Dosen: Erza Rismantojo
PENGANTAR MEKANIKA TANAH SI - 2222 1
Jadwal Perkuliahan Kamis atau Jumat ? Ujian Tengah Semester 9 – 13 Maret 2015 Akhir Perkuliahan Jumat 30 April 2015 Ujian Akhir Semester 4 – 20 Mei 2015
Asisten: Christian Tirtawardhana Auberta Philanta
2
REFERENSI Das, B.M., 1995, “Principles of Geotechnical
Engineering”, PWS Engineering, Boston, USA Holtz, R. D. and Kovacs, W. D., 1981, “An
Introduction to Geotechnical Enginering” PrenticeHall
3
MATERI KULIAH (sebelum UTS) Minggu ke 1 – 7: Proses pembentukan tanah Pengenalan Geologi Teknik Weight-volume relationships, plasticity, soil structure Klasifikasi tanah menurut AASHTO dan USCS (ASTM) Pemadatan tanah dan CBR (California Bearing Ratio) Permeability dan Seepage
Minggu ke 8 (10 – 14 Maret 2014): UTS 4
MATERI KULIAH (setelah UTS) Minggu ke 9 – 15: Permeability dan Seepage Tegangan dalam tanah Compressibility dan Consolidation
Minggu ke 16 (5 – 20 Mei 2014): UAS
5
SISTEM PENILAIAN Tugas: 20% Ujian Tengah Semester: 40% Ujian Akhir Semester: 40% Tugas dikumpulkan 1 minggu setelah diberikan. Tugas yang terlambat tidak akan dinilai. Tidak ada Tugas/Ujian tambahan untuk perbaikan nilai.
6
PENDAHULUAN Mekanika Tanah adalah cabang dari ilmu
mekanika yang berurusan dengan gaya-gaya yang bekerja pada masa tanah. Rekayasa Geoteknik adalah salah satu spesialisasi
rekayasa yang menggunakan prinsip-prinsip Mekanika Tanah.
7
8
Low viscosity, low shear strength
9
10
Kerak Bumi
11
Kerak Bumi
12
Pergerakan Kerak Bumi berdasarkan data Satelit GPS (NASA) tanggal 17 April 2008
13
Jenis-jenis Pergerakan di Perbatasan antar Kerak Bumi
14
Mineral A mineral is a naturally occurring solid chemical substance that is formed through geological processes and that has a characteristic chemical composition, a highly ordered atomic structure, and specific physical properties. By comparison, a rock is an aggregate of minerals and does not have a specific chemical composition.
15
Mineral Class Silicate Class : terdiri dari silicon dan oxygen.
Umumnya rocks ≥ 95% silicates Contoh: feldspars, quartz, olivines, pyroxenes, amphiboles, garnets,
and micas
Carbonate Class: mengandung anion (CO3)2− . Contoh: calcite (CaCO3), dolomite CaMg(CO3)2
Sulfate Class (sulfate anion SO42- , contoh: gypsum) Halide Class (halide anions: F-, Cl-, Br-, I-. Contoh: NaCl, salts) Oxide Class (contoh: hematite (iron oxide)) Sulfide Class (contoh: pyrite (iron sulfide, FeS2)) Phosphate Class (PO43-) Element Class (contoh: silver, gold, copper) Organic Class 16
BATUAN (ROCKS) DEFINISI BATUAN (ROCK) menurut Rekayasa Sipil (Teknik Sipil): Material yang keras (hard) dan tahan lama (durable) Material yang tidak dapat digali kecuali dengan menggunakan bahan peledak (blasting)
JENIS BATUAN BERDASARKAN ASAL USUL PEMBENTUKANNYA: Batuan Beku (Igneous Rocks) Batuan Sedimen (Sedimentary Rocks) Batuan Metamorf (Metamorphic Rocks)
17
SIKLUS PEMBENTUKAN BATUAN Compaction, cementation, crystallization
Sediment
Transportation,
Transportation, Erosion, Erosion, Weathering weathering Sedimentary Rock Igneous Rock Metamorphism
Metamorf Rock
Magma melting
18
SIKLUS PEMBENTUKAN BATUAN
19
BATUAN BEKU (Igneous Rocks): Batuan yang berasal dari magma cair, lahar yang membeku karena penurunan suhu. Intrusive igneous rocks: diorite, gabbro, granite and pegmatite that solidify below Earth's surface; Extrusive igneous rocks such as andesite, basalt, obsidian, pumice, rhyolite and scoria that solidify on or above Earth's surface.
