-5 5-10 10-15
Rata-Rata Dosis Serap (mGray) 0,0158 ± 0,0009 0,0164 ± 0,0004 0,0201 ± 0,0005
dari tabel nilai rata-rata dosis serap radiasi sinar-X di atas, untuk setiap penggolongan usia dapat digambarkan dalam bentuk grafik yang disajikan pada gambar 4.1 (halaman 29). Dari grafik tersebut terlihat bahwa semakin meningkat usia pasien, maka rata-rata dosis serap semakin meningkat pula.
29
Rata-rata dosis serap (mGray)
0.025 0.020 0.015 0.010
laki
0.005 0.000 1-5 tahun
5-10 tahun
10-15 tahun
Usia (Tahun)
Gambar 4.1 Grafik dosis serap radiasi sinar-X pada pasien anak laki untuk masingmasing kategori usia (n=50)
Berdasarkan hasil uji statistik oneway ANOVA pada tabel 4.2 untuk pasien laki menunjukkan bahwa tidak terdapat perbedaan rata-rata nilai dosis serap antara usia 1-5 tahun dengan usia 5-10 tahun. Hasil ini dapat ditunjukkan melalui pengujian hipotesis dimana antara usia 1-5 tahun dengan usia 5-10 tahun didapatkan hasil Fhitung < Ftabel (3,8931) atau P (sig) >0,0500 yang berarti bahwa Ho diterima yaitu tidak terdapat perbedaan rata-rata nilai dosis serap dari penggolongan usia pasien. Namun nilai rata-rata dosis serap untuk usia 1-5 tahun dan usia 5-10 tahun ini berbeda dengan usia 10-15 tahun yang berarti bahwa Ho ditolak dimana didapatkan hasil Fhitung >Ftabel (3,8931) atau P (sig) < 0,0500. Tabel 4.2 Hasil Fhitung uji statistik oneway ANOVA pada setiap penggolongan usia pada pasien laki Laki usia 1-5 tahun dengan 5-10 tahun usia 1-5 tahun dengan 10-15 tahun usia 5-10 tahun dengan 10-15 tahun
F hitung 0,3290 18,4390 39,0020
P (sig) 0,5670 0,0000 0,0000
30
4.1.2 Hasil Pengukuran Dosis Serap Radiasi pada Pasien Jenis Kelamin Wanita Hasil pengukuran rata-rata dosis serap pada pasien anak wanita usia 1-15 tahun pada masing-masing penggolongan usia disajikan dalam tabel 4.3 (Halaman 30). Tabel 4.3 Nilai rata-rata dosis serap radiasi dan standar eror untuk setiap penggolongan usia pasien anak jenis kelamin wanita (n=50) Usia (tahun) 1-5 5-10 10-15
Rata-Rata Dosis Serap (mGray) 0,0156 ± 0,0006 0,0162 ± 0,0004 0,0199 ± 0,0006
Dalam bentuk grafik untuk setiap penggolongan usia pasien pada tabel 4.3 disajikan dalam gambar 4.2 berikut. Terlihat bahwa untuk usia yang berbeda maka dihasilkan nilai rata-rata dosis serap yang berbeda pula.
Rata-rata dosis serap(mGray)
0.0250 0.0200 0.0150 0.0100
wanita
0.0050 0.0000 1-5 tahun
5-10 tahun
10-15 tahun
Usia (Tahun)
Gambar 4.2 Grafik dosis serap radiasi sinar-X pada pasien anak wanita untuk masingmasing kategori usia (n=50)
Berdasarkan hasil uji statistik oneway ANOVA pada tabel 4.4 (halaman 31) untuk pasien wanita menunjukkan bahwa tidak terdapat perbedaan rata-rata nilai dosis serap antara usia 1-5 tahun dengan usia 5-10 tahun. Hasil ini dapat ditunjukkan melalui pengujian hipotesis dimana antara usia 1-5 tahun dengan usia 5-10 tahun
31
didapatkan hasil Fhitung < Ftabel (3,8931) atau P(sig) >0,0500 yang berarti bahwa Ho diterima yaitu tidak terdapat perbedaan rata-rata nilai dosis serap antara usia 1-5 tahun dengan usia 5-10 tahun. Namun usia 1-5 tahun dan usia 5-10 tahun ini memiliki nilai rata-rata dosis serap dengan usia 10-15 tahun, hal ini ditunjukkan dari hasil Fhitung >Ftabel (3,8931) atau P (sig) < 0,0500. Tabel 4.4 Hasil Fhitung uji statistik oneway ANOVA pada setiap penggolongan usia pada pasien wanita Wanita F hitung P (sig) usia 1-5 tahun dengan 5-10 tahun 0,8740 0,3520 usia 1-5 tahun dengan 10-15 tahun 28,4160 0,0000 usia 5-10 tahun dengan 10-15 tahun 30,5060 0,0000
4.1.3 Analisis Dosis Serap Radiasi antara Pasien Anak Jenis Kelamin Laki dengan Wanita untuk setiap penggolongan usia Hasil pengukuran rata-rata dosis serap pada pasien anak laki dan pasien anak wanita untuk setiap penggolongan usia pasien (tabel 4.1 dan 4.3) disajikan dalam gambar 4.3 di bawah ini.
Rata-rata dosis serap (mGray)
0.0250 0.0200 0.0150 0.0100 0.0050 0.0000 1-5 tahun laki
wanita
5-10 tahun
10-15 tahun
Usia (Tahun)
Gambar 4.3 Grafik dosis serap radiasi sinar-X pada pasien anak laki dan wanita untuk masing-masing penggolongan usia pasien
32
Tabel 4.5 Hasil Fhitung uji statistik oneway ANOVA pada pasien dengan wanita untuk setiap penggolongan usia Laki-Wanita usia 1-5 tahun dengan 1-5 tahun usia 5-10 tahun dengan 5-10 tahun usia 10-15 tahun dengan 10-15 tahun
F hitung
P (sig)
0,0710 0,1270 0,0590
0,7900 0,7220 0,8090
Berdasarkan hasil uji statistik oneway ANOVA pada tabel 4.5 di atas, pada pasien anak laki dengan wanita, untuk setiap penggolongan usia pasien memiliki nilai signifikansi P (sig) ≥ 0,0500 dan nilai Fhitung ≤ Ftabel (3,9381), yang berarti bahwa diterimanya Ho. Hal ini menunjukkan bahwa tidak terdapat perbedaan rata-rata nilai dosis serap antara pasien anak laki dengan pasien anak wanita untuk setiap penggolongan usia.
