DAFTAR PUSTAKA
[1] Rohlf, J. W., (1994), Modern Physics from & to Z0, John Wiley & Sons, Inc, New York. [2] J. O’Connor dan L O’Connor, (1974), Measuring Planck’s Constant using a light emitting diode, The Physics Teacher, 12, 423. [3]
Stephen
Ducharme,
Measuring
Planck's
Consant
with
LEDs,
http://physics.unl.edu/directory/ducharme/PHYS343/343Manual/PlanckLED. pdf. [4] M. M. Munir, A. Suhendi, and Khairurrijal, (2005) “A Wide Range Logarithmic
Electrometer
for
Characterizing
MOS
Capasitors
with
Nanometer-Thick Oxides,” Intl. Conf. Instrumentation, Communication, and Information Technology (ICICI), Bandung, pp. 363-365. [5] Khairurrijal, M. Abdullah, M. M. Munir, A. Suhendi, and A. Surachman, (2006) “Home-made Electronic Components Characterization System for Electronics course at Undergraduate Level,” Intl. Conf. on Education and Educational Technology, Tenerife, pp. 176-178. [6] D. Hamdani, A. Suhendi, M. Abdullah and Khairurrijal, (2007) “Analysis of Obstacles and Difficulties in Using the Elkahfi 100 I-V Meter for Characterizing Electronic Components,” Intl. Conf on Instrumentation, Communication, and Information Technology (ICICI), Bandung. [6] Sutrisno, (1986), Elektronika Teori dan Penyelesainnya Jilid 1, Penerbit ITB Bandung, 1986.
48
[7] http://acept.asu.edu/courses/phs110/expmts/exp13a.html [8] http://www.learn-c.com/experiment8.htm [9] Noltingk, B. E., (2000), Instrumentation Reference Book 2nd Edition, Butterworth-Heinemann, Oxford. [10] http://www.maxim-ic.com/appnotes.cfm/an_pk/1080 [11] http://en.wikipedia.org/wiki/Current-to-voltage_converter [12]
Atmel,
(2001),
8-bit
Microcontroller
with
8K
Bytes
In-System
Programmable Flash AT89S52 Data Sheet. [13] Putra, E. A., (2005), Belajar Mikrokontroler AT89C51/52/55 Teori dan Aplikasi Edisi 2,Gava Media, Yogyakarta. [14] Texas Instruments (2002), MAX232, Datasheet, 2002 [15] Microchip Technology, Inc, (2004), MCP4921 12-Bit DAC with SPI™ Interface, Datasheet. [16] LM336, Datasheet. [17] Burr-Brown Corporation, (2000), ADS7822 12-Bit High Speed 2.7V microPower Sampling Analog-To-Digital Converter, Datasheet. [18] Analog Device, (2002), OP07 Ultralow Offset Voltage Operational Amplifiers, Datasheet. [19] Totok Budioko, (2005), Belajar Mudah dan Cepat Pemrograman Bahasa C dengan SDCC Pada Mikrokontroler AT89X9051/AT 89C51/52 Teori, Simulasi dan Aplikasi, Gava Media, 2005. [20] Feddeler, J. Dan Lucas, B., (2003), ADC definitions and specifications, application note AN2438, Motorola.
49
ç Prev Page
Next Page è Fig. 1 – T-1¾
Blue LEDs
Fig. 2 – T-1¾
Fig. 3 – T-1¾
Ø5
Ø5
2.0
2.95
2.5
2.0
2.6
1.5
1.5
1.5
2.54
2.54
2.54
IR
25
25
Io
[email protected]
[email protected]
26
[email protected]
Blue LED Precautions in Handling: A blue LED is sensitive to static electricity and care should be fully taken in handling it. Particularly, when an overvoltage is applied, which exceeds the absolute maximum rating of the blue LED, its energy damages the LED.
Typ
λp Typ
Δλ Typ
(mA) IF
(μA) Max
(V) VR
Viewing Angle (deg)
Digi-Key Part No.
VF (V)
3.55
7.5
2.0
Ø5 8.65 1.0
Max Ratings: Power Consumption: 120mW Forward Current: 30mA Reverse Voltage: 5V Operating Ambient Temperature: -25~80°C Storage Temperature: -30~100°C Water clear lens when off.
8.65 5.05
High Brightness
Fig.
mcd Typ
1
1500
mcd (mA) Min IF 640 20
4.0
3.5
470
30
20
10
5
15
P465-ND
2.67
24.95
463.32
1797.50
LNG992CFBW
2
650
260
20
4.0
3.5
470
30
20
10
5
30
P466-ND
2.67
24.95
463.32
1797.50
LNG901CFBW
3
350
140
20
4.0
3.5
470
30
20
10
5
45
P467-ND
2.67
24.95
463.32
1797.50
LNG91LCFBW
Max
1
Pricing 200
10
Panasonic Part No.
1,000
LEDs Fig. 2 – T-1
Fig. 1 – T-1
Ø3.0
Ø4.0
Ø3.2
1.0
1.0
Fig.
2
3
4
5
O
Electro-Optical Character (Ta=25°C) IF VR IO λp (mA) (V) (mcd) (nm)
Dimensions (mm) Lens Lead Height Length
2.5
Anode Cathode
Lead Spacing
Digi-Key Part No.
Anode Cathode
Pricing 10
200
1,000
5,000
Panasonic Part No.
ϕ3.0
Red Diffused
70
25
4
2.8
700
5.5
26.5, 28.0
2.54
P563-ND
2.24
36.00
124.62
114.82/M
LN28RPX
ϕ3.0
Green Diffused
90
30
4
10.0
565
5.5
26.5, 28.0
2.54
P564-ND
2.84
45.57
139.01
128.08/M
LN38GPX
ϕ3.0 1
Color
Anode Cathode
PD (mW)
Ø6.0
1.0
2.1
Anode Cathode
1.0
Ø6.0
Ø5.0
Ø4.0
Anode Cathode
Ø5.0
1.0
1.7
Ø3.6
Lens Size
Ø5.0
0.8
1.6
Fig. 5 – T-1¾
Fig. 4 – T-1¾
Fig. 3 – T-1½
Amber Diffused
90
30
4
5.0
590
5.5
26.5, 28.0
2.54
P565-ND
3.50
60.20
187.32
171.29/M
LN48YPX
ϕ3.0
Orange Red Diff.
90
30
3
5.0
630
5.5
26.5, 28.0
2.54
P566-ND
3.18
51.07
155.79
143.54/M
LN88RPX
ϕ3.0
Clear Red Diffused
70
25
4
3.0
700
5.5
26.5, 28.0
2.54
P606-ND
1.87
31.11
105.76
99.54/M
LN28RCPX
ϕ3.0
Clear Green Diff.
90
30
4
8.0
565
5.5
26.5, 28.0
2.54
P607-ND
2.15
34.50
112.64
103.78/M
LN38GCPX
ϕ3.0
Clear Amber Diff.
90
30
4
15.0
590
5.5
26.5, 28.0
2.54
P608-ND
2.24
36.00
122.23
112.61/M
LN48YCPX
ϕ3.2
Red Diffused
70
25
4
1.0
700
4.6
24.5, 26.0
2.54
P567-ND
2.70
43.44
131.81
121.45/M
LN276RPX
ϕ3.2
Red Clear
70
25
4
1.5
700
4.6
24.5, 26.0
2.54
P568-ND
2.70
43.44
131.81
121.45/M
LN276RCX
ϕ3.2
Green Diffused
90
30
4
5.0
565
4.6
24.5, 26.0
2.54
P569-ND
2.84
45.57
139.01
128.08/M
LN376GPX
ϕ3.2
Green Clear
90
30
4
15.0
565
4.6
24.5, 26.0
2.54
P570-ND
2.84
45.57
139.01
128.08/M
LN376GCPX
ϕ3.2
Orange Red Clear
90
30
3
10.0
630
4.6
24.5, 26.0
2.54
P571-ND
3.18
51.07
155.79
143.54/M
LN876RCPX
ϕ4.0
Red Diffused
70
25
4
2.0
700
6.0
26.45, 27.95
2.54
P572-ND
2.24
36.00
124.62
114.82/M
LN29RPX
ϕ4.0
Green Diffused
90
30
4
6.0
565
6.0
26.45, 27.95
2.54
P573-ND
2.84
45.57
139.01
128.08/M
LN39GPX
ϕ4.0
Amber Diffused
90
30
4
10.0
590
6.0
26.45, 27.95
2.54
P574-ND
3.50
60.20
187.32
171.29/M
LN49YPX
ϕ4.0
Clear Red Diffused
70
25
4
3.5
700
6.0
26.5, 28.0
2.54
P602-ND
1.87
31.11
105.76
99.54/M
ϕ4.0
Clear Green Diff.
90
30
4
20.0
565
6.0
26.5, 28.0
2.54
P603-ND
2.15
34.50
112.64
103.78/M
ϕ5.0
Red Diffused
70
25
4
3.0
700
8.65
25.0, 26.5
2.54
P374-ND
1.68
27.00
107.85
99.37/M
LN21RPH
ϕ5.0
Green Diffused
90
30
4
15.0
565
8.65
25.0, 26.5
2.54
P375-ND
2.15
34.50
112.64
103.78/M
LN31GPH
ϕ5.0
Amber Diffused
90
30
4
8.0
590
8.65
25.0, 26.5
2.54
P372-ND
2.24
36.00
122.23
112.61/M
LN41YPH
ϕ5.0
Orange Red Diff.
90
30
3
10.0
630
8.65
25.0, 26.5
2.54
P373-ND
2.24
36.00
122.23
112.61/M
LN81RPH
ϕ5.0
Red Clear
70
25
4
5.0
700
8.65
25.0, 26.5
2.54
P581-ND
2.15
34.51
119.83
110.41/M
LN21RCPH
ϕ5.0
Red Diffused#
70
25
4
3.0
700
8.65
25.0, 26.5
2.54
P582-ND
2.15
34.51
119.83
110.41/M
LN21WPH
LN29RCPX LN39GCPXUY
ϕ5.0
Red Clear†
70
25
4
5.0
700
8.65
25.0, 26.5
2.54
P583-ND
2.15
34.51
119.83
110.41/M
LN21CPH
ϕ5.0
Green Clear
90
30
4
20.0
565
8.65
25.0, 26.5
2.54
P584-ND
2.70
43.41
127.03
117.04/M
LN31GCPH
ϕ5.0
Green Yellow Clear
90
30
4
56.0
563
8.65
25.0, 26.5
2.54
P585-ND
2.70
43.41
127.03
117.04/M
LN31YCPH
ϕ5.0
Amber Clear
90
30
4
20.0
590
8.65
25.0, 26.5
2.54
P586-ND
2.75
44.23
129.42
119.24/M
LN41YCPH
ϕ5.0
Orange Red Clear
90
30
3
20.0
630
8.65
25.0, 26.5
2.54
P587-ND
2.80
45.02
136.62
125.87/M
LN81RCPH
ϕ5.0
Orange Red Clear†
90
30
3
25.0
630
8.65
25.0, 26.5
2.54
P588-ND
2.80
45.02
136.62
125.87/M
LN81CPH
ϕ5.0
Red Diffused
70
25
4
3.0
700
8.65
27.0, 28.5
2.54
P589-ND
2.24
36.00
124.62
114.82/M
LN21RPX LN31GPX
ϕ5.0
Green Diffused
90
30
4
15.0
565
8.65
27.0, 28.5
2.54
P590-ND
2.70
43.41
127.03
117.04/M
ϕ5.0
Orange Red Diff.
90
30
3
10.0
630
8.65
26.5, 28.0
2.54
P601-ND
2.24
36.00
122.23
112.61/M
LNG801RKD
ϕ5.0
Amber Diffused
90
30
4
15.0
590
8.65
27.0, 28.5
2.54
P600-ND
2.24
36.00
122.23
112.61/M
LNG401YKX
ϕ5.0
Red Diffused
70
25
4
4.0
700
7.5
26.5, 28.0
2.54
P598-ND
2.52
40.97
125.79
115.01/M
LNG21LRKR
ϕ5.0
Green Diffused
90
30
4
20.0
565
7.5
26.5, 28.0
2.54
P599-ND
2.56
41.76
128.22
117.24/M
LN31GPSLX
† Water clear lens when off. # White diffused lens when off.
More Product Available Online: www.digikey.com 2350
(T073)
ç Prev Page
Toll-Free: 1-800-344-4539 • Phone 218-681-6674 • Fax: 218-681-3380
Next Pageè
Round Type
φ 3.2 mm Series
LN476YCPX ············· LNG476NKX ··········· Amber LN876RCPX ············· LNG876LKD ············ Orange ■ Absolute Maximum Ratings (Ta = 25°C) Topr(°C) −25 ∼ +85 −25 ∼ +85 −25 ∼ +85 −25 ∼ +85
2.54
Tstg(°C) −30 ∼ +100 −30 ∼ +100 −30 ∼ +100 −30 ∼ +100
1
4.6 ± 0.2
2
1.7
Lighting Color PD(mW) IF(mA) IFP(mA)∗ VR(V) Red 70 25 150 4 Green 90 30 150 4 Amber 90 30 150 4 3 Orange 90 30 150
0.45 ± 0.1
1.5
2 − 0.7 Max 2 − 0.45 ± 0.1
LN376GCPX ············· LNG376MKG ··········· Green
24.5 ± 1.0
1.0 1.0
Lighting Color
LN276RCPX ············· LNG276LKR ············ Red
3.3 ± 0.3
Global Prat No.
2.0 Max. NOT SOLDERED
Conventional Part No.