20
CONTOH BATUAN BEKU Coarse-grained: Granite, Syenite, Gabbro,
Diorite
Granite is a coarse-grained, light colored, intrusive igneous rock that contains mainly quartz and feldspar minerals. 21
CONTOH BATUAN BEKU Fine-grained: Rhyolite, Trachyte, Basalt,
Andesite
Andesite is a fine-grained, extrusive igneous rock composed mainly of plagioclase with other minerals such as hornblende, pyroxene and biotite.
22
CONTOH BATUAN BEKU Obsidian (high-silica glass)
Obsidian is a dark-colored volcanic glass that forms from the very rapid cooling of molten rock material. It cools so rapidly that crystals do not form.
23
CONTOH BATUAN BEKU
Pumice is a light-colored vesicular igneous rock. It forms through very rapid solidification of a melt. The vesicular texture is a result of gas trapped in the melt at the time of solidification. 24
CONTOH BATUAN BEKU
Welded Tuff is a rock that is composed of materials that were ejected from a volcano, fell to Earth, and then lithified into a rock. It is usually composed mainly of volcanic ash and sometimes contains larger size particles such as cinders (pyroclastic material similar to pumice).
25
Masalah-masalah yang berhubungan dengan penggunaan batuan beku Beberapa jenis batuan beku dengan tekstur
butiran halus (fine-grained) dan mengandung silika dapat bereaksi dengan kandungan alkali semen hasil reaksi alkali silika menyebabkan pertambahan volume sehingga merusak beton Contoh: Andesite, Rhyolite, Volcanic Breccia, Obsidian, Pumice
26
Alkali-Silica Reaction (ASR) Ca(OH)2 + H4SiO4 → Ca2+ + H2SiO42− + 2 H2O → CaH2SiO4 · 2 H2O
Characteristic crack pattern associated with the alkali–silica reaction affecting a concrete step barrier on an US motorway (photograph courtesy of the Federal Highway Administration, US Department of Transportation).[1][2]
27
Masalah-masalah yang berhubungan dengan Permasalahan Penggunaan penggunaan batuan beku
Batuan Beku
Batuan beku berbutir kasar (coarse-grained)
biasanya tidak baik untuk bahan konstruksi jalan, batu pelindung tanggul, karena tidak tahan terhadap abrasi
28
BATUAN SEDIMEN (SEDIMENTARY ROCKS) Sedimentary rocks are formed by the accumulation of sediments. Types of sedimentary rocks: 1) detrital sedimentary rocks such as breccia, conglomerate, sandstone and shale, that are formed from solid particles derived from physical and chemical weathering of rock, transported, deposited, compacted, and cemented into rocks 2) chemical sedimentary rocks such as rock salt and some limestones, that form when dissolved materials precipitate from solution; and, 3) organic sedimentary rocks such as coal and some limestones which form from the accumulation of plant or animal debris. 29
BATUAN SEDIMEN (SEDIMENTARY ROCKS) 95% bagian terluar kerak bumi (16 km) adalah
batuan beku dan batuan metamorf (5% adalah batuan sedimen) 75% batuan yang tersingkap di permukaan bumi adalah batuan sedimen 99% dari batuan sedimen adalah: shale (46%), sandstone (32%), dan limestone (22%)
30
Detrital Sedimentary Rocks Sedimen
Ukuran
Gravel
>2mm
Sand
2 – 1/16 mm
Silt
1/16 – 1/256 mm
Clay
< 1/256 mm
Silt and clay
Batuan Sedimen Conglomerate (partikel bulat) Breccia (partikel angular) Sandstone Siltstone (shale) Claystone (shale) Shale
31
Contoh Batuan Sedimen
Breccia is a clastic sedimentary rock that is composed of large (over two millimeter diameter) angular fragments. The spaces between the large fragments can be filled with a matrix of smaller particles or a mineral cement which binds the rock together.
32
Contoh Batuan Sedimen
Conglomerate is a clastic sedimentary rock that contains large (greater then two millimeters in diameter) rounded particles. The space between the pebbles is generally filled with smaller particles and/or a chemical cement that binds the rock together.
33
ContohBatuan Batuan Sedimen Contoh Sedimen
Sandstone is a clastic sedimentary rock made up mainly of sand-size (1/16 to 2 millimeter diameter) weathering debris. Environments where large amounts of sand can accumulate include beaches, deserts, flood plains and deltas.