Rata-rata dosis serap (mGray)
0.0600 0.0500 0.0400 0.0300 0.0200 0.0100 0.0000 1-5 tahun laki
wanita
UNSCEAR
5-10 tahun
10-15 tahun
Usia (Tahun)
Gambar 4.4 Grafik perbandingan nilai dosis serap radiasi sinar-X pada pasien laki dan wanita dengan dosis maksimal yang direkomendasikan oleh UNSCEAR
33
Gambar 4.4 (halaman 32) merupakan hasil pengukuran rata-rata dosis serap pada pasien laki dan wanita untuk setiap penggolongan usia (tabel 4.1 dan 4.3) terhadap nilai rekomendasi dosis maksimum yang diijinkan oleh UNSCEAR (tabel 2.1). Dari grafik tersebut terlihat bahwa untuk setiap penggolongan usia baik pasien laki maupun wanita masih berada di bawah nilai maksimum yang diijinkan oleh UNSCEAR. 4.2 Pembahasan Berdasarkan hasil perhitungan dan analisa data penelitian yang telah dilakukan, terlihat bahwa nilai dosis serap radiasi yang dihasilkan baik untuk pasien anak jenis kelamin laki (tabel 4.1) maupun wanita (tabel 4.3), untuk setiap penggolongan usia yang berbeda diperoleh nilai rata-rata dosis serap yang beragam. Dalam hasil dosis serap baik untuk pasien laki maupun pasien wanita terlihat bahwa pasien anak usia 1-5 tahun mendapatkan nilai rata-rata dosis yang terendah, sedangkan pasien anak usia 10-15 mendapatkan nilai dosis terbesar. Hasil penelitian ini menunjukkan bahwa usia berpengaruh terhadap pemberian faktor exposure. Jadi faktor usia mempengaruhi terhadap pemberian faktor eksposure dalam pemeriksaan radiodiagnostik. Jadi ketidakseragaman hasil nilai dosis serap ini disebabkan karena faktor usia dan kondisi fisik fisiologi dari masing-masing pasien (Suyatno, 2008). Pada gambar 4.1 terlihat bahwa untuk setiap penggolongan usia pada pasien laki memiliki nilai rata-rata dosis serap yang berbeda. Pada pasien usia 1-5 tahun dengan pasien usia 5-10 tahun, mempunyai selisih nilai rata-rata dosis serap yang sangat kecil atau hampir sama dibandingkan dengan pasien anak usia 10-15 tahun. Berdasarkan hasil uji statistik oneway ANOVA pada tabel 4.2 untuk pasien laki antara pasien usia 1-5 tahun dengan usia 5-10 tahun menunjukkan bahwa tidak terdapat perbedaan nilai rata-rata dosis serap yang signifikan, namun untuk usia 1-5 tahun dan 5-10 tahun ini memiliki perbedaan nilai rata-rata dosis serap dengan usia 10-15 tahun. Hal yang serupa yaitu pada pasien anak wanita, untuk setiap penggolongan usia memiliki nilai rata-rata dosis serap yang berbeda pula (tabel 4.3).
34
Pada gambar 4.2 terlihat bahwa pasien usia 1-5 tahun memiliki nilai rata-rata dosis terendah dan pasien usia 10-15 tahun memiliki nilai dosis terbesar. Untuk pasien usia 1-5 tahun dengan pasien usia 5-10 tahun memiliki rata-rata dosis serap yang tidak jauh beda, mengacu pada hasil uji statistik oneway ANOVA pada setiap penggolongan usia pada pasien wanita (tabel 4.4), antara usia 1-5 tahun dengan usia 5-10 tahun menunjukkan bahwa tidak terdapat perbedaan nilai rata-rata dosis serap yang signifikan, namun usia 1-5 tahun dan usia 5-10 tahun ini terdapat perbedaan nilai dosis serap yang signifikan dengan usia 10-15 tahun. Berdasarkan hasil uji oneway ANOVA, untuk pasien laki (tabel 4.2) dan pasien wanita (tabel 4.4) , antara usia 1-5 tahun dengan usia 5-10 tahun yang berarti tidak terdapat perbedaan rata-rata nilai dosis serap yang ditunjukkan dengan hasil Fhitung < Ftabel (3,8931) atau P (sig) >0,0500). Hal ini mungkin disebabkan karena pengaturan faktor exposure yang berupa kV dan mAs yang diberikan oleh operator (radiografer) pesawat sinar-X hanya berdasarkan pengalaman yang meliputi postur tubuh pasien. Pengalaman operator ini lebih mementingkan asas justifikasi dari pada asas optimasi, dimana operator lebih mengutamakan gambar yang dihasilkan tanpa memperhitungkan besarnya dosis yang diberikan kepada pasien. Dalam hasil penelitian ini, dosis serap yang diterima pasien anak laki maupun wanita untuk usia 1-5 tahun dan usia 5-10 tahun memiliki nilai dosis yang hampir sama. Mengacu pada batasan dosis yang dikeluarkan oleh UNSCEAR yaitu terdapat perbedaan nilai dosis serap untuk setiap kenaikan usia pasien. Jadi semakin meningkat usia pasien maka nilai dosis yang diterima semakin besar pula. Oleh karena itu diharapkan asas optimasi juga harus diperhatikan terutama pada pasien anak usia 1-5 tahun. Jadi seharusnya nilai dosis serap yang diterima oleh pasien anak usia 1-5 tahun lebih kecil dari nilai dosis yang diterima oleh pasien anak usia 5-10 tahun. Pada gambar 4.3 terlihat bahwa rata-rata dosis serap pada pasien anak untuk setiap penggolongan usia baik untuk pasien anak laki ataupun pasien anak wanita mempunyai nilai dosis serap yang relatif sama. Untuk pasien anak laki usia 1-5 tahun didapatkan rata-rata sebesar 0,0158 mGray, sedangkan pada pasien anak wanita usia
35
1-5 tahun didapatkan rata-rata sebesar 0,0156 mGray, terdapat selisih yang sangat kecil yaitu sekitar 0,0002 mGray. Demikian pula untuk pasien anak usia 5-10 tahun, dan usia 10-15 tahun terdapat selisih sebesar 0,0002 mGray. Berdasarkan hasil uji statistik oneway ANOVA antara pasien anak laki dengan wanita usia 1-5 tahun (tabel 4.5) memiliki nilai signifikansi sebesar 0,0790 (≥0,0500) dan nilai Fhitung (0,0710) ≤ Ftabel (3,9381), yang berarti bahwa diterimanya H0. Hal ini menunjukkan bahwa tidak terdapat perbedaan rata-rata dosis serap antara pasien anak laki dengan pasien anak wanita pada usia 1-5 tahun. Demikian pula untuk pasien anak laki dengan wanita usia 5-10 tahun, dan pasien anak laki dengan wanita usia 10-15 tahun. Pada pasien anak laki dengan wanita usia 5-10 tahun mempunyai nilai signifikansi yaitu sebesar 0,7220 dan nilai Fhitung (0,1270) ≤ Ftabel (3,9381), sedangkan pasien anak laki dengan wanita pada usia 10-15 tahun yaitu sebesar 0,8090 (≥0,0500) dan nilai Fhitung (0,0590) ≤ Ftabel (3,9381), artinya tidak terdapat perbedaan rata-rata dosis serap antara pasien anak laki dengan wanita pada usia 5-10 dan 10-15 tahun. Jadi dalam pemberian faktor exposure sinar-X, antara pasien anak laki dan wanita untuk setiap penggolongan usia tidak terdapat perbedaan yang cukup signifikan. Hasil ini menunjukkan bahwa untuk pasien anak, jenis kelamin tidak menjadi pengaruh terhadap pemberian nilai dosis serap. Gambar 4.4 merupakan perbandingan nilai dosis serap radiasi sinar-X pada pasien anak laki dan wanita dengan dosis maksimal yang direkomendasikan oleh UNSCEAR. Terlihat bahwa secara keseluruhan nilai rata-rata dosis serap yang diterima oleh pasien anak yang menjalani pemeriksaan di Instalasi Radiologi Rumah Sakit Paru Jember masih dibawah standart dosis radiasi maksimum yang dikeluarkan oleh UNSCEAR (Tabel 2.1). Berdasarkan hasil analisis dan perhitungan dosis terhadap pasien anak yang menjalani pemeriksaan radiodiagnostik di Instalasi Radiologi Rumah Sakit Paru Jember, dalam pemberian dosis pada pasien sudah sesuai dengan standart yang diijinkan oleh United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) sehingga tidak menimbulkan serta tidak