Unit: mm φ 4.0 ± 0.2 φ 3.2 ± 0.2
φ 4.0 ± 0.2
1: Anode 2: Cathode
Pulse width 1 msec. The condition of IFP is duty 10%, Pulse width 1 msec
■ Electro−Optical Characteristics (Ta = 25°C) Lighting Color Red Green Amber Orange −
Typ 1.5 15.0 7.0 10.0 mcd
Red Clear Green Clear Amber Clear Red Clear −
Min 0.6 6.0 2.5 4.0 mcd
50
30
30
3
1 1
3
5
Typ 2.2 2.2 2.2 2.1 V
Max 2.8 2.8 2.8 2.8 V
47 LN 76R
LN2
10
30
10 5 3
CPX
50
1
100
1.6
1.8
Forward Current
2.0
2.2
Directive Characteristics 20° 10°
0°
30° 40°
10° 20°
30° 40°
80°
50°
50° 60° 60°
40
152
30
0
40°
70°
20°
80°
40
60
80
100
800
90° 100
80
60
40
20
0
L L N3 LN N47 76G 87 6Y CP 6R CP X CP X LN 27 X 6R CP X
30
10
80°
LN876RCPX 700
20
40
20
60°
70° 20
Wavelength
50
50
LN276R CPX
600
LN37 LN8766GCPX RCPX LN LN 476YC 276 PX RC PX
100
IF Ta
60
0 500
VR 4 4 4 3 V
Ambient Temperature
LN476YCPX
80
Max 5 10 10 10 µA
300
Forward Voltage
Forward Current
Relative Luminous Intensity
100
IR IF 20 20 20 20 mA
500
10 −20
2.4
Relative Luminous Intensity Wavelength Characteristics LN376GCPX
∆λ Typ 100 30 30 40 nm
IO Ta
LN LN 876R 476 C YC PX PX LN2 LN3 76RCP 76G X CPX
0Y
CP
X
Forward Current
50
5
IF 15 20 20 20 mA
IF VF 100
LN LN 37 87 6G 6R CP CP X X
Luminous Intensity
IO IF 100
10
λP Typ 700 565 590 630 nm
VF
IO
Lens Color
Relative Luminous Intensity
Conventional Part No. LN276RCPX LN376GCPX LN476YCPX LN876RCPX Unit
20
40
Relative Luminous Intensity
60
80
90° 100
0 0
20
40
60
80
Ambient Temperature
100
Caution for Safety Gallium arsenide material (GaAs) is used in this product.
DANGER
Therefore, do not burn, destroy, cut, crush, or chemically decompose the product, since gallium arsenide material in powder or vapor form is harmful to human health. Observe the relevant laws and regulations when disposing of the products. Do not mix them with ordinary industrial waste or household refuse when disposing of GaAs-containing products.
Request for your special attention and precautions in using the technical information and semiconductors described in this material (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan. (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license. (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). Consult our sales staff in advance for information on the following applications: • Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body. • Any applications other than the standard applications intended. (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements. (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products. (6) When using products for which dry packing is required, observe the conditions (including shelf life and afterunpacking standby time) agreed upon when specification sheets are individually exchanged. (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.
Please read the following notes before using the datasheets A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications. Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice. Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities. B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material. C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited. 2001 MAR
ç Prev Page
Next Page è
High Brightness LEDs 4.6
Fig. 1
5.9
Fig. 2
2.54
Fig. 3
27.4 25.4
8.60
Ø3.2 Ø2.9
5.0
Fig.
Description
1
T-1 (3mm)
2
T-1 3/4 (5mm)
3
T-1 3/4 (5mm)
4
T-1 3/4 (4.7mm)
Emitted Color Sup. Orange Sup. Yellow Green Super Red Super Red Super Red Sup. Orange Sup. Yellow Green Red Yellow Green
Peak Wavelength (nm) 620 590 502 660 660 660 610 590 502 660 590 502
Lens Water Clear
Water Clear
Water Clear Water Clear
DSP LEDs
Vf (V) Typ. 2.0 2.1 3.5 1.7 1.7 1.7 2.0 2.1 3.5 1.7 2.1 3.5
If (mA) Max. 30 30 25 30 30 30 30 30 25 30 30 25
Io (mcd) 1000 1000 1100 2800 1800 1500 2500 1000 1500 2500 1300 1000
Viewing Angle (2x Theta) 30 30 30 30 30 30 30 30 30 20 20 30
Pkg. Type
1
1210
2
5mm
7.2
Pricing 10 100 8.25 74.25 7.20 64.80 22.75 204.75 4.48 40.28 4.60 41.40 2.33 20.93 8.25 74.25 5.95 53.55 22.75 204.75 4.78 42.98 8.30 74.70 22.75 204.75
1 .99 .86 2.73 .54 .55 .28 .99 .71 2.73 .57 1.00 2.73
1.0 Anode .50 Max. Sq. (2 plcs.) 27.0
Lumex Part No. SSL-LX3044SOC SSL-LX3044SYC SSL-LX3044UEGC SSL-LX5093SRC/E SSL-LX5093SRC/DW SSL-LX5093SRC/DV SSL-LX5093SOC SSL-LX5093SYC SSL-LX5093UEGC SSL-LX5093XRC/4 SSL-LX5093XYC SSL-LX4073UEGC
500 330.00 288.00 910.00 179.00 184.00 93.00 330.00 238.00 910.00 191.00 332.00 910.00
Fig. 2 8.6
Ø5.9
27.0
2.7
1.1
Ø5.0
2.54 Anode
1.0
Operating Temperature: -40°C ~ 85°C
Fig.
Digi-Key Part No. 67-1074-ND 67-1076-ND 67-1754-ND 67-1612-ND 67-1611-ND 67-1610-ND 67-1113-ND 67-1115-ND 67-1755-ND 67-1122-ND 67-1123-ND 67-1756-ND
3.2
Fig. 1
Low Voltage LEDs, 1.5V
2.54
Anode
Anode
1.5
ø5.70 ø4.80
2.54
5.00
Anode
1.0
Fig. 4
8.7
5.6
2.54
2.0
Emitted Color Super Red Orange Yellow Green Blue Red Orange Yellow Green Blue Ultra White
Wave Peak (nm) 636 620 590 525 470 636 610 590 525 470 —
Lens Color Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear
Forward Voltage (min.) 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V
LED Current (@ 1.5V) 10 10 10 2.5 2.5 10 10 10 2.5 2.5 2.5
Typ. mcd @ 2V 40 40 30 40 35 2500 2500 2500 3500 2500 3000
Viewing Angle 2x Theta 140° 140° 140° 140° 140° 30° 30° 30° 30° 30° 30°
Digi-Key Part No. 67-1867-1-ND 67-1868-1-ND 67-1869-1-ND 67-1870-1-ND 67-1871-1-ND 67-1872-ND‡ 67-1873-ND‡ 67-1874-ND‡ 67-1875-ND‡ 67-1876-ND‡ 67-1877-ND‡
Cut Tape Price Each 10 1.83 1.86 1.86 2.79 2.22 1.70 1.70 1.70 2.50 2.13 2.83
1 2.14 2.17 2.17 3.26 2.59 2.04 2.04 2.04 3.00 2.55 3.39
100 1.53 1.55 1.55 2.33 1.85 1.53 1.53 1.53 2.25 1.92 2.55
Digi-Key Part No. 67-1867-2-ND 67-1868-2-ND 67-1869-2-ND 67-1870-2-ND 67-1871-2-ND — — — — — —
Tape and Reel Qty. Pricing 3,000 1012.60/M 3,000 1029.20/M 3,000 1029.20/M 3,000 1543.80/M 3,000 1228.40/M — — — — — — — — — — — —
Lumex Part No. SML-DSP1210SIC-TR SML-DSP1210SOC-TR SML-DSP1210SYC-TR SML-DSP1210UPGC-TR SML-DSP1210USBC-TR SSL-DSP5093SIC SSL-DSP5093SOC SSL-DSP5093SYC SSL-DSP5093UPGC SSL-DSP5093USBC SSL-DSP5093UWC
‡ Bulk
White LEDs Fig. 2
Fig. 1
Fig. 3
Ø5.60
.126 (3.20)
Tapered Lens 8.60
.031 (0.80) (2 plcs.)
25.40
Anode
Fig.
Description (mm)
Emitted Color
Lens
1
T-1 (3mm)
White
Water Clear
1
T-1 3/4 (5mm)
White
Water Clear
2 3 4 —
T-1 3/4 (5mm) 3.2 x 2.8 2.7 x 2.0 0603
White White White White
Water Clear Water Clear Water Clear Yellow Diffused
* Bulk
Vf (V) Typ. 3.6 3.5 3.6 3.6 3.6 3.6 3.0 3.5 3.5 3.5 3.5 3.6 3.6 3.5 3.5 3.5
2.54
Digi-Key Part No. 67-1606-ND* 67-1690-ND* 67-1954-ND* 67-1955-ND* 67-1956-ND* 67-1605-ND* 67-1691-ND* 67-1693-ND* 67-1694-ND* 67-2027-ND*◆ 67-1695-ND* 67-1696-ND* 67-1604-ND* 67-1608-1-ND 67-1607-1-ND 67-1959-1-ND
.055 (1.40) 2 plcs.
.055 (1.40)
.059 .165 (4.20) (1.50)
.205 (5.20)
If Io Viewing Angle (mA) Max. (mcd) Typ. (2x Theta) 30 750 40 30 3,300 30 30 800 30 30 900 20 30 1,700 20 30 740 45 25 3,500 40 25 8,000 20 25 9,000 20 25 11,000 20 25 11,000 20 30 680 34 30 2,300 15 30 150 120 30 150 120 20 65 140
.055 (1.40)
.079 (2.00) Cathode
.024 (0.60) .118 (3.00)
Cathode
.063 (1.60)
.071 (1.80) (2 plcs) .087 (2.20)
.024 (0.60)
Cut Tape Pricing 10 100 33.75 270.00 9.99 79.92 19.80 158.40 19.80 158.40 19.80 158.40 33.75 270.00 7.79 62.28 9.99 79.92 12.38 99.00 13.30 119.70 13.19 105.48 19.98 159.84 33.75 270.00 27.75 249.00 26.46 237.38 10.13 81.00
1 3.75 1.11 2.20 2.20 2.20 3.75 .87 1.11 1.38 1.60 1.47 2.22 3.75 3.00 2.86 1.22
500 1200.00 355.20 704.00 704.00 704.00 1200.00 276.80 355.20 440.00 532.00 468.80 710.40 1200.00 1125.00 1072.50 374.63
Digi-Key Part No. — — — — — — — — — — — — — 67-1608-2-ND 67-1607-2-ND 67-1959-2-ND
Tape and Reel Qty. Pricing — — — — — — — — — — — — — — — — — — — — — — — — — — 1,500 2100.00/M 1,000 2002.00 4,000 672.30/M
Lumex Part No. SSL-LX3054UWC/A SLX-LX3054UWC SSL-LX3044UWC SSL-LX3054UWC/B SSL-LX5093UWC/B SSL-LX5093UWC/A SLX-LX5093UWC/C SLX-LX5093UWC/E SLX-LX5093UWC/F SSL-LX5093UWC/G SLX-LX5093UWC/G SLX-LX5093UWW SSL-LX5093XUWC SML-LX2832UWC-TR SML-LX23UWC-TR SML-LX0603UWD-TR
◆ RoHS Compliant
Blue LEDs
Fig. 1
Fig. 2
4.6
1.0
2.54
ø5.70 ø4.80
Ø3.2 Ø2.9 Anode
Fig.
O
.055 (1.40)
.087 (2.20)
.138 (3.50)
Ø5.00 Anode
.106 (2.70) .110 (2.80)
1.00 Min.
1.00
.079 (2.00)
Fig. 4
Ø.094 (2.40)
.043 (1.10)
.075 (1.90)
Description
Emitted Color
1
T-1 (3mm)
Blue
2
T-1 3/4 (4.7mm)
Blue
3
T-1 3/4 (5mm)
Blue
4
10mm
Blue
Lens Water Clear Blue Diff. Water Clear Water Clear Blue Diff. Water Clear Blue Diff.
Peak Wavelength (nm) 470 470 470 470 470 470 470
Vf (V) Typ. 3.5 3.5 3.5 3.5 3.5 3.6 3.6
1.0 Max. 7.2
If (mA) Max. 30 30 30 30 30 30 30
1.5
Fig. 3 2.54
8.60 5.9
Fig. 4
27.4 25.4
2.0
ø11.00 ø10.00
2.54 Anode .50 Sq. (2 plcs.)
5.00 Anode
27.0
Io (mcd) 1000 80 750 1000 300 800 300
Viewing Angle (2x Theta) 30 60 30 30 60 15 60
Digi-Key Part No. 67-1747-ND 67-1748-ND 67-1749-ND 67-1750-ND 67-1751-ND 67-1752-ND 67-1753-ND
1 2.23 2.23 2.23 2.23 2.23 3.05 3.05
10 20.03 20.03 20.03 20.03 20.03 27.45 27.45
Pricing
100 160.20 160.20 160.20 160.20 160.20 219.60 219.60
500 712.00 712.00 712.00 712.00 712.00 976.00 976.00
1.0 Max. 13.5
1.60 Min.
2.54
Anode .50 Sq. (2 plcs.) 27.0
Lumex Part No. SSL-LX3044USBC SSL-LX3044USBD SSL-LX4073USBC SSL-LX5093USBC SSL-LX5093USBD SSL-LX100133USBC SSL-LX100133USBD
More Product Available Online: www.digikey.com 2300
(T073)
ç Prev Page
Toll-Free: 1-800-344-4539 • Phone 218-681-6674 • Fax: 218-681-3380
Next Pageè
ç Prev Page
Next Page è
LEDs
RoHS Compliant Parts Available Fig. 2
Fig. 1
Ø3.1
3.3
1.8
25.4
25.4
4.0
3.2
3.5
1.0
2.54
1.0
2.54
1.0
Fig. 7 Ø 3.0
8.5
20
22 24
Fig. 13
5.9 max.