34
ContohBatuan Batuan Sedimen Contoh Sedimen
Shale is a clastic sedimentary rock that is made up of clay-size (less then 1/256 millimeter in diameter) weathering debris. It typically breaks into thin flat pieces. 35
ContohBatuan Batuan Sedimen Contoh Sedimen
Coal is an organic sedimentary rock that forms mainly from plant debris. The plant debris usually accumulates in a swamp environment. Coal is combustible and is often mined for use as a fuel. 36
CHEMICAL SEDIMENTARY ROCKS Carbonates: Limestone (Mineral calcite: CaCO3) Dolomite [Mineral dolomite: CaMg(CO3)2]
Evaporites:
Gypsum (CaSO4.2H2O) Rock Salt (NaCl)
Fossil Rocks: Fossiliferous Limestone (Calcite fosil berukuran
pasir atau lebih besar)
37
Limestone is a rock that is composed primarily of calcium carbonate. It can form organically from the accumulation of shell, coral, algal and fecal debris. It can also form chemically from the precipitation of calcium carbonate from lake or ocean water. Limestone is used in many ways. Some of the most common are: production of cement, crushed stone and acid neutralization. 38
Rock Salt is a chemical sedimentary rock that forms from the evaporation of ocean or saline lake waters. It is also known by the mineral name "halite". It is rarely found at Earth's surface, except in areas of very arid climate. It is often mined for use in the chemical industry or for use as a winter highway treatment. Some halite is processed for use as a seasoning for food.
39
Detroit Salt Mine
40
41
PENGGUNAAN BATUAN SEDIMEN Reaksi alkali-carbonate pada beton Portland
cement (High alkali cement > 0.6% Na2O) menyebabkan kerusakan pada beton
CaMg(CO3)2 + 2 NaOH —> CaCO3 + Na2CO3 + Mg(OH)2
Limestone dan Dolomite adalah material
yang baik untuk konstruksi Siltstone, shale, quartz sandstone biasanya tidak baik sebagai material konstruksi 42
Batuan Metamorf Metamorphic rocks have been modified by heat, pressure and chemical process usually while buried deep below Earth's surface. Exposure to these extreme conditions has altered the mineralogy, texture and chemical composition of the rocks. There are two basic types of metamorphic rocks: 1) foliated metamorphic rocks such as gneiss, phyllite, schist and slate which have a layered or banded appearance that is produced by exposure to heat and directed pressure; and, 2) non-foliated metamorphic rocks such as marble and quartzite which do not have a layered or banded appearance. (http://geology.com/rocks/metamorphic-rocks.shtml)
43
Batuan Metamorf Terbentuk akibat berubahnya komposisi
kimiawi dan tekstur dari batuan, perubahan ini disebabkan oleh panas dan tekanan Selama proses batuan asal tidak mencair Terjadi kristalisasi mineral and perubahan struktur komposisi mineral yang membentuk mineral baru
44
Gneiss is foliated metamorphic rock that has a banded appearance and is made up of granular mineral grains. It typically contains abundant quartz or feldspar minerals. 45
Quartzite is a non-foliated metamorphic rock that is produced by the metamorphism of sandstone. It is composed primarily of quartz. 46
Slate is a foliated metamorphic rock that is formed through the metamorphism of shale. It is a low grade metamorphic rock that splits into thin pieces. 47
JENIS BATUAN METAMORF Shale Slate (fine grained, slaty cleavage) Phyllite: memiliki komposisi yang hampir
sama dengan Slate dengan lebih banyak kandungan mineral muscovite (phyllosilicate mineral of aluminium and potassium) Schist (metamorf lanjutan dari Slate) Gneiss (berasal dari coarse-grained igneous rock granite & gabbro) Marble (marmer) 48
MASALAH-MASALAH DENGAN BATUAN METAMORF Foliated metamorphic rocks menghasilkan
butiran yang pipih dan lonjong sewaktu dipecah mudah pecah pada waktu konstruksi pemadatan hot mixed asphalt Coarse-grained gneiss mudah terabrasi Marble cavities (lubang akibat terlarutkan oleh aliran air) masalah kebocoran bendungan, pondasi bangunan 49
PROSES PELAPUKAN Proses Pelapukan secara Mekanis (mechanical
weathering) Kembang susut batuan akibat perubahan suhu panas dingin Tekanan yang diakibatkan membekunya air di dalam
rongga/retakan di batuan
50
PROSES PELAPUKAN Kehilangan tekanan di permukaan
Batuan yang semula berukuran besar pecah menjadi
butiran kecil. Tidak terjadi perubahan komposisi kimia
51
PROSES PELAPUKAN Proses Pelapukan secara Kimiawi (chemical
weathering) Reaksi kimia mengubah mineral yang terkandung dalam
batuan asal menjadi mineral baru H2O + CO2 H2CO3 (Carbonic Acid) 2K(AlSi3O8) + 2H+ + H2O 2K++ 4SiO2 + Al2Si2O5(OH)4 Orthoclase Silica (salah satu mineral di dalam batuan beku seperti granite)
Kaolinite (clay mineral)
52
Transportasi Hasil Pelapukan Batuan Hasil pelapukan di tempat batuan asal
disebut Tanah Residual Glacial soils (glaciers) Alluvial soils (transportasi oleh air) Lacustrine soils (pengendapan di danau) Marine soils (pengendapan di laut) Aeolian soils (transportasi oleh angin) Colluvial soils (transportasi oleh gravitasi) 53
Transportasi Hasil Pelapukan Batuan Residual Soil a) top soil and colluvium
b) mature residual soil c) young residual soil
d) weathered rock.
