Cyklická voltametrie Cyklická voltametrie (cyclic voltammetry, CV) je jednou z mnoha metod odvozených od polarografie, při které prochází zkoumanou soustavou elektrický proud. Při CV je zkoumaný roztok podroben potenciálu vloženému na elektrody následujícím způsobem: potenciál je lineárně zvyšován od počátečního (initial) k „zlomovému“ (vertex) potenciálu, což je tzv. dopředný (forward) scan a poté je snižován ke konečnému (final) potenciálu (zpětný - reverse scan); počáteční potenciál je zpravidla shodný s konečným potenciálem, dopředný a zpětný scan pak tvoří jeden cyklus. Podle potřeby se provádí jeden nebo více cyklů, pokud je technika omezena jen na polovinu cyklu, hovoříme o LSV technice (linear sweep voltammetry). Rychlost, s jakou je potenciál měněn (scan rate), určuje časové okno experimentu. Výsledkem CV experimentu je závislost proudu protékajícího soustavou na vloženém napětí, tj. voltamogram. Moderní přístroje pro měření voltamogramů (potenciostaty) používají tříelektrodové zapojení. Proto je pro provedení experimentu zapotřebí tří elektrod: •
pracovní (working – např. skelný uhlík, uhlíková pasta, uhlíkové vlákno, Pt, Au, Hg, (Hg film) apod.)
•
referentní (reference – kalomelová nebo argentochloridová elektroda)
•
pomocné (auxiliary – zpravidla Pt drátek či plíšek)
Potenciostat nutí procházet mezi pracovní a pomocnou elektrodou takový proud, aby mezi pracovní a referentní elektrodou byl dodržen požadovaný potenciálový program. Roztok vhodný pro voltametrické studium musí obsahovat kromě zkoumané látky ještě nadbytek pomocného (indiferentního) elektrolytu, při měření ve vodném prostředí se zpravidla přidává vhodná sůl (KCl, KNO3, pufr). Koncentrace pomocného elektrolytu by měla být taková, aby iontová síla zkoumané látky tvořila maximálně 3 % z celkové iontové síly roztoku. Při práci s pevnými elektrodami je zapotřebí materiál elektrody před každým scanem vyleštit pomocí aluminy (skelný uhlík), nebo diamantovou pastou (kovové elektrody). V určitých případech postačuje na elektrodu vložit dostatečně vysoký potenciál, který způsobí desorpci nečistot z povrchu elektrody a oxidaci / redukci povrchové vrstvy (tzv. elektrochemické čištění elektrody).
Elektrolýza probíhá pouze v malé vrstvě v okolí elektrody, proto je možné získat z jednoho roztoku prakticky neomezený počet voltamogramů. Potenciál vložený na elektrodu může způsobit oxidaci nebo redukci látek přítomných v měřeném vzorku. Průběh redox procesu je na voltamogramu indikován proudovým píkem typického tvaru. Pozice píku charakterizuje látku kvalitativně a je více či méně komplexní funkcí jejího formálního redox potenciálu. Výška (proud) píku je přímo úměrná koncentraci látky v roztoku a lze ji využít ke kvantitativnímu stanovení. Klíčovým rysem cyklické voltametrie je možnost při zpětném scanu reoxidovat či znovu zredukovat produkt vzniklý během dopředného scanu. Ze separace píků ve voltamogramu, z jejich tvarů, poměrů jejich výšek a ze změn těchto parametrů s rychlostí scanu lze získat rozmanité informace o kinetice přenosu náboje, usoudit na existenci reakcí, které přenosu náboje předcházejí nebo jej následují apod. CV voltamogram může být komplikovaný, pokud se některá látka zapojená do sekvence elektrodových reakcí adsorbuje na povrch elektrody. Redoxní přeměny adsorbovaných látek totiž obecně probíhají při potenciálech odlišných od potenciálů, při kterých se přeměňují látky volně přítomné v roztoku. Potenciál píku odpovídající oxidaci adsorbované látky je stejný jako potenciál píku odpovídající její redukci. Proto je voltamogram adsorbované látky symetrický podle proudové osy a lze jej snadno rozeznat. Úloha 1: Určení aktivní plochy platinové elektrody pomocí cyklické voltametrie hexakyanoželezitanu draselného. Ověření platnosti Randles-Ševčíkovy rovnice. Vlivem mikroskopické nerovnosti povrchu elektrody se může plocha stanovená voltametricky značně odlišovat od geometrické plochy elektrody. Hexakyanoželezitan draselný je na elektrodě redukován na hexakyanoželeznatan, proces probíhá reverzibilně na metalických elektrodách, na elektrodě ze skelného uhlíku je elektrodová reakce kvazireverzibilní.