0.5
2.54
Flat Denotes Cathode
Cathode
Fig. 16
Fig. 17
4.7
11.7
2.54
0.5 2.54
2.54
Description
1
1.8mm Dot Point
2
T-1 Double Flange
3
T-1
T-1 Ultrabright
T-1
T-1 Bi-Color
T-1
5 6 7 8
O
3.8mm T-1 - Flat Top T-1 - Flat Top T-1 3/4 No Flange T-1 3/4
9
T-1 3/4 - Tapered
1.0
7.9 5.7
22.0
22.0
3.65 2.54
1.0
1.0
2.54
2.54 Fig. 19
2.50
Cathode
Cathode
22.0 1.0
6.8
Part No. 5.08
7.62
22.0
0.622
4.0
H
5.08 5.08
Cathode
LTL911xxx 1.50 LTL912xxx 1.90
Fig. 20
2.1 2.5
H
5.8 Flat Denotes Cathode
5.7
4.7
3.8
5.9
22.0
8.6
1.0
Fig. 15
5.2 10.6
1.0
Fig. 18
Ø 4.8
7.9
Cathode
2.54
4
Fig. 14
2.54
5.0
8.7
1.0
1.0
2.54
8.7 5.85
Cathode
7.62
3.0
7.62
Anode
1.0
*Flat Denotes Cathode
25.4
.5
1.0
2.54
5.0 1.0
22.0
5.60
1.0
5.8
8.6
1.0
1.0
1.0
2.54 Fig. 12
8.6
1.0
25.4
.5
5.0
Fig.
1.0
25.4
Fig. 11
5.0 7.2
3.5
1.0
2.54
Fig. 10
5.0
4.75
Cathode
Cathode
23.0
2.54
2 3 1
Fig. 9
3.2
4.6
3.8
Fig. 8
3.0
25.4
1.0
2.54
2.54
Fig. 6
5.0
1.0 Cathode
1.0
Dim. in mm 3.8 3.1
4.45
5.5
1.0
24
.45
.4
3.3
Cathode
2.4
1.0
Fig. 5
3.2 3.0
5.25
5.2 25.4 Cathode
1.65
Fig. 4
3.0
2.8 1.55
1.5
Fig. 3
Anode
LTL914xxx 1.90
7.62
7.62
Emitted Color
Lens
Peak Wavelength (nm)
Vf Typ. (V)
If Max. (mA)
Hi. Eff. Red Yellow STD. Green Super Red Super Red Hi. Eff. Red Hi. Eff. Red Amber-Yellow Amber-Yellow Yellow Yellow Green Green Blue Blue Blue Blue Blue Blue Blue Red Green White White Red Red Super Red Hi. Eff. Red Hi. Eff. Red Red Red-Orange Red-Orange/Green Yellow Yellow Yellow Green Green Green White White White White Hi. Eff. Red Yellow Green
Red Diff. Yellow Diff. Green Diff. Red Diff. Water Clear Red Diff. Red Trans. Water Clear Water Clear Water Clear Yellow Trans. Water Clear Green Diff. Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Green Diff. Water Clear Water Clear Red Diff. Water Clear Water Clear Red Trans. Red Diff. Water Clear Water Clear White Diff. Yellow Trans. Water Clear Yellow Diff. Green Trans. Water Clear Green Diff. Water Clear Water Clear Water Clear Water Clear Red Diff. Yellow Diff. Green Diff.
635 585 560 639 639 635 635 595 595 588 585 575 565 468 468 468 468 468 468 468 632 565 — — 660 660 639 635 635 632 630 630/565 585 585 585 565 565 565 — — — — 635 585 565
2.0 2.1 2.1 2.0 2.0 2.0 2.0 2.05 2.05 2.05 2.1 2.05 2.1 3.5 4.0 3.7 3.5 3.5 3.7 3.5 2.05 2.1 3.7 3.6 1.8 1.8 2.0 2.0 2.0 2.05 2.0 2.0/2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.5 3.5 3.5 3.5 2.0 2.1 2.1
30 20 30 30 30 30 30 30 30 30 20 30 30 30 30 30 30 30 30 30 30 30 30 100 40 40 30 30 30 30 30 30/30 20 20 20 30 30 30 100 100 100 100 30 20 30
12.6 12.6 8.7 90 250 12.6 19 320 339 320 40 320 12.6 180 310 400 520 680 680 880 880 12.6 2,600 2,600 60 170 180 29 8.7 250 60 4.8/4.8 19 40 5.6 40 40 12.6 1,100 520 85 140 60 12.6 40
10 10 10 20 20 10 10 20 20 20 10 20 10 20 20 20 20 20 20 20 20 10 20 30 20 20 20 10 10 20 10 20 10 10 10 10 10 10 30 30 30 30 10 10 10
38 38 38 60 45 60 45 45 45 45 45 45 60 35 30 30 30 30 30 30 22 40 25 25 60 45 56 45 60 56 45 200 45 45 60 45 45 60 45 90 130 140 60 60 60
160-1084-ND 160-1085-ND 160-1086-ND 160-1660-ND 160-1661-ND 160-1708-ND 160-1704-ND 160-1664-ND 160-1663-ND 160-1662-ND 160-1709-ND 160-1659-ND 160-1710-ND 160-1604-ND 160-1600-ND 160-1605-ND 160-1601-ND 160-1602-ND 160-1606-ND 160-1603-ND 160-1665-ND 160-1712-ND 160-1718-ND 160-1727-5-ND 160-1035-ND 160-1034-ND 160-1668-ND 160-1140-ND 160-1139-ND 160-1667-ND 160-1141-ND 160-1058-ND 160-1146-ND 160-1147-ND 160-1145-ND 160-1143-ND 160-1144-ND 160-1142-ND 160-1734-5-ND 160-1730-5-ND 160-1736-5-ND 160-1735-5-ND 160-1087-ND 160-1088-ND 160-1089-ND
.17 .17 .24 .11 .13 .09 .09 .13 .13 .13 .09 .14 .09 1.40 .60 1.57 .65 .73 1.96 .92 .12 .09 1.39 1.29 .20 .19 .13 .19 .19 .13 .19 .35 .19 .19 .19 .19 .19 .19 1.29 1.29 1.20 1.20 — — —
1.38 11.00 1.38 11.00 2.00 16.00 .93 7.40 1.08 8.60 .73 5.80 .73 5.80 1.08 8.60 1.08 8.60 1.08 8.60 .73 5.80 1.15 9.20 .73 5.80 11.68 93.40 5.00 40.00 13.08 104.60 5.45 43.60 6.10 48.80 16.33 130.60 7.63 61.00 1.00 8.00 .73 5.80 11.55 92.40 10.78 86.20 1.68 13.40 1.55 12.40 1.08 8.60 1.45 10.15 1.45 10.15 1.08 8.60 1.45 10.15 2.93 23.40 1.45 10.15 1.45 10.15 1.45 10.15 1.45 10.15 1.45 10.15 1.45 10.15 10.78 86.20 10.78 86.20 10.00 80.00 10.00 80.00 .73 5.80 .73 5.80 .73 5.80
LTL-709E LTL-709Y LTL-709L LTL1CHKR LTL1CHKRKNN LTL-1CHE LTL-1CHEE LTL1CHKYKNN LTL1CHKYK LTL1CHKSKNN LTL-1CHYE LTL1CHKGKNN LTL-1CHG LTL1CHCBK3 LTL1CHTBK2 LTL1CHCBK4 LTL1CHTBK3 LTL1CHTBK4 LTL1CHCBK5 LTL1CHTBK5 LTL42EKEKNN LTL-4231 LTL42CW65AT LTW-420C5 LTL-4261N LTL-4266N LTL42NKRKNN LTL-4222N LTL-4221N LTL42KE6N LTL-4296N LTL-14CHJ LTL-4252N LTL-4256N LTL-4251N LTL-4232N LTL-4236N LTL-4231N LTW-42NC5 LTW-1KHC5 LTW-815C4 LTW-77HC4 LTL-10223W LTL-10253W LTL-10233W
White Super Red Green
Water Clear Water Clear Water Clear
— 639 525
3.5 1.9 3.5
100 50 30
6,000 4,200 6,000
30 20 20
20 12 8
160-1729-5-ND 160-1698-ND 160-1717-ND
1.20 .24 .92
10.00 2.03 7.70
LTW-102C4 LTL353QRKNN LTL-353TGK (Continued)
Iv Typ. (mcd) @ (mA)
Viewing Angle (2x Theta)
7.62
Digi-Key Part No.
1
Pricing 10
100
80.00 16.20 61.60
Lite-On Part No.
More Product Available Online: www.digikey.com 2326
(T073)
ç Prev Page
Toll-Free: 1-800-344-4539 • Phone 218-681-6674 • Fax: 218-681-3380
Next Pageè
ç Prev Page
Next Page è
LEDs
RoHS Compliant Parts Available Fig. 2
Fig. 1
Ø3.1
3.3
1.8
25.4
25.4
4.0
3.2
3.5
1.0
2.54
1.0
2.54
1.0
Fig. 7 Ø 3.0
8.5
20
22 24
Fig. 13
5.9 max.
0.5
2.54
Flat Denotes Cathode
Cathode
Fig. 16
Fig. 17
4.7
11.7
2.54
0.5 2.54
2.54
Description
1
1.8mm Dot Point
2
T-1 Double Flange
3
T-1
T-1 Ultrabright
T-1
T-1 Bi-Color
T-1
5 6 7 8
O
3.8mm T-1 - Flat Top T-1 - Flat Top T-1 3/4 No Flange T-1 3/4
9
T-1 3/4 - Tapered
1.0
7.9 5.7
22.0
22.0
3.65 2.54
1.0
1.0
2.54
2.54 Fig. 19
2.50
Cathode
Cathode
22.0 1.0
6.8
Part No. 5.08
7.62
22.0
0.622
4.0
H
5.08 5.08
Cathode
LTL911xxx 1.50 LTL912xxx 1.90
Fig. 20
2.1 2.5
H
5.8 Flat Denotes Cathode
5.7
4.7
3.8
5.9
22.0
8.6
1.0
Fig. 15
5.2 10.6
1.0
Fig. 18
Ø 4.8
7.9
Cathode
2.54
4
Fig. 14
2.54
5.0
8.7
1.0
1.0
2.54
8.7 5.85
Cathode
7.62
3.0
7.62
Anode
1.0
*Flat Denotes Cathode
25.4
.5
1.0
2.54
5.0 1.0
22.0
5.60
1.0
5.8
8.6
1.0
1.0
1.0
2.54 Fig. 12
8.6
1.0
25.4
.5
5.0
Fig.
1.0
25.4
Fig. 11
5.0 7.2
3.5
1.0
2.54
Fig. 10
5.0
4.75
Cathode
Cathode
23.0
2.54
2 3 1
Fig. 9
3.2
4.6
3.8
Fig. 8
3.0
25.4
1.0
2.54
2.54
Fig. 6
5.0
1.0 Cathode
1.0
Dim. in mm 3.8 3.1
4.45
5.5
1.0
24
.45
.4
3.3
Cathode
2.4
1.0
Fig. 5
3.2 3.0
5.25
5.2 25.4 Cathode
1.65
Fig. 4
3.0
2.8 1.55
1.5
Fig. 3
Anode
LTL914xxx 1.90
7.62
7.62
Emitted Color
Lens
Peak Wavelength (nm)
Vf Typ. (V)
If Max. (mA)
Hi. Eff. Red Yellow STD. Green Super Red Super Red Hi. Eff. Red Hi. Eff. Red Amber-Yellow Amber-Yellow Yellow Yellow Green Green Blue Blue Blue Blue Blue Blue Blue Red Green White White Red Red Super Red Hi. Eff. Red Hi. Eff. Red Red Red-Orange Red-Orange/Green Yellow Yellow Yellow Green Green Green White White White White Hi. Eff. Red Yellow Green
Red Diff. Yellow Diff. Green Diff. Red Diff. Water Clear Red Diff. Red Trans. Water Clear Water Clear Water Clear Yellow Trans. Water Clear Green Diff. Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Water Clear Green Diff. Water Clear Water Clear Red Diff. Water Clear Water Clear Red Trans. Red Diff. Water Clear Water Clear White Diff. Yellow Trans. Water Clear Yellow Diff. Green Trans. Water Clear Green Diff. Water Clear Water Clear Water Clear Water Clear Red Diff. Yellow Diff. Green Diff.