36
membahayakan pasien maupun masyarakat umum yang menjalani pemeriksaan radiodiagnostik. Pengukuran dosis serap ini telah dilakukan oleh Yuliati dan Kusumawati (2006), dari hasil pengukuran dosis radiasi dengan TLD-100 yang diterima oleh pasien anak yang menjalani pemeriksaan foto thorax yaitu berkisar antara 0,09300,4040 mGray. Dilanjutkan oleh penelitian Sofyan, et al (2009), dimana dosis radiasi yang diterima pasien anak di kota padang sangat bervariasi berdasarkan kelompok usia 0-1 tahun, 1-5 tahun, 5-10 tahun, dan 10-15 tahun diperoleh besarnya dosis radiasi untuk pasien anak masing-masing adalah 0,1260 ± 0,1500 mGray, 0,1170 ± 0,0930 mGray, 0,1110 ± 0,0360 mGray, dan 0,1600 ± 0,1390 mGray. Kedua penelitian ini relatif lebih besar dari nilai dosis maksimum yang direkomendasikan oleh badan yang berwenang mengatur nilai dosis. Berdasarkan beberapa hasil pengukuran tersebut maka nilai dosis serap yang diterima pasien anak di Instalasi Radiologi Rumah Sakit Paru Jember masih lebih kecil dibandingkan dengan terimaan dosis di kedua Rumah Sakit tersebut. Meskipun dosis serap yang diterima masing-masing kategori pasien baik laki ataupun wanita untuk setiap penggolongan usia masih dibawah batas maksimum yang diijinkan, dimana untuk pasien usia 1-5 tahun tidak melebihi 0,0300 mGray, 0,0400 mGray untuk usia 5-10 tahun, dan 0,0500 mGray untuk usia 10-15 tahun (UNSCEAR, 2000), namun perlindungan radiasi sinar-X bagi anak sangat penting untuk dilakukan karena mengingat pasien anak memiliki resiko lebih banyak terkena radiasi dibandingkan orang dewasa juga karena anak-anak memiliki sel-sel muda dan jaringan lunak yang masih dalam proses pertumbuhan serta mempunyai ketahanan tubuh yang rendah dari pada orang dewasa (Edwards et al., 1990). Oleh karena itu, pemberian dosis radiasi yang sangat bergantung pada parameter kV dan mAs pesawat sinar-X harus mendapat perhatian yang cukup serius terutama dalam hal proteksi radiasi untuk pasien anak. Dengan demikian, diperlukan suatu perlindungan bagi pasien anak dalam rangka meningkatkan penerapan aspek keselamatan dan kesehatan sesuai dengan PP No. 63 tahun 2000 yaitu upaya yang dilakukan untuk menciptakan
37
kondisi untuk mendapatkan gambar dengan kualitas yang baik secara medis dan dosis radiasi yang diterima pasien dapat ditekan serendah mungkin atau sesuai dengan prinsip ALARA sedemikian rupa sehingga efek radiasi pengion terhadap manusia dan lingkungan hidup tidak melampaui nilai batas yang ditentukan (Peraturan Pemerintah R.I, 2000). Salah satu untuk melindungi anak dari bahaya radiasi adalah dengan menggunakan pelindung radiasi seperti celemek radiasi (appron) yang sesuai dengan postur tubuh dan usia anak-anak, agar pasien merasa aman saat melakukan pemeriksaan. Cara lain yang dapat dilakukan yaitu dengan pembatasan daerah pemeriksaan sinar-X harus disesuaikan dengan objek yang akan diperiksa. Untuk proteksi radiasi pasien yaitu agar kualitas penyinaran foto thorax memperoleh hasil yang optimum tetapi dosis yang diterima pasien anak rendah yaitu dapat dilakukan beberapa cara yaitu pemeriksaan kondisi pesawat sinar-X atau mengkalibrasi alat tersebut secara berkala yang meliputi: kualitas berkas sinar-X yang dikeluarkan, penggunaan tegangan (kV) dan arus (mA), serta waktu exposure (s). Perencanaan operasi agar dosis yang diterima pasien ditekan serendah mungkin. Pemakaian peralatan radiodiagnostik yang memadai serta mengikuti prosedur atau tata cara penggunaan peralatan radiodiagnostik yang telah disusun.
BAB 5. PENUTUP
5.1 Kesimpulan Berdasarkan hasil penelitian dan pembahasan, maka dapat disimpulkan bahwa tidak terdapat perbedaan nilai dosis serap yang signifikan antara pasien usia 1-5 tahun dengan usia 5-10 tahun, tetapi usia 1-5 tahun dan 5-10 tahun ini memiliki perbedaan nilai dosis serap dengan pasien usia 10-15 tahun, baik untuk pasien laki ataupun wanita. Secara umum nilai dosis keseluruhan yang diterima oleh pasien anak di Instalasi Radiologi Rumah Sakit Paru Jember masih dibawah batas maksimal yang diijinkan oleh UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation).
5.2 Saran Adapun
saran
yang
dapat
disampaikan
dari
hasil
penelitian
dan
pembahasan yang dapat diusulkan sebagai masukan kepada Instalasi Radiologi Rumah Sakit Paru Jember untuk meningkatkan proteksi radiasi khususnya asas optimasi yaitu perlunya perhitungan besarnya dosis yang diberikan kepada pasien anak, baik dari penggolongan usia maupun jenis kelamin terutama pasien anak usia 15 tahun.
DAFTAR PUSTAKA
Akhadi, M. 2000. Dasar-Dasar Proteksi Radiasi. Jakarta: PT. Rineka Cipta. Alatas, Z. 1998. Efek radiasi pada kulit. Bulletin ALARA,2(1): 27-31. Alatas, Z. Tanpa tahun. Efek Teratogenik Radiasi Pengion. Puslitbang Keselamatan Radiasi dan Biomedika Nuklir: BATAN Arthur, R. 2003. Interpretation of the Paediatric Chest X-Ray. Current Paediatric, 13: 438-447. Bapeten, 2011. Keselamatan Radiasi Dalam Penggunaan Pesawat Sinar-X Radiologi Diagnostik Dan Intervensional. Jakarta: Bapeten. BATAN, 2011. Pedoman Keselamatan dan Proteksi Radiasi Kawasan Nuklir Serpong. PUSPIPTEK Serpong: BATAN. Beiser, A. 1992. Konsep Fisika Modern. Jakarta: Erlangga. Cember, H. 1983. Pengantar Fisika Kesehatan. Edisi. Semarang: IKIP Semarang Press. Compagnone, G., Pagan, L., dan Bergamini, C. 2005. Comparison of Six Phantoms for Entrance Skin Dose Evaluation in 11 Standard X-Ray Examinations. Journal of Applied Clinical Medical Physics, 6(1):101-113. Corwin, E. J. 2009. Buku Saku Patofisiologi. Jakarta: EGC. Dhahryan, Azam, M. 2009. Pengaruh Teknik Tegangan Tinggi terhadap Entrasce Skin Exposure (ESE) dan Laju Paparan Radiasi Hambur pada Pemeriksaan Abdomen. Berkala Fisika 12 (1): 21-26. Edwards, C., Statkiewicz M. A., dan Ritenour, E. R. 1990. Perlindungan Radiasi Bagi Pasien dan Dokter Gigi. Jakarta: Widya Medika. European Commission. 1990. European Guidelines on Quality Criteria for Diagnostic Radiographic Images in Paediatrics. Brussels: Luxembourg Faiz, O. dan Moffat, D. 2002. At a Glance Series Anatomi. Jakarta: Erlangga. Fahmi, A., Firdausi, K. S., Budi, W. S. 2008. Pengaruh Faktor Eksposi pada Pemeriksaan Abdomen terhadap Kualitas Radiograf dan Paparan Radiasi menggunakan Computed Radiography. Berkala Fisika 11 (4): 109-118 Gabriel, J. F. 1996. Fisika Kedokteran. Jakarta: EGC.