Systém K3[Fe(CN)6] / K4[Fe(CN)6]
je
jedním z elektrochemických
standardů. Proud v píku (peak current) je u reverzibilního voltamogramu dán Randles Ševčíkovou rovnicí: Ipc = Ipa = 2,69.105 · A · n3/2 · D1/2 · c · v1/2, kde Ipc, Ipa je proud v ampérech, A je plocha elektrody v cm2, n je počet vyměňovaných elektronů, D je difúzní koeficient v cm2s-1, c je objemová koncentrace zkoumané látky v mol.cm-3 (pozor, netypická jednotka) a v je rychlost scanu ve V.s-1. U reverzibilního
voltamogramu dále nezáleží poloha Epa a Epc na rychlosti scanu a rozdíl mezi Epa a Epc je 59 mV (v praxi jsou považovány za reverzibilní i voltamogramy, u kterých je separace píků do cca 70 mV). Reverzibilní voltamogram a způsob odečtení parametrů je uveden následujícím obrázku: Poznámka: Z historických důvodů (polarografie pracuje v katodické oblasti, tj. v oblasti záporných potenciálů, polarogramy však byly kresleny z leva do prava) se někdy používá opačná orientace os zejména americké elektrochemické časopisy trvají na této notaci. Anodický proud je pak záporný a katodický kladný, tj. má stejné znaménko jako v polarografii. Orientaci voltamogramu lze zpravidla nastavit v ovládacím programu potenciostatu. Věnujte pozornost způsobu odečtení proudů Ipa a Ipc. Anodický proud odpovídá oxidaci redukované formy studované látky, katodický proud redukci oxidované formy. Voltamogram podle IUPAC je orientován tak, že potenciálová osa směřuje zleva doprava (tj. kladný, tj. anodický potenciál je vpravo) a anodický proud směřuje vzhůru (voltamogram na obrázku tedy není orientován dle IUPAC).
Postup práce: Seznamte se s ovládáním potenciostatu, způsoby čištění elektrod atd. 1. Připravte si 1 mM roztok K3[Fe(CN)6] v 0,1 M KCl (případně KNO3). Roztok lze po proměření uschovat do dalšího cvičení, pokud je skladován ve tmě. 2. proměřte CV K3[Fe(CN)6] v rozsahu potenciálů +700 mV a -300 mV vs. Ag / AgCl při různých rychlostech scanu: 5, 10, 20, 50, 100, 250, 500, 750, 1000, 2500 a 5000 mV.s-1. Proměřte též voltamogramy 0,1 M KCl (KNO3) (tj. “voltamogram pozadí“ – background voltammogram). 3. Určete oblast scanovacích rychlostí, při kterých se systém chová reverzibilně, tj. Ep nezávisí na v.
4. V oblasti reverzibility ověřte pomocí nelineární regrese odmocninovou závislost Ip na v. 5. Zjistěte si (tabulky, internet) hodnotu difúzního koeficientu K3[Fe(CN)6] v 0,1 M KCl (KNO3). 6. Z
regresní
křivky
získejte
hodnotu
součinu
A · n3/2.
