Budoucí projekty • Modernizace – HL-LHC – SuperKEKB
• Nové urychlovače – ILC – CLIC – Mionový urychlovač – LHeC – VLHC – TLEP
Budoucí projekty
1 CERN 1 ITALY 2 SIBERIA 1 CINA 1 JAPAN 2 USA
Nuclear physics
Colliders
Isotopes for Medicine
Ricerca.nucleare Alte.energie Isotopi.per.medicina Ricerca.non.nucleare
Synchrotron light Luce.di.sincrotrone Industria
Non nuclear Investigation
Industria
Radioterapia
Radiotherapy
Ion implatantion
Adroterapia
Hadrontherapy
Impiantazioni.ioniche
Accelerators in the world > 15000
COLLIDERS - 2009 Leptons Hadrons VEPP-2000 VEPP-4M (e+e- 1-4 GeV) RHIC (ions) TEVATRON (p-ap 2 TeV)
LHC (p-p 14 TeV) DAFNE (e+e- 1 GeV)
21/07/09 - HEP 2009 Future:Krakow ILC, CLIC, SuperKEKB, C.Biscari - "Accelerators R&D"
KEK-B (e+e- 10 GeV) BEPCII (e+e- 4 GeV)
eRHIC, ELIC
4
Collider energies
6
10
e+ eHadrons e - protons
5
10
VLHC DLHC LHC SLHC
4
Energy (GeV)
10
CLIC II
TEVATRON
3
10
SPPS
ILC CLIC LHeC
HERA LEP LEP II eRHIC RHIC LEP TRISTAN ISR PETRA SuperKEKB CESR PEP KEK B SuperB DORIS PEP II VEPP IV SPEAR BEPC II BEPC SPEAR II BINP C-T ADONE CESR-C SLC VEPP 2000 DCI DAFNE
2
10
1
10
0
10
ADA -1
10 1960
1970
1980
1990
2000
Year
2010
2020
2030
2040
2050
Collider luminosities
37
10
36
10
35
Luminosity (cm-2 sec-1)
10
e+ eHadrons e - protons
SuperKEKB SuperB SLHC KEK B PEP II
34
10
32
10
31
10
30
10
29
10
BINP C-T DLHC CLIC II CLIC ILC LHC LHeC
CESR
33
10
VLHC
DAFNE BEPC II TEVATRON CESR-C RHIC eRHIC LEP PEP HERALEP II DORIS PETRA LEP BEPC TRISTAN VEPP 2000 VEPP IV ISR SLC SPEARSPPS II SPEAR ADONE DCI
28
10 1960
1970
1980
1990
2000
Year
2010
2020
2030
2040
2050
Collider luminosities versus energies
37
10
36
SuperB SuperKEKB
10
35
BINP C-T
10
Luminosity (cm-2 sec-1)
SLHC
34
KEK B PEP II
33
CESR
10
10
CLIC ILC
CLIC II
VLHC
DLHC LHC
LHeC
DAFNE BEPC II CESR-C
TEVATRON eRHICRHIC LEP PEP LEP II LEP HERA DORIS VEPP 2000 PETRA TRISTAN BEPC VEPP IV ISR SLC SPPS SPEAR II
32
10
31
10
30
10
SPEAR ADONE DCI
29
10
e+ eHadrons e - protons
28
10
0
10
1
10
2
10
3
10
Energy (GeV)
4
10
5
10
6
10
HL-LHC • Uvažovaná modernizace LHC pro vyšší luminositu a energii
LHC/LHC L-Upgrade Schedule New low β quads LINAC 4
“mini” upgrade to (1-3)e34
Stronger IR quads PS2-SPL sLHC
full upgrade to (3-10)e34
Preliminary planning studies, J-P Koutchouk
LHC lumi prospects
Možné scénáře • Maximální luminosita bez HW změn (fáze 0) – Jen 2 IP – Zvýšení Nb – Max. pole dipólu 9 T
• Pouze změny interakční oblasti (fáze 1) • Podstatné HW změny (fáze 2)
The HL-LHC Project
• New IR-quads Nb3Sn (inner triplets) • New 11 T Nb3Sn (short) dipoles • Collimation upgrade • Cryogenics upgrade • Crab Cavities • Cold powering • Machine protection • … Major intervention on more than 1.2 km of the LHC
How to do it? Upgrade KEKB & Belle
The KEKB Performance Luminosity Records: n n n
Peak L = 2.1x1034 cm-2 s-1 (2x the design value) Daily ∫Ldt = 1.5 fb-1 (2.5 x the design value) Total ∫Ldt ~ 950 fb-1 (as of July 2009)
1x1034 cm-2 s-1
70 x TeVatron 1,7 x PEPII 210 x LEP 2 x LHC 1 x ILC
Luminosity Prospects 50ab-‐1 by ~2020