40
Hall, E.J. and Brenner, D.J. 2008. Cancer Risk From Diagnostic Radiology. The British Journal of Radiology, 81: 365-378. Kaplan, I. 1979. Nuclear Physics, 2nd edition. London: Addison-Wesley Publishing Company. Krane, K. Fisika Modern. Terjemahan oleh Wospakrik, H.J. 1992. Jakarta: Universitas Indonesia. Maryanto, D., Solichin, Abidin, Z. 2008. Analisis Keselamatan Kerja Radiasi Pesawat Sinar-X di Unit Radiologi RSU Kota Yogyakarta. Seminar Nasional IV SDM Teknologi Nuklir Yogyakarta: 679-690. Milvita, D., Yana, D., Nuraeni, N. dan Yuliati, H. 2009. Analisis Dosis Radiasi yang Diterima Mata, Tiroid dan Calvaria pada Pasien yang Menjalani Pemeriksaan CT-Scan Bagian Kepala. Depok: Prosiding Seminar Nasional Keselamatan Kesehatan dan Lingkungan V. Mooney, R. and Thomas, P.S.1998. Dose reduction in a paediatric X-ray department following optimization of radiographic technique. The British Journal of Radiology, 71: 852-860. Pearce. E.C. 2009. Anatomi dan fisiologi untuk paramedis. Jakarta: PT Gramedia Pustaka Utama. Peraturan Pemerintah Republik Indonesia No. 63. 2000. Keselamatan dan Kesehatan terhadap Pemanfaatan Radiasi Pengion. [serial on line]. http://jdih.ristek.go.id/?q=system/files/perundangan/118156978.pdf [25 Juni 2012]. Rahayuningsih, B., Murtini, M.S., Prasetya, N.K. 2010. Prediksi Dosis Paparan Radiasi dengan Menggunakan Metode Klastering pada Dosimeter Film. Prosiding Seminar Nasional Sains: 243-249. Raudhah, U. 2008. “Distribusi Terimaan Dosis Radiasi pada Kegiatan Radiografi Dental Anak.” Skripsi. Padang: Universitas Andalas. Sharifat, Oyeleke, O.I. 2009. Patient Entrance Skin Doses at Minna and Ibadan for Common Diagnostic Radiological Examinations. Bayero Journal of Pure and Applied Sciences, 2(1): 1-5. Sofyan, H., Yuliati, H., Milvita, D., dan Nengsih, S. 2009. Dosis Radiasi Pasien Radiologi Anak pada Pemeriksaan Torak di Kota Padang. Depok: Prosiding Seminar Nasional Keselamatan Kesehatan dan Lingkungan V. Suyati dan Akhadi, M. 1998. Mengukur Kualitas Radiasi Keluaran Pesawat SinarX. Buletin Alara, 2(2): 7-12.
41
Suyatno, F. 2008. Aplikasi Radiasi Sinar-X di Bidang Kedokteran Untuk Menunjang Kesehatan Masyarakat. Sekolah Tinggi Teknologi Nuklir BATAN Yogyakarta: 503-510. Trikasjono, T., Marjanto, D., Nugroho, A. 2007. Perancangan Ruang Pengujian Kebocoran Pesawat Sinar-X Rigaku 250 kV di STTN Batan Yogyakarta. Seminar Nasional IV SDM Teknologi Nuklir Yogyakarta: 269-280. UNSCEAR. 2000. Sources and Effects of Ionizing Radiation. Report to the General Assembly. New York: United Nation. UNSCEAR, 2008. Sources and Effects of Ionizing Radiation. New York: United Nations. Waseso. 1998. “ Pengaruh Variasi Tegangan dan Arus Terhadap Kualitas Radiograf dan Dosis Yang Diterima Pasien pada Pemotretan Paru-Paru Proyeksi Postero Anterior (Study Kasus Di RSPAD “Gatot Soebroto“ Jakarta).” Skripsi. Semarang :Universitas Dipenegoro. WHO. 1990. Petunjuk Membaca Foto untuk Dokter Umum. Jakarta: EGC Yondri. 2008. “Analisis Perisai Radisai Sinar-X pada Ruang Penyinaran Radiodiagnostik RSUD Dr.Adnan W.D.Payakumbuh.” Tesis. Padang: Program Pasca Sarjana Universitas Andalas. Yuliati, H. dan Kusumawati, D.D. 2006. Terimaan Dosis Radiasi Foto Thorak oleh Pasien Anak. Prosiding Pertemuan dan Presentasi Ilmiah Fungsional Teknis non Peneliti: 155-164.
DAFTAR ISTILAH
A Abdomen adalah bagian dari tubuh yang berada di antara dada dan panggul. Analysis of variance adalah suatu metode analisis statistika yang termasuk ke dalam cabang statistika inferensi. Anterior-posterior adalah posisi dilihat dari depan ke belakang atau sinar-X menembus tubuh dari belakang ke depan tubuh. C Carsiogenik adalah sifat yang dapat menyebabkan penyakit kanker. D Deskuamasi adalah pengelupasan kulit sebagi hilangnya sel-sel epidermis yang disertai proses penggantian dengan sel-sel yang baru. Dosis serap adalah besarnya energi yang diserap oleh suatu bahan/ materi dengan satuan Gy (Gray). E Epilasi adalah pencabutan rambut hingga ke akarnya. Eritema adalah kemerahan pada kulit yang disebabkan pelebaran pembuluh kapiler. Esofagus adalah saluran yang menghubungkan mulut ke lambung. Extremity adalah tulang anggota gerak tubuh yang terdiri dari lengan, tangan, kaki, panggul. F Focus Film Distance adalah jarak antara film dengan tabung sinar-X. H Hemopoetic adalah pembentukan sel-sel darah atau darah.
43
M Mediastinum adalah rongga di antara paru-paru kanan dan kiri yang berisi jantung, aorta, dan arteri besar, pembuluh darah vena besar, trakea, kelenjar timus, saraf, jaringan ikat, kelenjar getah bening dan salurannya. N Nekrosis adalah kematian sel atau jaringan tubuh. P Pigmentasi adalah perubahan warna kulit seseorang yang ditandai dengan bercakbercak hitam. Pleura adalah lapisan pembungkus paru. Positron adalah elektron dengan muatan positif. Posterior-anterior adalah posisi dilihat dari belakang ke depan atau sinar-X menembus tubuh dari depan ke belakang tubuh. S Skull adalah rangka kepala yang melindungi otak dan menunjang strukter wajah serta melindungi kepala dari luka. Supine adalah posisi tubuh berbaring terlentang/horisontal. T Telangiectasia adalah terlihatnya pembuluh darah sebagai akibat adanya pelebaran atau pembesaran pembuluh darah. Thorax adalah wilayah tubuh yang terletak antara leher dan perut yang berisi paruparu, jantung dan bagian dari aorta.