635 585 560 639 639 635 635 595 595 588 585 575 565 468 468 468 468 468 468 468 632 565 — — 660 660 639 635 635 632 630 630/565 585 585 585 565 565 565 — — — — 635 585 565
2.0 2.1 2.1 2.0 2.0 2.0 2.0 2.05 2.05 2.05 2.1 2.05 2.1 3.5 4.0 3.7 3.5 3.5 3.7 3.5 2.05 2.1 3.7 3.6 1.8 1.8 2.0 2.0 2.0 2.05 2.0 2.0/2.1 2.1 2.1 2.1 2.1 2.1 2.1 3.5 3.5 3.5 3.5 2.0 2.1 2.1
30 20 30 30 30 30 30 30 30 30 20 30 30 30 30 30 30 30 30 30 30 30 30 100 40 40 30 30 30 30 30 30/30 20 20 20 30 30 30 100 100 100 100 30 20 30
12.6 12.6 8.7 90 250 12.6 19 320 339 320 40 320 12.6 180 310 400 520 680 680 880 880 12.6 2,600 2,600 60 170 180 29 8.7 250 60 4.8/4.8 19 40 5.6 40 40 12.6 1,100 520 85 140 60 12.6 40
10 10 10 20 20 10 10 20 20 20 10 20 10 20 20 20 20 20 20 20 20 10 20 30 20 20 20 10 10 20 10 20 10 10 10 10 10 10 30 30 30 30 10 10 10
38 38 38 60 45 60 45 45 45 45 45 45 60 35 30 30 30 30 30 30 22 40 25 25 60 45 56 45 60 56 45 200 45 45 60 45 45 60 45 90 130 140 60 60 60
160-1084-ND 160-1085-ND 160-1086-ND 160-1660-ND 160-1661-ND 160-1708-ND 160-1704-ND 160-1664-ND 160-1663-ND 160-1662-ND 160-1709-ND 160-1659-ND 160-1710-ND 160-1604-ND 160-1600-ND 160-1605-ND 160-1601-ND 160-1602-ND 160-1606-ND 160-1603-ND 160-1665-ND 160-1712-ND 160-1718-ND 160-1727-5-ND 160-1035-ND 160-1034-ND 160-1668-ND 160-1140-ND 160-1139-ND 160-1667-ND 160-1141-ND 160-1058-ND 160-1146-ND 160-1147-ND 160-1145-ND 160-1143-ND 160-1144-ND 160-1142-ND 160-1734-5-ND 160-1730-5-ND 160-1736-5-ND 160-1735-5-ND 160-1087-ND 160-1088-ND 160-1089-ND
.17 .17 .24 .11 .13 .09 .09 .13 .13 .13 .09 .14 .09 1.40 .60 1.57 .65 .73 1.96 .92 .12 .09 1.39 1.29 .20 .19 .13 .19 .19 .13 .19 .35 .19 .19 .19 .19 .19 .19 1.29 1.29 1.20 1.20 — — —
1.38 11.00 1.38 11.00 2.00 16.00 .93 7.40 1.08 8.60 .73 5.80 .73 5.80 1.08 8.60 1.08 8.60 1.08 8.60 .73 5.80 1.15 9.20 .73 5.80 11.68 93.40 5.00 40.00 13.08 104.60 5.45 43.60 6.10 48.80 16.33 130.60 7.63 61.00 1.00 8.00 .73 5.80 11.55 92.40 10.78 86.20 1.68 13.40 1.55 12.40 1.08 8.60 1.45 10.15 1.45 10.15 1.08 8.60 1.45 10.15 2.93 23.40 1.45 10.15 1.45 10.15 1.45 10.15 1.45 10.15 1.45 10.15 1.45 10.15 10.78 86.20 10.78 86.20 10.00 80.00 10.00 80.00 .73 5.80 .73 5.80 .73 5.80
LTL-709E LTL-709Y LTL-709L LTL1CHKR LTL1CHKRKNN LTL-1CHE LTL-1CHEE LTL1CHKYKNN LTL1CHKYK LTL1CHKSKNN LTL-1CHYE LTL1CHKGKNN LTL-1CHG LTL1CHCBK3 LTL1CHTBK2 LTL1CHCBK4 LTL1CHTBK3 LTL1CHTBK4 LTL1CHCBK5 LTL1CHTBK5 LTL42EKEKNN LTL-4231 LTL42CW65AT LTW-420C5 LTL-4261N LTL-4266N LTL42NKRKNN LTL-4222N LTL-4221N LTL42KE6N LTL-4296N LTL-14CHJ LTL-4252N LTL-4256N LTL-4251N LTL-4232N LTL-4236N LTL-4231N LTW-42NC5 LTW-1KHC5 LTW-815C4 LTW-77HC4 LTL-10223W LTL-10253W LTL-10233W
White Super Red Green
Water Clear Water Clear Water Clear
— 639 525
3.5 1.9 3.5
100 50 30
6,000 4,200 6,000
30 20 20
20 12 8
160-1729-5-ND 160-1698-ND 160-1717-ND
1.20 .24 .92
10.00 2.03 7.70
LTW-102C4 LTL353QRKNN LTL-353TGK (Continued)
Iv Typ. (mcd) @ (mA)
Viewing Angle (2x Theta)
7.62
Digi-Key Part No.
1
Pricing 10
100
80.00 16.20 61.60
Lite-On Part No.
More Product Available Online: www.digikey.com 2326
(T073)
ç Prev Page
Toll-Free: 1-800-344-4539 • Phone 218-681-6674 • Fax: 218-681-3380
Next Pageè
ç Prev Page
Next Page è Dim. in mm
LEDs (Cont.) Fig. 36
37
38
39 40 41 42
43
44 18 45
19
20
46
21
22
23
24
25
Color Yellow Yellow Blue Yellow Blue Yellow Yellow Orange Red/Green Red Blue Green Yellow Yellow Green Tinted Yellow Tinted Yellow Red Clear Yellow Clear Green White Yellow Red Green Grn./Ylw./Grn./Ylw. Grn./Ylw./Grn./Ylw. Ylw./Grn./Ylw./Grn. Red
Wave Length pk(nm) 585 583 470 585 470 583 590 600 660/565 650 470 565 583 590 565 583 585 635 583 525 — 583 635 565 565/583 565/583 583/565 635
Typ. Io (mcd) 34.0 1.8 1010 12.3 520 1.8 8.0 7.0 90/40 34.0 650 1.8 1.8 10.0 70.0 50.0 34.0 125.0 140.0 2200 1100 3.5 6.0 2.5 8.5/10.0 8.0 8.0 12.6
Typ. Vf (V) 2.2 1.9 3.8 2.1 4.0 1.9 2.0 1.9 1.8/2.1 2.1 3.6 1.8 1.9 2.4 2.3 2.2 2.2 2.2 2.2 3.5 3.5 2.1 2.0 2.3 2.1/2.2 5.0 5.0 2.0
Red Orange Green Yellow White Blue Blue Blue White Red/Green Red Green Yellow Red Red Red Green Yellow Red Red Green Yellow Red Red Red Green Yellow Red Red Green Yellow Red Red Green Yellow Red Red Green Yellow Green Red Yellow Red/Ylw./Grn. Green Yellow Red Green Red Yellow Hi. Eff. Blue Red Green Yellow Red/Green Yellow/Green Blue White Green Green Yellow Red Orange Red Green Yellow Hi. Eff. Blue Red
635 600 565 583 — 464 428 470 — 635/565 650 565 583 650 650 650 565 583 650 650 565 583 650 650 650 565 583 650 650 565 583 650 650 565 583 650 650 565 583 565 635 585 635/585/565 563 585 650 565 635 583 428 635 565 583 635/565 585/565 470 — 525 563 585 650 600 635 565 583 428 635
10.0 7 12.6 10.0 1010 460 12.0 1010 1690 5.0/8.0 1.2 1.0 2.0 1.9 0.9 0.6 2.5 2.1 0.9 1.2 1.0 2.0 1.9 0.9 0.6 2.5 2.1 0.9 1.2 1.0 2.0 1.9 0.9 2.5 2.1 1.9 1.2 1.0 2.0 8.7 12.6 12.6 12.6/12.6/8.7 16.0 6.3 10.0 8.0 4.0 8.0 12.0 1.8 1.6 1.6 5.0 4.3/6.3 1000 1270 3400 16.0 6.3 10.0 6.5 4.0 8.0 8.0 12.0 1.8
2.0 2.2 2.1 2.2 3.6 3.5 3.5 3.8 3.8 2.1/2.3 1.6 2.4 2.2 5.0 5.0 5.0 5.0 5.0 24.0 1.6 2.4 2.2 5.0 5.0 5.0 5.0 5.0 24.0 1.6 2.4 2.2 5.0 5.0 5.0 5.0 5.0 1.6 2.4 2.2 2.1 2.0 2.1 2.0/2.1/2.1 2.1 2.1 2.0 5.0 5.0 5.0 3.5 1.8 1.8 1.9 2.0 2.1/2.1 3.6 3.6 3.5 2.1 2.1 2.0 2.2 5.0 5.0 5.0 3.5 1.8
Typ. If Digi-Key (mA) Part No. 20.0 350-1118-ND 2.0 350-1121-ND 30.0 350-1523-ND 20.0 350-1005-ND 20.0 350-1515-ND 2.0 350-1029-ND 10.0 350-1041-ND 10.0 350-1049-ND 20.0 350-1053-ND 20.0 350-1059-ND 20.0 350-1531-ND 2.0 350-1195-ND 2.0 350-1189-ND 20.0 350-1213-ND 10.0 350-1225-ND 10.0 350-1231-ND 20.0 350-1255-ND 20.0 350-1261-ND 20.0 350-1273-ND 20.0 350-1549-ND 20.0 350-1548-ND 20.0 350-1288-ND 20.0 350-1164-ND 20.0 350-1234-ND 10.0 350-1293-ND 12.0/10.0 350-1308-ND 10.0/12.0 350-1309-ND 30.0 350-1550-ND RoHS Compliant 20.0 350-1555-ND 20.0 350-1556-ND 20.0 350-1557-ND 20.0 350-1558-ND 30.0 350-1561-ND 30.0 350-1562-ND 20.0 350-1560-ND 30.0 350-1563-ND 30.0 350-1564-ND 10.0 350-1559-ND 20.0 350-1711-ND 20.0 350-1716-ND 20.0 350-1718-ND 6.0 350-1712-ND 3.0 350-1713-ND 1.0 350-1715-ND 4.7 350-1717-ND 4.7 350-1719-ND 3.0 350-1714-ND 20.0 350-1720-ND 20.0 350-1725-ND 20.0 350-1727-ND 6.0 350-1721-ND 3.0 350-1722-ND 1.0 350-1724-ND 4.7 350-1726-ND 4.7 350-1728-ND 3.0 350-1723-ND 20.0 350-1799-ND 20.0 350-1800-ND 20.0 350-1801-ND 6.0 350-1795-ND 3.0 350-1796-ND 4.7 350-1797-ND 4.7 350-1798-ND 6.0 350-1802-ND 20.0 350-1803-ND 20.0 350-1804-ND 20.0 350-1805-ND 20.0 350-1806-ND 20.0 350-1807-ND 20.0 350-1808-ND 20.0 350-1809-ND 10.0 350-1810-ND 10.0 350-1811-ND 10.0 350-1812-ND 12.0 350-1813-ND 10.0 350-1814-ND 10.0 350-1815-ND 20.0 350-1844-ND 2.0 350-1816-ND 2.0 350-1817-ND 2.0 350-1818-ND 10.0 350-1819-ND 10.0 350-1820-ND 30.0 350-1846-ND 30.0 350-1847-ND 30.0 350-1848-ND 10.0 350-1665-ND 10.0 350-1667-ND 10.0 350-1669-ND 10.0 350-1682-ND 10.0 350-1671-ND 12.0 350-1673-ND 10.0 350-1675-ND 20.0 350-1845-ND 2.0 350-1677-ND
1 1.99 1.99 6.43 1.01 3.21 1.13 1.17 .88 2.27 1.29 8.27 .92 .73 .69 .69 .69 .73 .78 .78 4.23 4.23 1.45 1.16 1.54 3.89 9.08 9.08 1.95
Price Each 25 1.66 1.66 5.36 .84 2.68 .95 .98 .74 1.89 1.08 6.44 .77 .58 .54 .54 .54 .58 .61 .61 3.29 3.29 1.21 .91 1.20 3.25 7.57 7.57 1.63
100 1.33 1.33 4.29 .68 2.15 .76 .78 .59 1.52 .87 5.52 .61 .49 .46 .46 .46 .49 .53 .53 2.82 2.82 .97 .78 1.03 2.60 6.05 6.05 1.31
Dialight Part No. 552-0833 552-0933 552-2388 550-0304 550-1004 550-1204 550-2304 550-2504 550-3004 550-5104 561-1002-100 561-1301-100 561-1201-100 561-2301-100 561-2501-100 561-2601-100 561-5301-100 561-5501-100 561-5701-100 561-5902-100 561-6002-100 566-0306 566-0406 561-4201-055 568-0102-323 568-0302-323 568-0303-232 571-0111
.47 .31 .47 .47 2.01 1.13 2.17 1.13 2.36 1.18 .81 .83 .83 .90 .90 .95 .95 .79 .90 1.04 1.42 1.42 1.31 1.31 1.38 1.54 1.54 1.31 3.20 3.71 3.24 3.62 3.62 3.71 3.71 5.33 4.68 5.54 5.54 2.06 2.06 2.06 2.06 .56 .56 .56 .85 .85 .85 2.32 .73 .73 .73 1.33 1.33 4.60 8.98 4.25 .65 .65 .65 .73 .95 .95 .95 2.32 .73
.37 .24 .37 .37 1.57 .88 1.70 .88 1.84 .92 .63 .65 .65 .71 .71 .74 .74 .62 .71 .82 1.11 1.11 1.02 1.02 1.08 1.21 1.21 1.02 2.49 2.89 2.53 2.82 2.82 2.89 2.89 4.15 3.65 4.31 4.31 1.61 1.61 1.61 1.61 .44 .44 .44 .66 .66 .66 1.81 .57 .57 .57 1.04 1.04 3.58 6.99 3.31 .51 .51 .51 .57 .74 .74 .74 1.81 .57
.32 .21 .32 .32 1.34 .75 1.45 .75 1.58 .79 .54 .56 .56 .61 .61 .64 .64 .53 .61 .70 .95 .95 .88 .88 .92 1.03 1.03 .88 2.14 2.48 2.17 2.42 2.42 2.48 2.48 3.56 3.13 3.69 3.69 1.38 1.38 1.38 1.38 .38 .38 .38 .57 .57 .57 1.55 .49 .49 .49 .89 .89 3.07 5.99 2.84 .44 .44 .44 .49 .63 .63 .63 1.55 .49
521-9216F 521-9498F 521-9210F 521-9211F 521-9901F 521-9918F 521-9831F 521-9946F 521-9948 521-9450F 555-2001F 555-2301F 555-2401F 555-2003F 555-2007F 555-2009F 555-2303F 555-2403F 555-2008F 555-3001F 555-3301F 555-3401F 555-3003F 555-3007F 555-3009F 555-3303F 555-3403F 555-3008F 555-4001F 555-4301F 555-4401F 555-4003F 555-4007F 555-4303F 555-4403F 555-5003F 555-5001F 555-5301F 555-5401F 570-0100-222F 570-0100-111F 570-0100-333F 570-0100-132F 551-0207F 551-0307F 551-0407F 551-0607F 551-0507F 551-0707F 551-0807F 551-1107F 551-1307F 551-1207F 551-3007F 551-3107F 551-4007F 551-4107F 551-4207F 551-0209F 551-0309F 551-0409F 551-2509F 551-0509F 551-0609F 551-0709F 551-0809F 551-1109F
Fig. 23 4.32
2.54
7.11
6.35
2.89
5.08 Cathode Red/Yellow Cathode for Bi-color
3.68 2.54
4.4
Fig. 24 4.70
6.35
3.38 Ø3.10
7.37 5.08
2.54
4.4
Cathode
Fig. 25 5.33
2.54
4.06 Cathode
D
6.35 3.05
Red/Yellow Cathode for Bicolor
3.68
2.54
2.89 .508 Sq. 4.06
Fig. 26 4.32
2.24
2.54
17.27
5.08
6.35
7.11
3.05 Cathode
2.54
.508 Sq.