Results from Belle II @ ~10ab-‐1 LHC(b) Prospects of ILC… 10ab-‐1 (ini8al target ) ~ 2016 3year shutdown for upgrade
L~2x1035 cm-‐2s-‐1
L~8x1035 cm-‐2s-‐1
Strategies for Increasing Luminosity Accelerator Physics: Basic terms:
Betatron functions: Luminosity:
N L= σ
Luminosity:
fbN1 N 2 L= 4πσ x σ y
[cm − 2s −1 ]
Strategies for Increasing Luminosity
High-Current Option
(1) Smaller βy* (2) Increase beam currents (3) Increase ξy
Nano-Beam Option
Design Op8ons
Comparison of Parameters KEKB Design
KEKB Achieved (): with crab
SuperKEKB Nano-‐Beam Scheme
LHC
βy* (mm)(LER/HER)
10/10
6.5/5.9 (5.9/5.9)
0.24/0.37
550
εx (nm)
18/18
18(15)/24
2.8/2.0
0.5
σy(µm)
1.9
1.1
0.084/0.072
16
0.052
0.108/0.056 (0.101/0.096)
0.09/0.09
0.0034
σz (mm)
4
~ 7
5
75
Ibeam (A)
2.6/1.1
1.8/1.45 (1.62/1.15)
3.6/2.1
0.6
Nbunches
5000
~1500
2119
2808
1
1.76 (2.08)
80
1
ξy
Luminosity (1034 cm-‐2 s-‐1)
Crab Cavities
Head-on (crab) 22 mrad. crossing
crab crossing
Crossing angle 22 mrad
Installed in KEKB (Feb. 2007)
(Simulation:K. Ohmi)
Colliding bunches
Belle II New Superconducting / permanent final focusing quads near the IP
e- 2.1 A
Nano-Beam SuperKEKB
e+ 3.7 A
Replace long TRISTAN dipoles with shorter ones (HER).
Add / modify rf systems.
Redesign the HER arcs to squeeze the emitance.
Low emittance positrons to inject
Low emittance gun
Low emittance electrons to inject
TiN coated beam pipe with antechambers
New positron target / capture section
Development of Dipole Fields
LBNL, with large bore Spring 2013
Nb-‐Ti operaBng dipoles; Nb3Sn cosϑ test dipoles
Looking at performance offered by prac8cal SC, considering tunnel size and basic engineering (forces, stresses, energy) the pracBcal limits is around 20 T. Such a challenge is similar to a 40 T solenoid (µ-‐C)
Nb3Sn block test dipoles
Lineární urychlovač
+ ee
Motivace • Další fundamentální výsledky lze dosáhnout při ECM~ stovky GeV • LHC: 7 TeV • Podle shodného mínění nestačí jen jeden urychlovač • Ke komplementárním měřením (EW) je třeba e +e• LEP: poslední kruhový urychlovač, po něm musí být elektrony urychlovány lineárně
Future : e+ e- Linear colliders High gradient cavities
CLIC • Dual beam acceleration technology • R&D at CERN ~ 20 y • Normal conducting cavities • 12 GHz, 100 MV/m • Maximum energy 3 TeV cm – Phase I at 0.5 TeV • International collaboration around CTF3
ILC • Well extablished SC rf technology (TESLA, FLASH, XFEL…)
• Decision in 2004 • Rf cavities ~ TESLA like • 1.3 GHz, 31.5 MV/m • Maximum energy 1 TeV cm - Phase I at 0.5 TeV • GDE (Global Design Effort) - International collaboration • Site independent
latest news:
B.Barish
28 EPS 2009 G.Geschonke, CERN
Lineární urychlovač
+ ee
Historie: 3 podobné projekty 0,5-1 TeV • TESLA (Hamburg) • NLC (USA, patrně SLAC) • JLC (Japonsko) • CLIC (CERN) 3 TeV, výhled Mezinárodní dohoda o přípravě 1 urychlovače ILC • 2004 výběr technologie (supravodivá) • 2005 vytvořena rada Global Design Enterprise (GDE) • 2006 cenový strop (7 M$) • 2007: šok ve financování v USA a UK • 2012: Japonsko projevuje vážný zájem • 2013: vybráno kandidátské místo na severu Japonska
Positron source Three options : 1) Ondulator based