Protože
pro
K3[Fe(CN)6] / K4[Fe(CN)6] je n = 1, je součin přímo roven aktivní ploše elektrody. Uveďte s jakou přesností byla aktivní plocha elektrody stanovena. 7. Voltamogramy
uložte,
budou
použity
jako
vstupní
soubory
pro
ukázku
elektrochemického simulačního software. Úloha 2: Adsorpce na elektrodách, určení aktivní plochy platinové elektrody z proudu odpovídajícímu redox přeměnám chemisorbovaného vodíku. Povrch platinové elektrody lze určit zjištěním náboje, který je spojen s oxidací hydridové vrstvy utvořené na Pt povrchu. Tento náboj, standardně v literatuře označovaný jako QH, má hodnotu 210 µC.cm-2. Na obr. 2 je uveden voltamogram polykrystalické platinové elektrody v 0.5 M KOH při v = 200 mV.s-1. Voltamogram v H2SO4 je prakticky identický. Zároveň jsou vyznačeny i probíhající děje, tj. tvorba a zánik povrchových oxidů a hydridů ve formě monomolekulárních vrstev. Při dostatečné scanovací rychlosti nevadí přítomnost kyslíku v soustavě, díky ustavení stacionárního stavu (viz obr. 3).
QH
Obr. 2
Obr. 3: spodní voltamogram je zaznamenán v přítomnosti kyslíku
Postup práce: 1. Elektrodu pečlivě vyleštěte. Je-li v laboratoři možnost zbavit elektrolyt kyslíku, probublávejte nádobku s 0,5 M H2SO4 proudem inertního plynu (dusík, argon) po dobu alespoň deseti minut. 2. Změřte voltamogram mezi -200 mV a 1300 mV, je-li roztok zbaven kyslíku, použijte rychlost scanu 100 mV.s-1, v přítomnosti kyslíku měřte při 1000 mV.s-1. 3. Je velmi nepravděpodobné, že napoprvé získáte voltamogram stejného průběhu jako na obr. 2, protože elektroda není dostatečně čistá. Nechte potenciál cyklovat mezi -200 mV a 1300 mV (cca 10 x). Poté elektrodou zatřepte a změřte voltamogram znovu. 4. Numerickou integrací příslušné části voltamogramu získejte náboj QH. Vypočtěte plochu elektrody.
John Edward Brough Randles b. 1912, England d. February 13, 1998, England
John E.B. Randles was an electrochemist who made important contributions to the theoretical background of cyclic voltammetry and electrochemical impedance spectroscopy. The Randles-Sevcik equation and Randles equivalent circuit are named after him.
John Edward Brough Randles was born in 1912. He was one of the two electrochemists educated in Cambridge who had a great influence on the development of electrochemistry in the second half of 20th century. Possibly his work in 1940s was better known than that of Geoffrey Barker, and so had the greater impact. John Edward Brough Randles was a lecturer at the University of Birmingham, England, and made significant contribution to theoretical bases of polarography and cyclic voltammetry. His earliest electrochemical work on the cathode ray polarograph, also called oscillopolarograph, (J.E.B. Randles, Analyst 1947, 72, 301; J.E.B. Randles, Trans. Faraday
Soc. 1948, 44, 322) led to the development of linear sweep voltammetry for which he solved the problem of the current for a diffusion controlled electrode reaction by an ingenious graphical method (J.E.B. Randles, Trans. Faraday Soc. 1948, 44, 327); in particular, the equation for the peak current known as the Randles-Sevcik equation. Sevcik was the Czech scientist who obtained a similar solution by a less accurate numerical method. Later, exact solution showed that Randles' result was sufficiently accurate for all practical purposes. His second seminal contribution to electrochemistry was in publishing (at the Faraday meeting of 1947; J.E.B. Randles, Discuss. Faraday Soc. 1947, 1, 11) an analysis of the impedance of a circuit containing not only diffusion but also interfacial electron transfer. His equation showed how to obtain i0 from an impedance -1/w1/2 plot. Randles' publication was very influential and immediately aroused widespread interest in this type of electrode reactions, earlier work on electrode reactions having been focussed almost exclusively on the hydrogen evolution reaction. This also opened the way to the study of fast electrode reactions. The challenge of this work, together with the subsequent work on homogeneous electron transfer reactions, stimulated the theoretical development by Hush and Marcus (for which Marcus was awarded the Nobel prize in 1992), although it should be noted that these were anticipated by the qualitative picture sketched by Randles in 1952 (J.E.B. Randles, Trans. Faraday Soc. 1952, 48, 828). The equivalent circuit Randles used for the analysis of these reactions is still widely used and referred to usually as the Randles circuit, but strictly speaking it should be called the Randles-Ershler circuit - a second example of simultaneous work: a similar analysis had been published by Dolin and Erschler in Russia in 1940, but was not easily available in the West because of difficulties of communication during WWII.