3.68
Red/Yellow Cathode for Bicolor
4.32
4.44
Fig. 27 4.32 9.65
5.08
8.13
Cathode
2.45
Red/Yellow Cathode for Bicolor
3.68
Top LED 2.54 4.44
2.6 Max
Fig. 28 8.76
5.08
2.9 9.65 5.08
Cathode Red/Yellow Cathode for Bicolor
2.54 3.68
2.54
.50
2.54 5.08
Fig. 29 3.26
14.73
3.81
8.89 4.57 2.29
3.68 6.10
2.54
.46 Sq.
Anode (+) Lead
Fig. 30 6.60 3.35
14.73
3.81
8.89 4.57
2.29
3.68
.46 Sq
6.10
2.54
Anode (+) Lead
Fig. 31 4.32
2.62
5.08
3.05
11.56
15.24 .508 Sq.
2.54 3.68 2.54
Red Cathode Lead Yellow Cathode Lead (Bi-color LEDs)
4.45
2.54
(Continued)
More Product Available Online: www.digikey.com Toll-Free: 1-800-344-4539 • Phone 218-681-6674 • Fax: 218-681-3380
ç Prev Page
(T073)
2315
Next Pageè
O
LAMPIRAN PUBLIKASI
50
1. Dedy Hamdani, Maria Evita, Hernawan Mahfudz, Asep Suhendi dan Khairurrijal. “Pengukur curah hujan berbasis mikrokontroler”. Seminar Nasional Teknologi dan Rekayasa Industri (SNTRI 07) Applied Tech 07. Vol. 1. (Serpong, April 2007). 2. Dedy Hamdani, Asep Suhendi, Dedy Hamdani, Asep Suhendi, Mikrajuddin Abdullah and Khairurrijal. “Analysis Analysis of Obstacles and Difficulties in Using the Elkahfi 100 I-V Meter for Characterizing Electronic Components”, International Conference on Instrumentation, Communication, and Information Technology (ICICI), (Bandung, 8-9 Agustus 2007).
51
Pengukur Curah Hujan Berbasis Mikrokontroler Dedy Hamdani1, Maria Evita#, Hernawan Mahfudz2, Asep Suhendi1 dan Khairurrijal1 1
KK Fisika Material Elektronik, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung. 2 KK Teknik Sumber Daya Air, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung. Jalan Ganesha 10, Bandung 40132 E-mail :
[email protected] Abstrak Salah satu unsur cuaca yang memegang peran penting dalam kehidupan kita adalah hujan. Beberapa bidang kehidupan yang dipengaruhi oleh hujan diantaranya pertanian, perkebunan serta bisnis dan industri yang prosesnya berkaitan erat dengan hujan. Oleh karena itu diperlukan suatu alat yang mampu mendeteksi dan mengukur curah hujan Pendeteksian dan pengukuran curah hujan bisa dilakukan oleh alat yang disebut rain gauge (sensor hujan). Sensor hujan yang digunakan pada penelitian ini adalah Reed Switch. Selain harganya yang murah, ouput dari sensor ini sudah dalam bentuk biner sehingga dalam pengolahan data tidak perlu menggunakan Analog to Digital Converter (ADC). Sensor ini mampu menghitung besarnya curah hujan perhari, perminggu, perbulan bahkan pertahun. Pengukur curah hujan ini dibuat berbasis mikrokontroler AT89S52. Penampung air hujan pada pengukur curah hujan ini mampu menghasilkan 0.21 mm tiap tetesan dengan luas daerah pengumpul tetesan 2837,54 mm2. Curah hujan tertinggi yang mampu diukur curah hujan adalah 914,4 mm/jam. Kata kunci : Curah hujan, sensor reed switch, mikrokontroler AT89S52
I. PENDAHULUAN Salah satu unsur cuaca yang memegang peran penting dalam kehidupan kita adalah hujan. Beberapa bidang kehidupan yang dipengaruhi oleh hujan diantaranya pertanian, perkebunan serta bisnis dan industri yang prosesnya berkaitan erat dengan hujan. Untuk menentukan waktu tanam yang tepat, petani perlu mengetahui curah hujan di sekitar tanah pertaniannya. Petani bisa saja mengetahui curah hujan melalui berita di televisi atau surat kabar mengenai prakiraan cuaca, tetapi informasi tersebut kurang akurat, karena informasi tersebut merupakan informasi curah hujan secara global bukan informasi curah hujan di daerah sekitar lahan pertaniannya. Oleh karena itu petani tersebut memerlukan alat yang
mampu mendeteksi dan mengukur curah hujan di daerah tersebut. Pendeteksian dan pengukuran curah hujan ini bisa dilakukan oleh alat yang disebut rain gauge (sensor hujan). Sensor hujan mampu menghitung besarnya curah hujan perhari, perminggu, perbulan bahkan pertahun. Pengukur curah hujan ini dibuat dari komponen-komponen yang mudah didapat seperti mikrokontroler AT89S52 dan Reed Switch. Mikrokontroler AT89S52[1] merupakan chip dapat diprogram untuk melakukan sesuatu sesuai keinginan kita yang disesuaikan pula dengan kemampuannya. Misalnya untuk mengolah data-data serta menyimpan data-data tersebut, sehingga bisa didapatkan data curah hujan dalam satuan yang sesuai
52
dengan standar. Reed Switch adalah sebuah sensor yang merupakan salah satu komponen penyusun pengukur curah hujan, selain mudah didapat dan harganya relatif murah, outputnya juga sudah dalam bentuk biner (digital), sehingga tidak perlu menggunakan ADC lagi. II. PERANCANGAN PENGUKUR CURAH HUJAN
kerucut 2.15 mm serta ketinggian kerucut dari alas sampai lubang kecil pada puncak kerucut adalah 156.4 mm (gambar 2.a). Sedangkan bagian penerima tetesan dari penampung air hujan berbentuk dua buah tabung terpancung identik dengan ketinggian h = 58.98 mm dan jari-jari r = 24.42 mm serta panjang sisi miring tabung s = 64.11 mm (gambar 2.b).
Skema rancangan pengukur curah hujan dapat dilihat pada diagram blok pada Gambar 1.
(a)
Gambar 1. Skema rancangan pengukur curah hujan.
Secara garis besar, sistem pengukur curah hujan dapat dibagi menjadi tiga bagian. Bagian pertama adalah bagian penerima air hujan yang terdiri dari bagian penampung air hujan dan bagian penerima tetesan dari penampung air hujan. Bagian kedua adalah sensor reed switch, sedangkan bagian terakhir adalah bagian pengolah data yang terdiri dari mikrokontroler dan PC (Personal Computer). Bagian Penerima Air Hujan Bagian penerima hujan berbentuk kerucut yang memiliki lubang pada puncaknya. Jari-jari lubang atas 79.22 mm, jari-jari lubang kecil pada puncak
(b) Gambar 2. Bagian penerima air hujan. a) bagian penampung air hujan. b) bagian penerima tetesan dari penampung air hujan.
Bagian Sensor Reed Switch Sensor yang digunakan adalah reed switch. Reed switch[2] termasuk sensor biner dengan keluarannya berupa bilangan biner 1 dan 0 atau high dan low. Pada prinsipnya, reed switch berfungsi seperti saklar hanya saja pemicunya adalah medan magnetik. Ketika ada medan magnetik yang
53
mempengaruhi sensor, saklar di dalam tabung sensor ini menjadi on, ketika medan listriknya tidak ada, maka saklar menjadi off. Penempatan sensor harus diperhatikan, bagian saklar harus ditempatkan pada posisi arah datangnya medan magnet, seperti terlihat pada Gambar 3. Reed switch ini diletakkan pada kotak tempat diletakkannya sensor. Supaya sensor tidak mudah bergoyang, pada alas dibuat lubang untuk meletakkan sensor. US SU
magnet medan magnet
Gambar 3. Posisi Reed Switch yang tepat terhadap datangnya medan magnet
Bagian Pengolah Data Secara umum, bagan rangkaian bagian pengolah data ini bisa dilihat pada Gambar 4. Data
RS232
Interupsi
DB9
AT89S52
PC
Gambar 4. Bagan rangkaian pengolah data
Data yang berupa pulsa akan masuk ke mikrokontroler melalui pin INT1. Data yang masuk dianggap sebagai interupsi bagi mikrokontroler. Dengan program yang telah dimasukkan ke dalam mikrokontroler data kemudian diolah. Pada bagian mikrokontroler, data hanya diterima, kemudian dikirim ke PC
untuk pengolahan lebih lanjut sehingga hasil akhirnya didapatkan curah hujan. Selain menampilkan data, program juga menghitung waktu. Waktu yang dibutuhkan untuk mengambil data dihitung dengan rumus Waktu mengambil data = waktu sekarang – (1) waktu terakhir mengambil data
Waktu mengambil data adalah waktu saat mikrokontroler menerima interupsi berupa pulsa dari sensor (reed switch). Saat ini, bagian penerima tetesan telah mengumpulkan air hujan dalam volume tertentu yang mengakibatkan bagian penerima tetesan yang sedang menerima air hujan dari bagian penampung air hujan (yang berbentuk kerucut) yang tadinya berada di atas, kemudian turun, sehingga magnet yang terpasang bersama bagian penerima tetesan ini bergerak, mengakibatkan medan magnet. Medan magnet ini mengakibatkan sensor reed switch, berada pada keadaaan on atau ‘make’ operation. Pada keadaan ini, pulsa dihasilkan, kemudian dikirim ke mikrokontroler dan dianggap sebagai interupsi oleh mikrokontroler. Setelah waktu yang dibutuhkan untuk pengambilan data diperoleh, maka dihitung curah hujannya, dengan rumus sebagi berikut Curah hujan = curah hujan1/ waktu dalam (2) detik
dimana Curah hujan1 = magnitude vektor volume / magnitude luas permukaan Curah hujan1 = 0.21 (3) Waktu dalam detik = 3600*jam + 60*menit + detik (4)
54
Magnitude luas permukaan adalah luas daerah pengumpul air hujan yang dapat dihitung sebagai jumlah dari luas parabola selimut penerima tetesan (1895,328 mm2) dengan luas daerah sekat penerima tetesan yang berbentuk setengah lingkaran (924,2115 mm2).[3] Sehingga luas seluruh permukaannya adalah 2837,54 mm2. Waktu yang ditampilkan dalam program sama dengan jam digital pada komputer, yang terdiri dari bagian jam, menit dan detik. Karena waktu untuk menghitung curah hujan dalam detik, maka waktu ini dikonversi dulu ke dalam detik, bagian jam dikali dengan 3600, bagian menit dikali dengan 60, sedangkan bagian detik tetap. Kemudian tiap bagian dijumlahkan dan didapat waktu dalam detik. Selanjutnya, waktu di-up date. Waktu sekarang diubah menjadi waktu terakhir mengambil data untuk data selanjutnya, sehingga ketika ada data selanjutnya, perhitungan waktu mengambil data mengikuti pers. (1) di atas.
pada bagian penampung air hujan dan diteruskan ke bagian penerima tetesan. Hasil pengukuran dapat dilihat pada tabel dan gambar berikut Tabel 1. Hasil pengukuran curah hujan Data Waktu Curah Hujan Data Waktu Curah Hujan Ke- (detik) (mm/jam) Ke- (detik) (mm/jam) 1
9
101.6 23
13
70.33846157
2
9
101.6 24
31
29.49677421
3
7
130.6285715 25
31
29.49677421
4
8
114.3 26
36
25.40000001
5
8
114.3 27
44
20.78181819
6
72
12.70000001 28
58
15.76551725
7
33
27.70909092 29
78
11.72307693
8
34
26.89411766 30
89
10.27415731
9
11
83.12727276 31
65
14.06769231
10
8
114.3 32
36
25.40000001
11
11
83.12727276 33
28
32.65714287
12
1
914.4000004 34
51
17.92941177
13
54
16.93333334 35
53
17.2528302
14
55
16.62545455 36
40
22.86000001
15
1
914.4000004 37
70
13.06285715
16
95
9.625263162 38
51
17.92941177
17
30
30.48000001 39
49
18.6612245
18
38
24.0631579 40
50
18.28800001
19
15
60.96000002 41
23
39.75652175
20
12
76.20000003 42
27
33.86666668
21
7
130.6285715 43
1
914.4000004
22
11
83.12727276 44
28
32.65714287
1000 Curah hujan (mm/jam)
Magnitude vektor volume adalah volume tertentu yang mengakibatkan bagian penerima tetesan yang berisi air hujan tersebut turun dan data terbetuk. Pada keadaan ini penerima tetesan berada pada sudut rotasi maksimum dari keadaan setimbang (γ). Sudut rotasi yang terbentuk adalah 33,3788o dan volume nya adalah 603,41 mm3.