54
Transportasi Hasil Pelapukan Batuan Alluvial soils (transportasi oleh air) ALLUVIAL soil is formed when a soil carrying stream gradually loses its carrying capacity with decreasing velocity. In slowing down, a river does not have sufficient power to keep the large particles of soil suspended; these particles settle to the riverbed. Further decrease in velocity causes smaller particles to settle. As the river becomes slow and sluggish (as in the lowlands where its gradient becomes small), it holds only the extremely fine particles in suspension. These particles are deposited, finally, at the mouth of the river, where they form DELTAS of fine-grained soil
55
Transportasi Hasil Pelapukan Batuan Lacustrine soils (pengendapan di danau) Freshwater lake deposits are called LACUSTRINE soils. They are fine grained soils resulting from material brought into freshwater lakes by streams or rivers.
56
Transportasi Hasil Pelapukan Batuan Aeolian soils (transportasi oleh angin)
57
Transportasi Hasil Pelapukan Batuan Colluvial soils (transportasi oleh gravitasi) COLLUVIAL soil consists of mixed deposits of rock fragments and soil materials accumulated at the bases of steep slopes through the influence of gravity.
58
Colluvial soils (transportasi oleh gravitasi)
59
Clay Mineral Clay Mineral Aluminum silicates Terdiri dari 2 unit dasar: Silica Tetrahedron Alumina Octahedron
Silica Tetrahedron
Silica sheet 60
Clay Mineral
Alumina octahedron
Octahedral sheet (Gibbsite sheet) Disebut Brucite sheet jika atom Aluminum diganti Magnesium
61
Clay Mineral
Silica-gibbsite sheet 62
Clay Mineral Kaolinite Illite Montmorillonite Chlorite Halloysite Vermiculite Attapulgite
63
Clay Mineral Kaolinite Gabungan lembaran “silica-gibbsite sheet” Tebal lembaran = 7.2 Angstrom
(1 Angstrom = 10-10 m) Berbentuk “platelets” berdimensi lebar atau panjang 1000 – 20000 Angstrom, tebal 100 – 1000 Angstrom Specific surface = 15 m2/g
64
Kaolinite
65
Kaolinite
66
Kaolinite
67
CLAY MINERAL ILLITE Gibbsite sheet + 2 Silica sheet (di atas dan bawah) Lembaran illite diikat oleh ion potassium (K) Ion K menetralkan muatan negatif yang
disebabkan oleh penggantian atom silicon dengan aluminum di “tetrahedral sheet” Dimensi lateral 1000 – 5000 Angstrom, tebal 50 – 500 Angstrom Specific surface = 80 m2/g
68
ILLITE
69
CLAY MINERAL Montmorillonite Struktur hampir sama dengan Illite Atom aluminum di dalam octahedral sheet diganti
oleh magnesium dan iron (besi) Tidak ada ion potassium diantara lembaran Dapat menarik banyak molekul air ke dalam ruangan yang di antara lembaran Dimensi lateral = 1000 – 5000 Angstrom Tebal = 10 – 50 Angstrom 70
Montmorillonite
71
Montmorillonite
72
73
Clay Mineral Permukaannya memiliki muatan negatif
karena: Isomorphous substitution
Al Si (tetrahedral sheet) Mg Al (octahedral sheet) Ketidaksempurnaan pada ujung-ujung/sisi-sisi
lembaran clay yang putus
74
Clay Mineral Muatan negatif pada permukaan clay
dinetralkan oleh kation (ion positif) yang ada disekitarnya Ca2+, Mg2+, Na+, K+
75
Diffuse Double Layer
76
Diffuse Double Layer
77
78
79
80