Randles Cell schematic diagram
The Randles equivalent circuit is one of the simplest and most common circuit models of electrochemical impedance. It includes a solution resistance, a double layer capacitor and a charge transfer or polarization resistance. In addition to being a useful model in its own right, the Randles cell model is often the starting point for other more complex models. The equivalent circuit for the Randles cell is shown in this figure. The double layer capacity is in parallel with the impedance due to the charge transfer reaction.
The Nyquist plot for a Randles cell is always a semicircle. The solution resistance can be found by reading the real axis value at the high frequency intercept. This is the intercept near the origin of the plot. The real axis value at the other (low frequency) intercept is the sum of the polarization resistance and the solution resistance. The diameter of the semicircle is therefore equal to the polarization resistance (in this case 250 W). The Nyquist plot for a typical Randles cell Besides his ability to go directly to the essence of a theoretical problem, John E.B. Randles was a superb experimentalist. A notable example of this is his measurement of the Volta potential difference between mercury and an electrolyte, using the experimental method developed by Kenrick at the end of 19th century. Accurate measurement of this was achieved for the first time by Randles (J.E.B. Randles, Trans. Faraday Soc. 1956, 52, 1573), to the astonishment of the great Russian electrochemist Alexander Frumkin who had failed to obtain a stable and reproducible result. The result gives an important route to the energy of single ions in solution (The 'real Gibbs energy of solvatation'). A further technical improvement by Peter McTigue in Sydney has shown more recently that no significant modification to Randles' value is necessary. Summarizing this work, John E.B. Randles wrote a masterly account of the properties of electrode/electrolyte interfaces for the Solvay conference in Brussels in 1972 (J.E.B. Randles, Phys. Chem. Liq. 1977, 7, 107). His pioneering paper in 1953, on what later came to be called the ITIES (J.E.B. Randles, Trans. Faraday Soc. 1953, 49, 823), is notable both for the well-conceived experiments and the lucid analysis. Another Randles' contributions to electrochemistry includes a molecular model for redox reactions Randles published relatively few papers, but a high proportion of them are of great significance. He seemed unconcerned with public recognition, doing research because science fascinated him and he communicated this to his colleagues. He also enjoyed many other things: rock climbing, hill walking, pottery, sailing, canoeing and gardening. He lived with the children in a 16th century manor near Bromsgrove where he had a magnificent garden. The house was near the Worcester and Birmingham canal, which also passes close to the University, one of his best known exploits in those days was to canoe in to work. He retired in 1973 (in 1975 a special issue of J. Electroanal. Chem. was published in his honor) to Cornwall ostensibly to run a glass works with his son Duncan, but, in fact, to live in an old water mill which he spent much time rebuilding as well as installing a heat pump. Tiring of this and, especially of the business administration, which was never a great interest, he and his wife Jean moved to a plot of land he owned in Co. Cork. Finally, they moved back to Cornwall where, besides working a large garden, he took all the advanced mathematics courses from the Open University until he was 80; he was dissatisfied if his marks fell below 95%. It is distressing that such an active and penetrating intelligence deteriorated in the last year or two of his life. John E.B. Randles died on February 13, 1998. His wife Jean survived him together with his daughter and two sons as well as grandchildren.
A big part of this text and the Randles' photo originate from Obituary writen by Prof. Roger Parsons and published in J. Electroanal. Chem. 1998, 452, 1-3. A part of this text originates from the book: J.O'M. Bockris, A.K.N. Reddy, M.Gamboa-Aldeco, Modern Electrochemistry, Second Edition, Fundamentals of Electrodics, Vol. 2A, Kluwer Acad., 2000, p. 1425.