800 600 400 200 0
III. HASIL DAN PEMBAHASAN
1
4
7
10 13 16 19 22 25 28 31 34 37 40 43 Data ke-
Pengambilan data dilakukan dengan mensimulasikan curah hujan. Simulasi curah hujan dilakukan dengan memasukkan air ke dalam kantong plastik yang dilubangi. Air yang keluar dari kantong plastik tersebut ditampung
Gambar 5. Hasil pengukuran curah hujan.
Terlihat bahwa curah hujan maksimum adalah 914, 4 mm/jam. Curah hujan maksimum terjadi jika
55
waktu untuk mengisi penerima tetesan adalah 1 detik.
h vs v y = -0.0385x2 +14.93x +316 R2 = 0.9948 2000
Data yang dihasilkan tergantung dari waktu yang dibutuhkan dalam mengambil data. Waktu yang dibutuhkan untuk mengambil data ini juga tergantung dari kecepatan air yang keluar dari bagian penampung air hujan. Kecepatan air (v) yang keluar dari penampung air hujan berbentuk kerucut adalah [4] v=
2 gh 2 A2 1− 2 A1
(5)
v 1000
Poly. (v)
500 0 0
50
100
150
200
h ( mm)
Gambar 6. Grafik h vs v Dari grafik, kecepatan air yang keluar dari kerucut yang selalu berubah ini tergantung dari ketinggian air hujan yang tertampung dalam kerucut. Persamaannya adalah v = -0.0385h2 + 14.93h + 316
Dimana g adalah konstanta gravitasi = 9800 mm/s2, h adalah ketinggian air dalam kerucut, A2 adalah luas penampang lubang kecil pada puncak kerucut, dan A1 adalah luas yang dibentuk oleh air pada kerucut dengan ketinggian h. Dengan menggunakan data-data mengenai ukuran kerucut pers. (5) menjadi v(h) =
1500
2 gh −4
(6)
1 − + 1 c dengan c adalah jarak dari puncak kerucut ke lubang kecil tempat air hujan keluar = 4.514 mm dan h berada di antara 0 mm sampai 157.0872 mm (h maksimum yaitu tinggi kerucut yang berlubang). Untuk nilai h pada 0
(8)
kecepatan air yang keluar dari kerucut ini bisa digunakan dalam pengolahan data curah hujan oleh pihak-pihak yang berkepentingan, namun perlu adanya tambahan pada alat untuk mengukur ketinggian air pada kerucut sehingga bisa dihitung kecepatan air yang keluar dari kerucut.
BAB I. IV. KESIMPULAN
Dari hasil analisis dan pembahasan, maka dapat disimpulkan bahwa sensor hujan yang dibuat menghasilkan tetesan 0.21 mm untuk daerah penampung tetesan 2837.54 mm2. Curah hujan paling tinggi yang bisa dihitung adalah 914.4 mm/jam. Selain itu, kecepatan air yang keluar dari kerucut memiliki persamaan v = -0.0385h2 + 14.93h + 316
56
yang bergantung pada ketinggian air hujan yang tertampung pada kerucut penampung air hujan. REFERENSI [1] Atmel, 8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT89S52 Data Sheet, 2001. [2] http://www.satcure.co.uk/index.html [3] Purcell, E.J., dan Varberg, D., 1998, Kalkulus dan Geometri Analitis, Jilid I Edisi V, Erlangga, Jakarta. [4] Arya, Atam P., 1990, Introduction to Classical Mecahnics, Printice Hall, New Jersey.
57
Analysis of Obstacles and Difficulties in Using the Elkahfi 100 I-V Meter for Characterizing Electronic Components Dedy Hamdani, Asep Suhendi, Mikrajuddin Abdullah and Khairurrijal Physics of Electronic Materials Research Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Jl. Ganesha 10, Bandung, 40132, Indonesia E-mail:
[email protected]
Abstract-The Electronics, a compulsory course in Physics Study of Faculty of Mathematics and Natural Sciences at Institut Teknologi Bandung, gives good knowledge on electronic components as well as offers laboratory work to characterize the electronic components. The Elkahfi 100 I-V Meter can be used to characterize the electronic components such as diodes, zener diodes, LEDs (light emitting diodes), and resistors. A survey on obstacles and difficulties in using Elkahfi 100 I-V Meter has been done to 69 students attending the course in the academic year 2006/2007. It was found that the operations of the I-V Meter and the associated software are not obstacles. Assistants who are present during laboratory works are helpful. The laboratory work guidance is understood easily and the report written after finishing the work is completed simply.
In order to evaluate if the Elkahfi 100 I-V Meter is useful as a tool for the students who learn electronic components, a survey on obstacles and difficulties in using the meter has been done. The objects of this survey were 69 students, who attended the Electronics course in the academic year 2006/2007. II. METHODS
Figure 1 shows the Elkahfi 100 I-V Meter. It consists of a programmable voltage source, a subnano-amperemeter and a test fixture where a device under test (DUT) is put on, an RS232 interface for communication between the meter and computer.
Keywords: Electronics, I-V Meter, Laboratory works, Obstacles and Difficulties.
I. INTRODUCTION Electronics is one of the compulsory courses that must be taken by undergraduate students in Physics Study Program of Faculty of Mathematics and Natural Sciences at Institut Teknologi Bandung. This course gives good understanding about electronic components and their applications in simple circuits. Laboratory works are also offered to the students to characterize the electronic components. The characterization of electronic components, which means to obtain I-V curve, is done by using a tool called an electrometer. The Elkahfi 100 I-V Meter can also be applied to characterize electronic components like diodes, zener diodes, LEDs (light emitting diodes) and resistors [1].
Figure 1. The Elkahfi 100 I-V Meter that provides voltages of 0 to 9.6 volts and measures currents of 100 pA to 14 mA.
Principally, the Elkahfi 100 I-V Meter is the same as that explained elsewhere [2]. However, some improvements in the hardware as well as software have been performed so that the
58
Elkahfi 100 I-V Meter has increased performance. The questionnaire contains obstacle and difficulty variables as given in Table 1. An obstacle is anything from the outside of the students that causes disturbances in doing laboratory work while a difficulty is a trouble coming from the students themselves. The variable of obstacle is divided into two observation sub-variables, i.e. tool operation and assistance during the laboratory work. The sub-variable of tool operation observes (a) I-V Meter hardware and (b) I-V Meter software whereas the sub-variable of assistance during the laboratory work includes (a) assistance of the assistants, and (b) assistance of the lecturer.
The variable of difficulty is also divided into two sub-variables; they are the understanding of laboratory work guidance and writing report. The aspects observed from the sub-variable of understanding laboratory work guidance consist of (a) objective and apparatus used in laboratory work, (b) theory of laboratory work, and (c) procedure of operation written in the laboratory work guidance and the associated pictures while the aspects of the writing report sub-variable are (a) preliminary tasks, (b) data processing of the laboratory work, and (c) laboratory work report. The numbers of items of each aspect are listed in Table 1. The answer of each item is yes or no.
TABLE 1. ASPECTS EVALUATED BY THE QUESTIONNAIRE.
Variable
Tool operation Obstacle
I-V Meter Hardware
Item (Question) # 13-14
I-V Meter Software
15-17
Assistance of the assistants
38-39
Sub-variable
Assistance during laboratory work Understanding laboratory work guidance
Difficulty Writing report
Aspect
Assistance of the lecturer Objective and apparatus used in laboratory work Theory of laboratory work Procedure of operation and associated pictures Preliminary tasks Data processing of the laboratory work Laboratory work report
Two simple statistics used to determine if an item in the questionnaire is valid and reliable are the point biserial correlation and the p-value [3,4]. The point biserial correlation: rpbis is
rbis =
M p − Mt St
p , q
(1)
where Mp is the mean total score for the respondents scoring 1, Mt is the mean total score for the whole respondents, St is the standard deviation for whole respondents, p is the proportion of respondents scoring 1, and q is the proportion of respondents scoring 0 (q = 1 – p). The p-value is
P=
f , N
(2)
40 1-3,12 4, 33-37 6-11 5 18-28 29-32
where f is the number of respondents answering Yes, and N is the number of whole respondents. The reability of the whole items (a questionnaire) is examined by using the KR-20 relation: r11 [5,6].
k Vt − ∑ ( pq ) r11 = , Vt k − 1
(3)
where k is the number of whole items and Vt is the total variance. III. RESULTS AND DISCUSSION The questionnaires were distributed to 20 students as a sample to examine the validity and reliability of each item. The 95% credibility level was used with rcrtical = 0.444 [5]. If rpbis calculated using Eq. (1) is higher than rcrtical, then the item is valid. It is found that nine items in the aspects of assistance of the lecturer and
59
preliminary task (in Table 1) are invalid because they have rpbis lower than rcrtical and
therefore they are excluded. Aspects in Table 1 are then reduced as shown in Table 2.
TABLE 2. REDUCED QUESTIONNAIRE.
Variable
Tool operation Assistance during laboratory work
Obstacle
I-V Meter Hardware
Item (Question) # 9-10
I-V Meter Software
11-13
Assistance of the assistants
30-31
Sub-variable
Understanding laboratory work guidance Difficulty Writing report
Aspect
Objective and apparatus used in laboratory work Theory of laboratory work Procedure of operation and associated pictures Data processing of the laboratory work Laboratory work report
P (%)
The reduced questionnaire was distributed to the whole students (69 students) to examine if each item becomes an obstacle or a difficulty. The p-value was evaluated by using Eq. (2). If
1-2 3,27-29 4-8 14-24 25-26
p less than 0.5 (50%), then the item become an obstacle or a difficulty. Figure 2 shows that all aspects in Table 2 do not become obstacles and difficulties for the students.
100 90 80 70 60 50 40 30 20 10 0 1
3
5
7
9 11 13 15 17 19 21 23 25 27 29 31 Item
Figure 2. The p-value of each item.
60
The operation of the Elkahfi 100 I-V Meter is not an obstacle. The students can set-up I-V meter easily for doing measurement. They can also understand and operate the software to obtain electronic component characteristics. Assistance during the laboratory work is helpful. The assistants give brief explanation when the students ask. The students do not meet any difficulties in understanding the laboratory work guidance. They do understand the objective of the laboratory work, and according to them, the apparatus used in the laboratory work are available sufficiently. The theory written in laboratory work guidance can be understood very well. They know the I-V characteristics of electronic components such as resistors and LEDs. The procedure of operation and pictures in the laboratory work guidance are very helpful in assisting them in the laboratory work. They understand operation steps in the laboratory work guidance and can do measurement according to the operation steps because the steps have been written systematically. In processing the laboratory work data, the students do not undergo any difficulties. They can obtain measurement data for electronic components such as diodes, zener diodes, light emitting diodes, and resistors. They can also process the data to obtain an I-V characteristic for each component. Based on their data, they can conclude that characteristic curves are comparable with the theory. Finally, using KR-20 relation in Eq. (3) it is found that the reduced questionnaire
described in Table 2 is very reliable because r11 equals to 0.95. IV. CONCLUSION After evaluating the questionnaire, it is concluded that the operations of Elkahfi 100 I-V Meter as well as the associated software are not obstacles for the students taking Electronics course along with laboratory works. The presence of assistant during the laboratory works is helpful. Moreover, the students do not meet any difficulties in understanding the laboratory work guidance and writing report. REFERENCES [1] Khairurrijal, M. Abdullah, M. M. Munir, A. Suhendi, and A. Surachman, “Home-made Electronic Components Characterization System for Electronics course at Undergraduate Level,” Intl. Conf. on Education and Educational Technology, Tenerife, pp. 176-178, December 2006. [2] M. M. Munir, A. Suhendi, and Khairurrijal, “A Wide Range Logarithmic Electrometer for Characterizing MOS Capasitors with Nanometer-Thick Oxides,” Intl. Conf. Instrumentation, Communication, and Information Technology (ICICI), Bandung, pp. 363-365, August 2005. [3] S. Surapranata, Analisis, Validitas, Reliabilitas dan interpretasi Hasil Tes Implementasi Kurikulum 2004, Remaja Rosdakarya, Bandung, 2006, p.61. [4] S. Varma, Preliminary Item Statistic Using PointBiserial Correlation and P-Value. www.eddata.com/resources/publications/EDS_Point_Bi serial.pdf. [5] Sugiyono, Statistika untuk Penelitian, Alfabeta, Bandung, 2006, pp.278, 288. [6] S. Arikunto, Prosedur Penelitian Suatu Pendekatan Praktek, Ed. Rev. V, Rineka Cipta, Jakarta, 2002, pp.163-164.