LAMPIRAN A. Perhitungan Dosis Serap Radiasi Sinar-X pada Pasien Anak Laki dan Wanita A.1 Pasien Laki A.1.1 Usia 1-5 tahun kV
mA
s
52 52
200 200
54 52 52 52 54
200 200 250 250 250 250
0,0500 0,0500 0,0500 0,0500
54 54 54 54 54 52
250 300 250 250 250 250 300 250 250
0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0600 0,0500 0,0500 0,0600 0,0500 0,0500
52 54 54 54 52 54 54 56 56 52 56
250 250 300 250 300 300 300 250 250 250 250
0,0500 0,0500 0,0600 0,0500 0,0600 0,0500 0,0500 0,0500 0,0500 0,0600 0,0500
52 54 52 54
Normalisasi kV s 48,0450 0,0431 48,0450 0,0431 49,6110 0,0431 48,0450 0,0431 48,0450 0,0431 48,0450 0,0431 49,6110 0,0431 48,0450 0,0431 49,6110 0,0431 48,0450 0,0431 49,6110 0,0431 49,6110 0,0533 49,6110 0,0431 49,6110 0,0431 49,6110 0,0533 49,6110 0,0431 48,0450 0,0431 48,0450 0,0431 49,6110 0,0431 49,6110 0,0533 49,6110 0,0431 48,0450 0,0533 49,6110 0,0431 49,6110 0,0431 51,1770 0,0431 51,1770 0,0431 48,0450 0,0533 51,1770 0,0431
Dosis Paparan (mR)
Dosis Serap (mGray)
1,9897 1,9897 2,1215 1,9897 2,4872 2,4872 2,6519 2,4872 2,6519 2,9846 2,6519 3,2845 2,6519 2,6519 3,9414 2,6519 2,4872 2,4872 2,6519 1,7517 1,1786 1,6429 1,4143 1,4143 1,2542 1,2542 1,3690 1,2542
0,0174 0,0174 0,0186 0,0174 0,0218 0,0218 0,0232 0,0218 0,0232 0,0261 0,0232 0,0288 0,0232 0,0232 0,0345 0,0232 0,0218 0,0218 0,0232 0,0153 0,0103 0,0144 0,0124 0,0124 0,0109 0,0109 0,0120 0,0109
45
54 52 54 52 52 56
250 250 250 300 250 300
52 52 54 54 54 54 54
250 250 250 300 300 250 300 250 300 250 300 300 300 300 250 300
54 56 56 56 54 54 54 52
54 Mean Standart deviasi Standart eror
0,0500
0,0500 0,0500 0,0500 0,0600 0,0400 0,0500 0,0500 0,0500 0,0500 0,0400 0,0600 0,0500 0,0500 0,0500 0,0500
49,6110 48,0450 49,6110 48,0450 48,0450 51,1770 48,0450 48,0450 49,6110 49,6110 49,6110 49,6110 49,6110 49,6110 51,1770 51,1770 51,1770 49,6110 49,6110 49,6110 48,0450
0,0431 0,0431 0,0431 0,0533 0,0533 0,0431 0,0431 0,0431 0,0431 0,0533 0,0328 0,0431 0,0431 0,0431 0,0431 0,0328 0,0533 0,0431 0,0431 0,0431 0,0431
1,1786 1,1054 1,1786 1,6429 1,3690 1,5051 1,1054 1,1054 1,1786 1,7517 1,0770 1,1786 1,4143 1,1786 1,5051 0,9550 1,8640 1,4143 1,4143 1,4143 1,1054
0,0103 0,0096 0,0103 0,0144 0,0120 0,0131 0,0096 0,0096 0,0103 0,0153 0,0094 0,0103 0,0124 0,0103 0,0131 0,0083 0,0163 0,0124 0,0124 0,0124 0,0096
0,0600
49,6110
0,0533
1,7517
0,0153 0,0158 0,0062 0,0009
0,0500 0,0500 0,0600 0,0600 0,0500
A.1.2 Usia 5-10 tahun kV
mA
s
58 60 60 60 60 64 64
300 300 300 300 300 300 300
0,0600 0,0600 0,0500 0,0600 0,0600 0,0500 0,0400
Normalisasi kV s 52,7430 0,0533 54,3090 0,0533 54,3090 0,0431 54,3090 0,0533 54,3090 0,0533 57,4410 0,0431 57,4410 0,0328
Dosis Paparan (mR)
Dosis Serap (mGray)
1,9799 2,0992 1,6949 2,0992 2,0992 1,8960 1,4438
0,0173 0,0184 0,0148 0,0184 0,0184 0,0166 0,0126
46
60 60 60 60 60 60 60 56 60 56 60 58 56 58 60 60 68 68 66 66 60 64 64 68 56 58 60 60 60 60 60 68 60 68 58 58 68
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
0,0500 0,0500 0,0500 0,0500 0,0500 0,0600 0,0600 0,0600 0,0600 0,0600 0,0600 0,0500 0,0600 0,0500 0,0600 0,0600 0,0400 0,0400 0,0400 0,0500 0,0500 0,0500 0,0600 0,0700 0,0500 0,0500 0,0500 0,0500 0,0500 0,0600 0,0600 0,0600 0,0600 0,0400 0,0500 0,0600 0,0500
54,3090 54,3090 54,3090 54,3090 54,3090 54,3090 54,3090 51,1770 54,3090 51,1770 54,3090 52,7430 51,1770 52,7430 54,3090 54,3090 60,5730 60,5730 59,0070 59,0070 54,3090 57,4410 57,4410 60,5730 51,1770 52,7430 54,3090 54,3090 54,3090 54,3090 54,3090 60,5730 54,3090 60,5730 52,7430 52,7430 60,5730
0,0431 0,0431 0,0431 0,0431 0,0431 0,0533 0,0533 0,0533 0,0533 0,0533 0,0533 0,0431 0,0533 0,0431 0,0533 0,0533 0,0328 0,0328 0,0328 0,0431 0,0431 0,0431 0,0533 0,0636 0,0431 0,0431 0,0431 0,0431 0,0431 0,0533 0,0533 0,0533 0,0533 0,0328 0,0431 0,0533 0,0431
1,6949 1,6949 1,6949 1,6949 1,6949 2,0992 2,0992 1,8640 2,0992 1,8640 2,0992 1,5986 1,8640 1,5986 2,0992 2,0992 1,6055 1,6055 1,5236 2,0008 1,6949 1,8960 2,3483 3,1143 1,5051 1,5986 1,6949 1,6949 1,6949 2,0992 2,0992 2,6114 2,0992 1,6055 1,5986 1,9799 2,1085
0,0148 0,0148 0,0148 0,0148 0,0148 0,0184 0,0184 0,0163 0,0184 0,0163 0,0184 0,0140 0,0163 0,0140 0,0184 0,0184 0,0140 0,0140 0,0133 0,0175 0,0148 0,0166 0,0205 0,0273 0,0131 0,0140 0,0148 0,0148 0,0148 0,0184 0,0184 0,0229 0,0184 0,0140 0,0140 0,0173 0,0184
47
64 58 60 60 66
300 300 300 300 300 300
68 Mean Standart deviasi Standart eror
0,0500 0,0500 0,0500 0,0500 0,0500 0,0500
57,4410 52,7430 54,3090 54,3090 59,0070 60,5730
0,0431 0,0431 0,0431 0,0431 0,0431 0,0431
1,8960 1,5986 1,6949 1,6949 2,0008 2,1085
0,0166 0,0140 0,0148 0,0148 0,0175 0,0184 0,0164 0,0025 0,0004
Dosis Paparan (mR)
Dosis Serap (mGray)
2,0651 2,3483 2,3483 2,3483 2,3483 2,0992 2,0992 2,0992 2,0992 1,5986 2,0008 2,2189 1,8960 2,1085 2,1085 2,0008 1,8960 1,5800 2,0992 1,9799 2,4781 2,0992