61
LAMPIRAN PROGRAM MIKROKONTROLER DAN KOMPUTER
62
Lampiran Program Mikrokontroler /*---------------------------------------------------------------------*/ #include
#include <stdio.h> #include <string.h> /*---------------------------------------------------------------------*/ //------------------------------------------------------// Inisialisasi pin LCD pada port mikrokontroler //------------------------------------------------------sbit RS = P1^3; sbit E = P1^4; //------------------------------------------------------// Inisialisasi pin DAC MCP4921 pada port mikrokontroler //------------------------------------------------------sbit LDAC = P2^0; sbit SDI = P2^1; sbit SCK = P2^2; sbit CS = P2^3; //------------------------------------------------------// Inisialisasi pin ADC pada port mikrokontroler //------------------------------------------------------sbit DCLOCK = P2^4; sbit DOUT = P2^5; sbit CSADS = P2^6; //------------------------------------------------------// Inisialisasi pin Latch 74LS245 pada port mikrokontroler //------------------------------------------------------sbit LATCH = P2^7; /*---------------------------------------------------------------------*/ //----------------------------------------------------------------------// Prototype //----------------------------------------------------------------------void Inisialisasi(); void InitSerial(void); void InitIntSerial(); void InitInt_Ext0(void); void InitIO(); void ClearScreen(void); void GotoXY(unsigned char r, unsigned char c); void PutChar(char c); void PrintString(const char* s); void SendToDAC(unsigned int InputDAC); unsigned int HasilADC(void); unsigned int ReadADC(); unsigned int TerimaData(); void Int_Eks0(void) interrupt 0; unsigned char InputExt0,a,s,TS[10]; void DelayMs(unsigned int count); void Delay100us(void); unsigned int Ribu, Ratus, Puluh, Satuan; unsigned int Output, Data; bit ext0Flag,OperateFlag,sterima,tutup;
63
//----------------------------------------------------------------------static void EnableLCD(int t) { unsigned char i; E = 1; for(i=0; i
RS=0; P0=0x38; EnableLCD(255); P0=0x38; EnableLCD(255); P0=0x38; EnableLCD(255);
P0=0x38; EnableLCD(255); BIT DATA, 2 BARIS, 5X7 PIXEL P0=0x08; EnableLCD(255); P0=0x01; EnableLCD(255); P0=0x06; EnableLCD(255); P0=0x0D; EnableLCD(255); */ P0=0x38; EnableLCD(50); P0=0x06; EnableLCD(50); P0=0x0C; EnableLCD(50); P0=0x14; EnableLCD(50); P0=0x01; EnableLCD(50);
// FUNCTION SET (8-bit Interface) // 8 // // // // // // // // //
DISPLAY OFF CLEAR SCREEN ENTRY MODE SET DISPLAY ON, BLINK ON 8 BIT DATA, 2 BARIS, 5X7 PIXEL KURSOR NAIK, DISPLAY TIDAK BERGESER LCD ON, CURSOROFF, BLINK OFF KURSOR BERGERAK, GERAK KE KANAN CLEAR SCREEN
RS = 1; } /*---------------------------------------------------------------------*/ void ClearScreen(void) { RS=0; P0=0x01; EnableLCD(255); RS = 1;
// CLEAR SCREEN
} /*---------------------------------------------------------------------*/ void GotoXY(unsigned char r, unsigned char c) { RS=0; P0=0x02; EnableLCD(255); for(r=r*40+c, c=0; c
64
//----------------------------------------------------------------------/ // Kirim data ke ADC) //----------------------------------------------------------------------/ void SendToDAC(unsigned int inputDAC) { unsigned int cekInput; CS = 1; LDAC = 1; SCK = 0;
CS = 0;
SDI = 0; SCK = 1; SCK = 0;
//DAC A //clock ke 0
SDI = 0; SCK = 1; SCK = 0;
//buffered //clock ke 1
SDI = 1; SCK = 1; SCK = 0;
//1x gain //clock ke 2
SDI = 1; SCK = 1; SCK = 0;
//Output Power down Control //clock ke 3
cekInput = inputDAC&0x0800; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 4 SCK = 0; cekInput = inputDAC&0x0400; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 5 SCK = 0; cekInput = inputDAC&0x0200; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 6 SCK = 0; cekInput = inputDAC&0x0100; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 7 SCK = 0; cekInput = inputDAC&0x0080; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 8 SCK = 0; cekInput = inputDAC&0x0040; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 9 SCK = 0; cekInput = inputDAC&0x0020; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 10 SCK = 0;
65
cekInput = inputDAC&0x0010; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 11 SCK = 0; cekInput = inputDAC&0x0008; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 12 SCK = 0; cekInput = inputDAC&0x0004; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 13 SCK = 0; cekInput = inputDAC&0x0002; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 14 SCK = 0; cekInput = inputDAC&0x0001; if(cekInput == 0) SDI = 0; else SDI = 1; SCK = 1; //clock ke 15 SCK = 0; CS = 1; LDAC = 0; LDAC = 1; } void Inisialisasi() { InitSerial(); InitIntSerial(); InitInt_Ext0(); InitIO(); ClearScreen(); LATCH = 0; T0 = 0; T1 = 0; Ribu = 0; Puluh = 0; a = 0;
Ratus = 0; Satuan = 0;
} void InitSerial() { SCON = 0x50; SCON &= 0xFC; // TI = 1; PCON = 0x00; TMOD = 0x20; TH1 = 0xFd; TR1 = 1; }
// Serial Port Control Register //clear interrupt pending flags // Power Control Register
void InitIntSerial(void) { EA=1; ES=1; PS=0; }
66
void InitInt_Ext0(void) { EA=1; EX0=1; IT0=1; PX0=1; } void Int_Eks0(void) interrupt 0 { ext0Flag=1; // InputExt0 = P2&0x07; if(InputExt0==3) { if(a==1) { OperateFlag==1; // STB=1; // KUPRET=1; a=0; } else if(a==0) { OperateFlag==0; // STB=0; // KUPRET=0; a=1; } } } void IntSerial(void) interrupt 4 { if(RI==1){ // ES=0; RI=0; if(SBUF=='<'){ sterima=1; s=0; } else if(SBUF=='>'){ sterima=0; tutup=1; } else if(sterima==1){ TS[s]=SBUF-48; s++; } } //else TI =0; ES=1; } //--------------------------------------// Delay mS function //--------------------------------------void DelayMs(unsigned int count) { // mSec Delay 11.0592 Mhz unsigned int i; while(count) { i = 115; while(i>0) i--; count--; } }
// Keil v7.5a
67
void Delay100us(void) { TH0 = 0xfe; TL0 = 0x00; TR0 = 1; while (TF0 == 0){ } TR0 = 0; TF0 = 0; } unsigned int TerimaData() { while(!RI) {;} RI=0; return(SBUF); } //----------------------------------------------------------------------// Main program //----------------------------------------------------------------------void main() { // unsigned int Output; unsigned char dat,EData; unsigned int Ribu,SisaRibu,Ratus,SisaRatus,Puluh,Satuan; unsigned int Thousand,ThousandRes,Hundred,HundredRes,Ten,One; unsigned int DataADC; unsigned char Out; Inisialisasi(); ext0Flag=0; interrupt eksternal 0 s=0; sterima = 0; tutup = 0;
//Inisialisasi keseluruhan... //flag
TI=1; printf("OK\n\r"); while(1) { if(sterima==0&&tutup==1) { Data = TS[0]*1000 + TS[1]*100 + TS[2]*10 + TS[3]; for (Data=0; Data<2595; Data++) { Output = Data; Output = (Output)*.0037 - 9.8664; //Hasil regresi linear tutup = 0; // untuk data gambar 4.4 pada bab 4 SendToDAC(Output); printf("OK\n\r"); } for (Data=2595; Data<=4095; Data++) { Output = Data; Output = (Output)*.0004 - 12.981; //Hasil regresi linear tutup = 0; // untuk data gambar 4.4 pada bab 4
68
SendToDAC(Output); printf("OK\n\r"); } } /* GotoXY(0,0); PrintString("Tegangan: "); EnableLCD(255); EnableLCD(255); GotoXY(1,0); PrintString("Arus: "); EnableLCD(255); EnableLCD(255); // // //
for(Output=0; Output<4096; Output++) TerimaData(); Output = SBUF; SendToDAC(Output); Ribu = Output/1000; SisaRibu = Output%1000; Ratus = SisaRibu/100; SisaRatus = SisaRibu%100; Puluh = SisaRatus/10; Satuan = SisaRatus%10;
GotoXY(0,10); PutChar(Ribu|0x30); EnableLCD(255); //EnableLCD(255); GotoXY(0,11); PutChar('.'); EnableLCD(255); //EnableLCD(255); GotoXY(0,12); PutChar(Ratus|0x30); EnableLCD(255); //EnableLCD(255); GotoXY(0,13); PutChar(Puluh|0x30); EnableLCD(255); //EnableLCD(255); GotoXY(0,14); PutChar(Satuan|0x30); EnableLCD(255); //EnableLCD(255); GotoXY(0,15); PutChar('V'); EnableLCD(255); //EnableLCD(255); */ // //
printf("OK\n\r"); DelayMs(100); // end for }
}
*/
// end while(1) // end subrutin main1
69
Lampiran Program Mikrokontroler unit FlukeUnit; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, Dialogs, CPort, StdCtrls, CPortCtl, Buttons; type Str2 = String[2]; TForm1 = class(TForm) Button1: TButton; Edit1: TEdit; ComPort1: TComPort; Button2: TButton; ComLed1: TComLed; Memo1: TMemo; Button3: TButton; Edit2: TEdit; CheckBox1: TCheckBox; ComDataPacket1: TComDataPacket; Button4: TButton; Edit3: TEdit; Memo2: TMemo; ComPort2: TComPort; Button5: TButton; ComDataPacket2: TComDataPacket; Button6: TButton; Button7: TButton; CheckBox2: TCheckBox; Edit5: TEdit; Edit6: TEdit; Edit7: TEdit; ComLed2: TComLed; Button8: TButton; Edit4: TEdit; Edit8: TEdit; Label1: TLabel; Button9: TButton; Label2: TLabel; Label3: TLabel; BitBtn1: TBitBtn; procedure Button1Click(Sender: TObject); procedure ComPort1RxChar(Sender: TObject; Count: Integer); procedure Button2Click(Sender: TObject); Function Hex2Char(HexIn : Byte):Str2; Function Char2hex(CharIn : Str2):Byte; procedure Button3Click(Sender: TObject); procedure FormClose(Sender: TObject; var Action: TCloseAction); procedure ComDataPacket1Packet(Sender: TObject; const Str: String); procedure Button4Click(Sender: TObject); procedure Button5Click(Sender: TObject); procedure Button6Click(Sender: TObject); procedure Button7Click(Sender: TObject); procedure Button8Click(Sender: TObject); procedure ComPort2RxChar(Sender: TObject; Count: Integer); procedure Button9Click(Sender: TObject); procedure Button10Click(Sender: TObject);
70
private { Private declarations } public { Public declarations } end; var Form1: TForm1; Kal2, AStr : String; implementation {$R *.dfm} procedure TForm1.Button1Click(Sender: TObject); begin if Comport1.Connected then Comport1.WriteStr(Edit1.Text+#13); end; procedure TForm1.ComPort1RxChar(Sender: TObject; Count: Integer); var Kalimat : String; begin Comport1.ReadStr(Kalimat, Count); Memo1.Lines.Add(Kalimat); end; procedure TForm1.Button2Click(Sender: TObject); begin Comport1.Connected := not Comport1.Connected; end; Function TForm1.Hex2Char(HexIn : Byte):Str2; const HexChar : Array [0..15] of char = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'); var Nyble : byte; Char2 : Str2; begin Nyble := HexIn div 16; Char2 := HexChar[Nyble]; Nyble := HexIn mod 16; Char2 := Char2 + HexChar[Nyble]; Hex2Char := Char2; end; Function TForm1.Char2hex(CharIn var Nyble, Temp1 : byte; begin Temp1 := Ord(CharIn[1]); if Temp1 < $3A then Temp1 := Temp1 - $30 else Temp1 := Temp1 - 55; Nyble := Temp1 * 16; Temp1 := Ord(CharIn[2]); if Temp1 < $3A then Temp1 := Temp1 - $30 else Temp1 := Temp1 - 55; Nyble := Nyble + Temp1; Char2Hex := Nyble; end;
: Str2):Byte;
// Angka // Huruf
// Angka // Huruf
71
procedure TForm1.Button3Click(Sender: TObject); begin Memo1.Clear; end; procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction); begin Comport1.Connected := false; end; procedure TForm1.ComDataPacket1Packet(Sender: TObject; const Str: String); var Bulat : Real; //Paket : String; POsisi, posisi1 : byte; begin Posisi := Pos('E',Str); Posisi1 := Pos(#10, Str); if Posisi1 > 3 then Edit2.Text := Copy(Str,Posisi-7, Posisi+2) else Edit2.Text := Copy(Str,Posisi1+1, Posisi+2-Posisi1); if Posisi <> 0 then begin Bulat := StrtoFloat(Edit2.Text); Edit3.Text := FloattoStr(Bulat); if CheckBox1.Checked then Comport1.WriteStr('MEAS1?'+#13) else // Memo1.Lines.Add(Str); Memo1.Text := Memo1.Text +Edit2.Text+#13+#10; // Memo1.Text := Memo1.Text +(Str); end; If CheckBox2.Checked then begin if StrtoInt(Edit5.Text) < StrtoInt(Edit7.Text) then begin Edit5.Text := InttoStr(StrtoInt(Edit6.Text)+(StrtoInt(Edit5.Text))); Button5Click(Sender); end; end; end; procedure TForm1.Button4Click(Sender: TObject); var Bulat : Real; begin Bulat := StrtoFloat(Edit3.Text); Edit1.Text := FloattoStr(Bulat); end; procedure TForm1.Button5Click(Sender: TObject); //var Stry:String; begin if Comport2.Connected then begin Comport2.WriteStr('<'+Format('%.4d', [StrtoInt(Edit5.Text)])+'>'); Memo2.Lines.Add(Format('%.4d', [StrtoInt(Edit5.Text)])); // Memo2.Lines.Add(''); end; Sleep(StrtoInt(Edit8.Text)); if CheckBox2.Checked then Button1Click(Sender); end;
72
procedure TForm1.Button6Click(Sender: TObject); begin Comport2.ShowSetupDialog; end; procedure TForm1.Button7Click(Sender: TObject); begin Comport1.ShowSetupDialog; end; procedure TForm1.Button8Click(Sender: TObject); begin Comport2.Connected := not Comport2.Connected; end; procedure TForm1.ComPort2RxChar(Sender: TObject; Count: Integer); begin Comport2.ReadStr(Kal2,Count); Edit4.Text := Kal2; end; procedure TForm1.Button9Click(Sender: TObject); begin Memo2.Clear; end; procedure TForm1.Button10Click(Sender: TObject); begin Memo1.Clear; end; end.
73
LAMPIRAN DATASHEET LED
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
LAMPIRAN PAPER TESIS
91
Metode Sederhana untuk Menentukan Rasio Konstanta Planck terhadap Muatan Listrik Menggunakan Kurva Karakteristik Light Emitting Diode (LED) Dedy Hamdani, Asep Suhendi, Mikrajuddin Abdullah dan Khairurrijal KK Fisika Material Elektronik Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung. Jalan Ganesha 10, Bandung 40132 E-mail : [email protected]
Abstrak - Kurva karakteristik LED (light emitting diode) digunakan untuk menentukan rasio konstanta Planck terhadap muatan listrik (h/e). Dengan memberikan tegangan V ke LED, LED akan memancarkan panjang gelombang λ. Hubungan antara V dan λ diberikan oleh persamaan eV = hc / λ, dimana c adalah kecepatan cahaya. Nilai tegangan yang diperoleh adalah 1.54, 1.43, 1.54, 1.60 dan 2.26 V untuk LED merah (λ = 700 nm), orange (620 nm), kuning (585 nm), hijau (565 nm) dan biru (470 nm). Dengan menggunakan regresi linear, diperoleh nilai h/e = 3,8 x 10-15 J.s/C, yang mendekati nilai standard (h/e = 4.136 x 10-15 J.s/C). Metode sederhana ini dapat digunakan dalam proses pembelajaran fisika untuk mahasiswa fisika. Kata kunci: light emitting diode, konstanta Planck, muatan listrik
I. PENDAHULUAN Pengukuran konstanta Planck dapat ditentukan dengan fenomena kuantum yang disebut efek fotolistrik. Fotolistrik memerlukan tabung vakum agar elektron yang lepas dari plat logam yang diberi sinar tidak kehilangan energinya [1]. Pengukuran ini tidak efisien karena setidaknya mesti dilakukan dua kali, pertama untuk untuk menentukan fungsi kerja logam dan kedua untuk menentukan potensial henti (stopping
potential) [2]. Selain itu, penyediaan tabung vakum membuat biaya untuk melakukan pengukuran menjadi mahal. Kedua hal diatas menyebabkan pengukuran efek fotolistrik tidak efisien jika digunakan dalam proses pembelajaran. Metode alternatif yang mudah dan sederhana untuk menentukan konstanta Planck dapat dilakukan dengan menggunakan light emitting diode (LED) [2,3]. LED adalah sebuah divais yang jika diberi tegangan V tertentu akan memancarkan cahaya dengan panjang gelombang λ tertentu. Hubungan antara panjang V dan λ diberikan oleh persamaan eV = hc/ λ dengan c adalah kecepatan cahaya dan h adalah konstanta Planck. Panjang gelombang LED biasanya telah dicantumkan oleh perusahaan pembuatnya. Tegangan pada saat LED mulai memancarkan cahaya disebut tegangan treshold. Tegangan ini berbeda-beda untuk setiap LED tergantung panjang gelombang yang dipancarkan. Pengukuran arus akan naik dengan sangat cepat jika kondisi treshold ini sudah tercapai. Tegangan treshold dapat diketahui melalui pengukuran kurva karakteristik arus tegangan LED. Karakterisasi LED dapat dilakukan dengan menggunakan alat yang disebut elektrometer
92
[4,5,6]. Plot tegangan treshold terhadap c/λ akan memberikan kemiringan yang sama dengan rasio konstanta Planck terhadap muatan listrik (h/e). II. METODE
Gambar 1 memperlihatkan blok diagram sistem karakterisasi LED. Sistem ini terdiri dari komputer, antarmuka RS232, mikrokontroler AT89S52, digital to analog (DAC) MCP4921, rangkaian penguat menggunakan operational amplifier (opamp), light emitting diode (LED) sebagai divais yang akan dikarakterisasi, rangkaian pengubah arus ke tegangan (I to V converter), analog to digital converter (ADC) ADS7822 dan display LCD. Komputer berfungsi sebagai kontrol primer yang mengendalikan sistem secara keseluruhan sekaligus pengolah dan penyimpan data hasil pengukuran. Komunikasi antara komputer dengan mikrokontroler menggunakan sistem antarmuka serial, sehingga untuk menyesuaikan level tegangan antara komputer dan mikrokontroler diperlukan RS232. Mikrokontroler berfungsi mengendalikan sistem pengukuran sesuai perintah komputer. Mikrokontroler mengatur nilai tegangan yang dikeluarkan DAC, mengolah data hasil konversi ADC dan mengirimkan hasil pengukuran ke komputer. DAC digunakan untuk mengubah data digital yang diberikan oleh mikrokontroler menjadi tegangan. Rangkaian penguat digunakan untuk memperkuat tegangan yang dikeluarkan DAC. DAC dan rangkaian penguat berfungsi sebagai sumber tegangan yang dapat diatur nilai keluarannya (programmable voltage source). LED yang akan dikarakterisasi, dihubung seri antara sumber tegangan dan rangkaian pengubah arus ke tegangan. Rangkaian pengubah arus ke tegangan berguna untuk mengukur arus dan mengubahnya menjadi nilai tegangan. ADC mengubah data tegangan hasil pengukuran menjadi data digital untuk kemudian dikirim ke mikrokontroler. LCD akan menampilkan data pengukuran arus dan tegangan dari divais yang diukur.
Perangkat lunak yang digunakan untuk mikrokontroler ditulis dengan bahasa pemrograman C, sedangkan untuk program komputer digunakan bahasa pemrograman Delphi 7.0. Diagram alir program mikrokontroler diperlihatkan pada Gambar 2. Program akan dimulai dengan inisialisasi terlebih dahulu. Inisialisasi ini mencakup inisialisasi serial, LCD dan parameterparameter perhitungan. Setelah itu mikrokontroler akan menunggu data tegangan dari komputer. Setelah diterima, data tersebut akan dikirim ke DAC yang mengubahnya menjadi tegangan analog. Tegangan analog ini kemudian diberikan ke LED yang akan dikarakterisasi. Selanjutnya mikrokontroler akan membaca data digital yang telah dikonversi oleh ADC dari arus yang terbaca oleh LED. Mikrokontroler kemudian menampilkan data arus dan tegangan pengukuran ke display LCD. Diagram alir program komputer ditunjukkan pada Gambar 3.
Gambar 1 Diagram blok sistem karakterisasiLED berbasis mikrokontroler
93
tegangan maksimum, program akan menampilkan dan menyimpan data pengukuran. Setelah itu nilai tegangan akan dinaikkan sesuai dengan data voltage step yang diberikan hingga kondisi arus maksimum tercapai atau tegangan sudah melebihi tegangan maksimum yang diberikan.
Gambar 2. Diagram alir program mikrokontroler
Setelah melakukan inisialisasi, program akan meminta data untuk tegangan minimum, tegangan maksimum dan voltage step. Setelah itu komputer akan melakukan kalibrasi DAC dan mengirimkan data paket ke mikrokontroler. Oleh mikrokontroler data ini diolah dan kemudian dikirim lagi ke komputer. Ketika data ini dikirim komputer akan mengecek apakah ada data paket yang diterima, jika ada program akan membaca data arus dan melakukan kalibrasi ADC. Arus yang dibaca akan diseleksi, apakah melebihi batas arus yang diijinkan. Jika melebihi program akan mengirim data paket terakhir dan program akan berakhir. Jika arus tidak melebihi batas maksimum, program akan mengecek apakah tegangan yang terbaca sudah melebihi batas tegangan maksimum. Jika sudah melebihi, program akan berakhir setelah mengirim data paket terlebih dahulu. Jika belum melebihi
Gambar 3. Diagram alir program komputer
94
HASIL DAN PEMBAHASAN
kuning λ = 585 nm, hijau λ = 565 nm dan biru λ = 470 nm. Hasil pengukuran untuk masing- masing diperlihatkan pada Gambar 4.
Pengukuran dilakukan untuk lima buah LED, yaitu LED merah dengan panjang gelombang λ = 700 nm, orange λ = 620 nm, 7.00
Arus (mA)
6.00 5.00
Biru Hijau
4.00
Kuning Orange Merah
3.00 2.00 1.00 0.00 0
1000
2000
3000
4000
5000
Tegangan (mV)
Gambar 4. Karaktersitik arus-tegangan untuk beberapa LED. ini jika diplot terhadap kecepatan cahaya per panjang gelombang (c/λ) akan terlihat seperti pada gambar 5. Kemiringan grafik ini adalah nilai konstanta h/e. Dari grafik regresi terlihat bahwa nilai h/e adalah 3.8 x 10-15 J.s/C. Nilai ini cukup mendekati nilai sebenarnya yaitu 4.136 x 10-15 J.s/C.
Tegangan dimana arus naik dengan sangat cepat disebut tegangan treshlod (Vth). Tegangan treshold ini ditentukan pada saat LED pertama kali memancarkan cahaya. Nilai tegangan yang diperoleh adalah 1,54 V; 1,43 V; 1,54 V; 1,60 dan 2,26 V untuk LED merah (700 nm), orange (620 nm), kuning (585 nm), hijau (565 nm) dan biru (470 nm) secara berurutan. Nilai tegangan 2.5
V (Volt)
2
y = 0.38x - 0.298 2 R = 0.7744
1.5 1
C/LAMDA Linear (C/LAMDA)
0.5 0 3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
C/LAMDA (10^14 s^-1)
Gambar 5. Plot tegangan treshold terhadap c/λ. IV. KESIMPULAN Telah dirancang dan diimplementasikan elektrometer berbasis mikrokontroler. Elektrometer ini digunakan untuk mengkarakterisasi LED. Dari kurva karakterisasi arus-tegangan diperoleh tegangan treshold untuk beberapa LED dengan panjang gelombang yang berbeda.
Tegangan treshold yang diperoleh adalah 1.54, 1.43, 1.54, 1.60 dan 2.26 V masingmasing untuk LED merah (λ = 700 nm), orange (620 nm), kuning (585 nm), hijau (565 nm) and biru (470 nm). Nilai tegangan ini kemudian diplot terhadap rasio kecepatan cahaya terhadap panjang gelombang. Dari plot tersebut diperoleh kemiringan yang sama dengan nilai rasio konstanta Planck
95
terhadap muatan listrik (h/e) yaitu, 3,8 x 1015 J.s/C. Nilai ini cukup mendekati nilai yang diterima yaitu 4.136 x 10-15 J.s/C.
DAFTAR PUSTAKA
[1] Rohlf, J. W., (1994), Modern Physics from & to Z0, John Wiley & Sons, Inc, New York. [2] J. O’Connor dan L O’Connor, (1974), Measuring Planck’s Constant using a light emitting diode, The Physics Teacher, 12, 423. [3] Stephen Ducharme, Measuring Planck's Consant with LEDs, http://physics.unl.edu/directory/duchar me/PHYS343/343Manual/PlanckLED.p df. [4] M. M. Munir, A. Suhendi, and Khairurrijal, (2005) “A Wide Range Logarithmic Electrometer for
Characterizing MOS Capasitors with Nanometer-Thick Oxides,” Intl. Conf. Instrumentation, Communication, and Information Technology (ICICI), Bandung, pp. 363-365. [5] Khairurrijal, M. Abdullah, M. M. Munir, A. Suhendi, and A. Surachman, (2006) “Home-made Electronic Components Characterization System for Electronics course at Undergraduate Level,” Intl. Conf. on Education and Educational Technology, Tenerife, pp. 176-178. [6] D. Hamdani, A. Suhendi, M. Abdullah and Khairurrijal, (2007) “Analysis of Obstacles and Difficulties in Using the Elkahfi 100 I-V Meter for Characterizing Electronic Components,” Intl. Conf on Instrumentation, Communication, and Information Technology (ICICI), Bandung.
96