0,0181 0,0205 0,0205 0,0205 0,0205 0,0184 0,0184 0,0184 0,0184 0,0140 0,0175 0,0194 0,0166 0,0184 0,0184 0,0175 0,0166 0,0138 0,0184 0,0173 0,0217 0,0184
A.1.3 Usia 10-15 tahun kV
mA
s
66 64 64 64 64 60 60 60 60
250 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 250 300 300 300
0,0600 0,0600 0,0600 0,0600 0,0600 0,0600 0,0600 0,0600 0,0600
58 66 70 64 68 68 66 64 64 60 58 66 60
300
0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0600 0,0600 0,0600 0,0600
Normalisasi kV s 59,0070 0,0533 57,4410 0,0533 57,4410 0,0533 57,4410 0,0533 57,4410 0,0533 54,3090 0,0533 54,3090 0,0533 54,3090 0,0533 54,3090 0,0533 52,7430 0,0431 59,0070 0,0431 62,1390 0,0431 57,4410 0,0431 60,5730 0,0431 60,5730 0,0431 59,0070 0,0431 57,4410 0,0431 57,4410 0,0431 54,3090 0,0533 52,7430 0,0533 59,0070 0,0533 54,3090 0,0533
48
58 62 66 60 66 66 60 58 60 68 68 64 64 64 64 66 66 68 66 66 66 66 66 68 64 64 68
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
68 Mean Standart deviasi Standart eror
0,0600 0,0600 0,0700 0,0600 0,0600 0,0700 0,0600 0,0600 0,0600 0,0500 0,0500 0,0500 0,0600 0,0600 0,0600 0,0700 0,0700 0,0500 0,0600 0,0600 0,0600 0,0600 0,0700 0,0700 0,0600 0,0600 0,0700 0,0700
52,7430 55,8750 59,0070 54,3090 59,0070 59,0070 54,3090 52,7430 54,3090 60,5730 60,5730 57,4410 57,4410 57,4410 57,4410 59,0070 59,0070 60,5730 59,0070 59,0070 59,0070 59,0070 59,0070 60,5730 57,4410 57,4410 60,5730 60,5730
0,0533 0,0533 0,0636 0,0533 0,0533 0,0636 0,0533 0,0533 0,0533 0,0431 0,0431 0,0431 0,0533 0,0533 0,0533 0,0636 0,0636 0,0431 0,0533 0,0533 0,0533 0,0533 0,0636 0,0636 0,0533 0,0533 0,0636 0,0636
1,9799 2,2220 2,9553 2,0992 2,4781 2,9553 2,0992 1,9799 2,0992 2,1085 2,1085 1,8960 2,3483 2,3483 2,3483 2,9553 2,9553 2,1085 2,4781 2,4781 2,4781 2,4781 2,9553 3,1143 2,3483 2,3483 3,1143 3,1143
0,0173 0,0194 0,0259 0,0184 0,0217 0,0259 0,0184 0,0173 0,0184 0,0184 0,0184 0,0166 0,0205 0,0205 0,0205 0,0259 0,0259 0,0184 0,0217 0,0217 0,0217 0,0217 0,0259 0,0273 0,0205 0,0205 0,0273 0,0273 0,0201 0,0033 0,0005
49
A.2 Pasien Wanita A.2.1 Usia 1-5 tahun kV
mA
s
52 52 52 52 52 52 52 52 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 56 56
250 250 250 250 250 250 250 250 250 200 200 200 200 200
0,0500 0,0500 0,0500 0,0500 0,0500 0,0400 0,0400 0,0400 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500
250 250 250 300 300 300 300 300 300 300 300 250 250 250 300 300 300 300
0,0600 0,0500 0,0500 0,0500 0,0600 0,0600 0,0600 0,0600
Normalisasi kV s 48,0450 0,0431 48,0450 0,0431 48,0450 0,0431 48,0450 0,0431 48,0450 0,0431 48,0450 0,0328 48,0450 0,0328 48,0450 0,0328 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0533 49,6110 0,0431 49,6110 0,0431 49,6110 0,0431 49,6110 0,0530 49,6110 0,0533 51,1770 0,0533 51,1770 0,0533
Dosis Paparan (mR)
Dosis Serap (mGray)
2,4872 2,4872 2,4872 2,4872 2,4872 1,8939 1,8939 1,8939 2,6519 2,1215 2,1215 2,1215 2,1215 2,1215 2,6519 2,6519 2,6519 1,4143 1,4143 1,4143 1,4143 1,4143 1,4143 1,4143 1,7517 1,1786 1,1786 1,1786 1,7517 1,7517 1,8640 1,8640
0,0218 0,0218 0,0218 0,0218 0,0218 0,0166 0,0166 0,0166 0,0232 0,0186 0,0186 0,0186 0,0186 0,0186 0,0232 0,0232 0,0232 0,0124 0,0124 0,0124 0,0124 0,0124 0,0124 0,0124 0,0153 0,0103 0,0103 0,0103 0,0153 0,0153 0,0163 0,0163
50
56 56 56 56 56 56
300 300 300 300 300 300 300 300 300 300 300 300 250 300 250 300 300 300
56 56 56 56 56 56 54 56 56 56 56 54 Mean Standart deviasi Standart eror
0,0600 0,0600 0,0600 0,0600 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0600 0,0500 0,0400
51,1770 51,1770 51,1770 51,1770 51,1770 51,1770 51,1770 51,1770 51,1770 51,1770 51,1770 51,1770 49,6110 51,1770 51,1770 51,1770 51,1770 49,6110
0,0533 0,0533 0,0533 0,0533 0,0431 0,0431 0,0431 0,0431 0,0431 0,0431 0,0431 0,0431 0,0431 0,0431 0,0431 0,0533 0,0431 0,0328
1,8640 1,8640 1,8640 1,8640 1,5051 1,5051 1,5051 1,5051 1,5051 1,5051 1,5051 1,5051 1,1786 1,5051 1,2542 1,8640 1,5051 1,0770
0,0163 0,0163 0,0163 0,0163 0,0131 0,0131 0,0131 0,0131 0,0131 0,0131 0,0131 0,0131 0,0103 0,0131 0,0109 0,0163 0,0131 0,0094 0,0156 0,0041 0,0006
Dosis Paparan (mR)
Dosis Serap (mGray)
1,9799 1,9799 1,9799 1,9799 1,5051 1,5986 1,5986 1,9799 1,9799 2,6114 1,9799
0,0173 0,0173 0,0173 0,0173 0,0131 0,0140 0,0140 0,0173 0,0173 0,0229 0,0173
A.2.2 Usia 5-10 tahun kV
mA
s
58 58 58 58 56
300 300 300 300 300 300 300 300 300 300 300
0,0600 0,0600 0,0600 0,0600 0,0500 0,0500 0,0500
58 58 58 58 68 58
0,0600 0,0600 0,0600 0,0600
Normalisasi kV s 52,7430 0,0533 52,7430 0,0533 52,7430 0,0533 52,7430 0,0533 51,1770 0,0431 52,7430 0,0431 52,7430 0,0431 52,7430 0,0533 52,7430 0,0533 60,5730 0,0533 52,7430 0,0533
51
58 56 60 56 60 60 62 64 64 60 60
300 300 300 300 300 300 250 300 300 250 300
0,0500 0,0600 0,0600 0,0600 0,0600 0,0500 0,0500 0,0500 0,0500 0,0600 0,0700
58 60 60 58 58 58 58 58 60 60 56 56 58 58 58 58 58 60 62 60 60 60 54 60 60 60
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 250 300 300 250 300 300 300
0,0600 0,0600 0,0600 0,0600 0,0500 0,0500 0,0500 0,0600 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0500 0,0600 0,0600 0,0600 0,0600 0,0500 0,0600 0,0600 0,0500 0,0500 0,0600 0,0600
52,7430 51,1770 54,3090 51,1770 54,3090 54,3090 55,8750 57,4410 57,4410 54,3090 54,3090 52,7430 54,3090 54,3090 52,7430 52,7430 52,7430 52,7430 52,7430 54,3090 54,3090 51,1770 51,1770 52,7430 52,7430 52,7430 52,7430 52,7430 54,3090 55,8750 54,3090 54,3090 54,3090 49,6110 54,3090 54,3090 54,3090
0,0431 0,0533 0,0533 0,0533 0,0533 0,0431 0,0431 0,0431 0,0431 0,0533 0,0636 0,0533 0,0533 0,0533 0,0533 0,0431 0,0431 0,0431 0,0533 0,0431 0,0431 0,0431 0,0431 0,0431 0,0431 0,0431 0,0533 0,0533 0,0533 0,0533 0,0431 0,0533 0,0533 0,0431 0,0431 0,0533 0,0533
1,5986 1,8640 2,0992 1,8640 2,0992 1,6949 1,4950 1,8960 1,8960 1,7493 2,5035 1,9799 2,0992 2,0992 1,9799 1,5986 1,5986 1,5986 1,9799 1,6949 1,6949 1,5051 1,5051 1,5986 1,5986 1,5986 1,9799 1,9799 2,0992 2,2220 1,4124 2,0992 2,0992 1,1786 1,6949 2,0992 2,0992
0,0140 0,0163 0,0184 0,0163 0,0184 0,0148 0,0131 0,0166 0,0166 0,0153 0,0219 0,0173 0,0184 0,0184 0,0173 0,0140 0,0140 0,0140 0,0173 0,0148 0,0148 0,0131 0,0131 0,0140 0,0140 0,0140 0,0173 0,0173 0,0184 0,0194 0,0123 0,0184 0,0184 0,0103 0,0148 0,0184 0,0184
52
60 300 0,0600 60 300 0,0700 Mean Standart deviasi Standart eror
54,3090 54,3090
0,0533 0,0636
2,0992 2,5035
0,0184 0,0219 0,0162 0,0025 0,0004
A.2.3 Usia 10-15 tahun kV
mA
s
58 56 58
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
0,0600 0,0600 0,0700
64 60 60 58 68 68 66 60 58 72 60 60 66 68 60 56 64 64 66 66 60 60 70
0,0600 0,0600 0,0600 0,0500 0,0500 0,0500 0,0500 0,0600 0,0600 0,0700 0,0600 0,0700 0,0500 0,0500 0,0600 0,0600 0,0600 0,0600 0,0700 0,0500 0,0600 0,0600 0,0700
Normalisasi kV s 52,7430 0,0533 51,1770 0,0533 52,7430 0,0636 57,4410 0,0533 54,3090 0,0533 54,3090 0,0533 52,7430 0,0431 60,5730 0,0431 60,5730 0,0431 59,0070 0,0431 54,3090 0,0533 52,7430 0,0533 63,7050 0,0636 54,3090 0,0533 54,3090 0,0636 59,0070 0,0431 60,5730 0,0431 54,3090 0,0533 51,1770 0,0533 57,4410 0,0533 57,4410 0,0533 59,0070 0,0636 59,0070 0,0433 54,3090 0,0533 54,3090 0,0533 62,1390 0,0636
Dosis Paparan (mR)
Dosis Serap (mGray)
1,9799 1,8640 2,3612 2,3483 2,0992 2,0992 1,5986 2,1085 2,1085 2,0008 2,0992 1,9799 3,4447 2,0992 2,5035 2,0008 2,1085 2,0992 1,8640 2,3483 2,3483 2,9553 2,0008 2,0992 2,0992 3,2774
0,0173 0,0163 0,0207 0,0205 0,0184 0,0184 0,0140 0,0184 0,0184 0,0175 0,0184 0,0173 0,0302 0,0184 0,0219 0,0175 0,0184 0,0184 0,0163 0,0205 0,0205 0,0259 0,0175 0,0184 0,0184 0,0287
53
64 70 60 70 68 60 64 58 58 58 58 62 64 70 68 56 58 68 60 64 66 62 60
300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300
60 Mean Standart deviasi Standart eror
0,0700 0,0500 0,0500 0,0500 0,0500 0,0500 0,0700 0,0600 0,0600 0,0600 0,0600 0,0700 0,0700 0,0700 0,0700 0,0600 0,0600 0,0700 0,0600 0,0600 0,0700 0,0700 0,0600 0,0600
57,4410 62,1390 54,3090 62,1390 60,5730 54,3090 57,4410 52,7430 52,7430 52,7430 52,7430 55,8750 57,4410 62,1390 60,5730 51,1770 52,7430 60,5730 54,3090 57,4410 59,0070 55,8750 54,3090 54,3090
0,0636 0,0433 0,0433 0,0433 0,0433 0,0433 0,0636 0,0533 0,0533 0,0533 0,0533 0,0636 0,0636 0,0636 0,0636 0,0533 0,0533 0,0636 0,0533 0,0533 0,0636 0,0636 0,0533 0,0533
2,8005 2,2189 1,6949 2,2189 2,1085 1,6949 2,8005 1,9799 1,9799 1,9799 1,9799 2,6499 2,8005 3,2774 3,1143 1,8640 1,9799 3,1143 2,0992 2,3483 2,9553 2,6499 2,0992 2,0992
0,0245 0,0194 0,0148 0,0194 0,0184 0,0148 0,0245 0,0173 0,0173 0,0173 0,0173 0,0232 0,0245 0,0287 0,0273 0,0163 0,0173 0,0273 0,0184 0,0205 0,0259 0,0232 0,0184 0,0184 0,0199 0,0040 0,0006
54
LAMPIRAN B. Hasil Uji Oneway ANOVA pada Pasien Anak Jenis Kelamin Laki dan Wanita untuk Setiap Penggolongan Usia B.1 Pasien Laki B.1.1 Usia 1-5 tahun dengan usia 5-10 tahun
Des criptives laki
N 1-5 tahun 5-10 tahun Total
50 50 100
Mean .015860 .016400 .016130
Std. Deviation .0061545 .0025314 .0046897
95% Conf idence Interval f or Mean Low er Bound Upper Bound .014111 .017609 .015681 .017119 .015199 .017061
Std. Error .0008704 .0003580 .0004690
Minimum .0080 .0130 .0080
Max imum .0350 .0270 .0350
ANOVA laki
Betw een Groups Within Groups Total
Sum of Squares .000 .002 .002
df 1 98 99
Mean Square .000 .000
F .329
Sig. .567
B.1.2 Usia 1-5 tahun dengan usia 10-15 tahun Des criptives dosis
N 1-5 tahun 10-15 tahun Total
50 50 100
Mean .015860 .020120 .017990
Std. Deviation .0061545 .0033663 .0053795
Std. Error .0008704 .0004761 .0005380
95% Conf idence Interval f or Mean Low er Bound Upper Bound .014111 .017609 .019163 .021077 .016923 .019057
Minimum .0080 .0140 .0080
Max imum .0350 .0270 .0350
55
ANOVA dosis Sum of Squares .000 .002 .003
Betw een Groups Within Groups Total
df 1 98 99
Mean Square .000 .000
F 18.439
Sig. .000
B.1.3 Usia 5-10 tahun dengan usia 10-15 tahun Des criptives dosis
N 5-10 tahun 10-15 tahun Total
50 50 100
Mean .016400 .020120 .018260
Std. Deviation .0025314 .0033663 .0035036
95% Conf idence Interval f or Mean Low er Bound Upper Bound .015681 .017119 .019163 .021077 .017565 .018955
Minimum .0130 .0140 .0130
Max imum .0270 .0270 .0270
95% Conf idence Interval f or Mean Low er Bound Upper Bound .014405 .016755 .015505 .016935 .015221 .016579
Minimum .0090 .0100 .0090
Max imum .0230 .0230 .0230
Std. Error .0003580 .0004761 .0003504
B.2 Pasien Wanita B.2.1 Usia 1-5 tahun dengan usia 5-10 tahun Des criptives dosis
N 1-5 tahun 5-10 tahun Total
50 50 100
Mean .015580 .016220 .015900
Std. Deviation .0041359 .0025176 .0034216
Std. Error .0005849 .0003560 .0003422
ANOVA dosis
Betw een Groups Within Groups Total
Sum of Squares .000 .001 .001
df 1 98 99
Mean Square .000 .000
F .874
Sig. .352
56
B.2.2 Usia 1-5 tahun dengan usia 10-15 tahun Des criptives dosis
N 1-5 tahun 10-15 tahun Total
50 50 100
Mean .015580 .019940 .017760
Std. Deviation .0041359 .0040427 .0046213
Std. Error .0005849 .0005717 .0004621
95% Conf idence Interval f or Mean Low er Bound Upper Bound .014405 .016755 .018791 .021089 .016843 .018677
Minimum .0090 .0140 .0090
Max imum .0230 .0300 .0300
ANOVA dosis
Betw een Groups Within Groups Total
Sum of Squares .000 .002 .002
df
Mean Square .000 .000
1 98 99
F 28.416
Sig. .000
B.2.3 Usia 5-10 tahun dengan usia 10-15 tahun Des criptives dosis
N 5-10 tahun 10-15 tahun Total
50 50 100
Mean .016220 .019940 .018080
Std. Deviation .0025176 .0040427 .0038368
Std. Error .0003560 .0005717 .0003837
95% Conf idence Interval f or Mean Low er Bound Upper Bound .015505 .016935 .018791 .021089 .017319 .018841
Minimum .0100 .0140 .0100
Max imum .0230 .0300 .0300
ANOVA dosis
Betw een Groups Within Groups Total
Sum of Squares .000 .001 .001
df 1 98 99
Mean Square .000 .000
F 30.506
Sig. .000
57
LAMPIRAN C. Hasil Uji Oneway ANOVA pada Pasien Anak Jenis Kelamin Laki dengan Wanita untuk masing-masing Penggolongan Usia Pasien C.1 Usia 1-5 tahun Des criptives us ia 1-5 tahun
N laki w anita Total
50 50 100
Mean .01586 .01558 .01572
Std. Deviation .006155 .004136 .005219
95% Conf idence Interval f or Mean Low er Bound Upper Bound .01411 .01761 .01440 .01676 .01468 .01676
Std. Error .000870 .000585 .000522
Minimum .008 .009 .008
Max imum .035 .023 .035
ANOVA us ia 1-5 tahun
Betw een Groups Within Groups Total
Sum of Squares .000 .003 .003
df 1 98 99
Mean Square .000 .000
F .071
Sig. .790
C.2 Usia 5-10 tahun Des criptives us ia 5-10 tahun
N laki w anita Total
50 50 100
Mean .01640 .01622 .01631
Std. Deviation .002531 .002518 .002513
Std. Error .000358 .000356 .000251
95% Conf idence Interval f or Mean Low er Bound Upper Bound .01568 .01712 .01550 .01694 .01581 .01681
Minimum .013 .010 .010
Max imum .027 .023 .027
58
ANOVA usia 5-10 tahun
Between Groups
Sum of Squares ,000
df 1
Mean Square ,000 ,000
Within Groups
,001
98
Total
,001
99
F ,127
Sig, ,722
C.3 Usia 10-15 tahun Des criptives us ia 10-15 tahun
N 1 2 Total
50 50 100
Mean .02012 .01994 .02003
Std. Deviation .003366 .004043 .003702
Std. Error .000476 .000572 .000370
95% Conf idence Interval f or Mean Low er Bound Upper Bound .01916 .02108 .01879 .02109 .01930 .02076
Minimum .014 .014 .014
ANOVA us ia 10-15 tahun
Betw een Groups Within Groups Total
Sum of Squares .000 .001 .001
df 1 98 99
Mean Square .000 .000
F .059
Sig. .809
Max imum .027 .030 .030
59
LAMPIRAN D. Tabel Statistik F α= 0,0500 ndf ddf
1
2
3
4
5
…,
3,9589 3,9574 3,956 3,9546 3,9532 3,9519 3,9506 3,9493 3,9481 3,9469 3,9457 3,9446 3,9435 3,9423 3,9412 3,9402 3,9392 3,9381 3,9371 3,9361
3,1093 3,1079 3,1065 3,1051 3,1039 3,1026 3,1013 3,1001 3,0988 3,0977 3,0965 3,0955 3,0944 3,0933 3,0922 3,0912 3,0902 3,0892 3,0882 3,0873
2,7173 2,7160 2,7146 2,7132 2,7119 2,7106 2,7094 2,7082 2,7070 2,7058 2,7047 2,7036 2,7025 2,7014 2,7004 2,6994 2,6984 2,6974 2,6965 2,6955
2,4845 2,4830 2,4817 2,4803 2,4790 2,4777 2,4765 2,4753 2,4741 2,4729 2,4718 2,4707 2,4696 2,4685 2,4675 2,4665 2,4655 2,4645 2,4636 2,4626
2,3273 2,3258 2,3245 2,3231 2,3218 2,3205 2,3193 2,3180 2,3169 2,3157 2,3146 2,3134 2,3123 2,3113 2,3102 2,3092 2,3082 2,3072 2,4636 2,3053
…, …, …, …, …, …, …, …, …, …, …, …, …, …, …, …, …, …, …, …,
,,
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
60
LAMPIRAN E. Data Kalibrasi Alat
No 1 2 3 4 5
Input 50 60 70 80 90
Output 45,3300 54,5300 63,3400 71,9200 75,8200
Output
Setting kVp 90 80 70 60 50 40 30 20 10 0
y = 0.783x + 7.329
0
50
100
Input
No
Input
Output
1
0,0700
0,0643
2
0,1000
0,0938
3
0,4000
0,4047
4
0,5000
0,5037
5
0,8000
0,8147
Output
Setting akurasi waktu
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
y = 1.028x - 0.008
0
0.5 Input
1