2) Compton backscattering
3) SLC source e- W
Potřeba lepšího energetického rozlišení
Nový koncept: Tok částic (Particle Flow)
Particle Flow
Main linear collider concepts Parameter'
Symbol'[unit]'
ILC'
CLIC'
Centre&of&mass&energy&
Ecm&[GeV]&
500&
3000&
luminosity&
L&[1034cm=2s=1]&
1.8&
6&
Luminosity&in&peak&
L0.01&[1034cm=2s=1]& 1&
2&
Gradient&
G&[MV/m]&
31.5&
100&
ParHcles&per&bunch&
N&[109]&
20&
3.72&
300&
44&
Bunch&length&
(LEP: width of a human hair) σz&[μm]&
Collision&beam&size&
σx,y&[nm/nm]&
474/5.9&
40/1&
VerHcal&emiTance&
εx,y&[nm]&
35&
20&
Bunches&per&pulse&
n b&
1312&
312&
Distance&between&bunches& Δz&[mm]&
554&
0.5&
RepeHHon&rate&
5&
50&
fr&[Hz]&
Baseline parameters, ILC upgradeable to 1 TeV
CLIC Layout at 3 TeV Drive Beam GeneraBon Complex
Drive beam 8me structure -‐ ini8al
Drive beam 8me structure -‐ final
240 ns
240 ns
140 µs train length - 24 × 24 sub-pulses 4.2 A - 2.4 GeV – 60 cm between bunches
5.8 µs
24 pulses – 101 A – 2.5 cm between bunches
quadrupole
quadrupole
acce
lera ting s
power-ext ra transfer st ction and ructure (P ETS) RF
truc
ture
s
12 GH z, 68 M
W
BPM
Main Beam GeneraBon Complex
HE-LHC – LHC modifications HE-‐LHC >2030 SPS+, 1.3 TeV, >2030
2-‐GeV Booster Linac4
HE-LHC – main issues and R&D • 20 Tesla dipole magnets based on Nb3Sn, and HTS • high-gradient quadrupole magnets for arc and IR • ?? fast cycling SC magnets for 1-TeV injector ??? • emittance control in regime of strong SR damping and IBS • cryogenic handling of SR heat load (first analysis; looks manageable) • dynamic vacuum
Steve Myers
80-100 km tunnel infrastructure in Geneva area – design driven by pp-collider requirements with possibility of e+-e- (TLEP) and p-e (VLHeC) Conceptual Design Report and cost review for the next ESU (≥2018)
FCC (Future Circular Colliders) Parameters Design Study Kick-off Meeting: (changing) 15 T ⇒ February 100 TeV in2014 100 km 12-14. in the E [TeV] 20 T ⇒ 100 TeV in 80 km Geneva area: C [km] • Establishing international B [T] collaborations PSR [W/m] • Set-up study groups and committees L [1034cm-2s-1]
LHC
HLLHC
HELHC
VHELHC
14
14
33
100
26.7
26.7
26.7
80 (100)
8.33
8.33
20
20 (16)
0.21
0.4
3.5
84
1
7.4
5
5
CEPC+SppC in China (from Y.Wang) • We are looking for a machine after BEPCII • A circular Higgs factory fits our strategic needs in terms of timing, science goal, technological & economical scale, manpower reality, etc. • Its life can be extended to a pp collider: great for the future
Ø Circular Higgs factory is complementary to ILC
Ø Push-pull option Ø Low energy vs high energy
We hope to collaborate with anyone who is willing to host this machine. Even if the machine is not built in China, the process will help us to build the HEP in China
e-ion colliders
USA Initiatives p
Electron Cooling
p
e-ion detector
Figure-8 collider ring
Snake e
e
Possible locations for additional eion detectors
e
p
PHENIX
SRF Linac Electron injector
12 GeV CEBAF
Beam dump Low energy recirculation pass
ELIC at CEBAF 5 GeV e- 5/10/30 GeV p L 0.4/2.1/4.4 1033
eRHIC
Main ERL (1.9 GeV) STAR
Electron source
eRHIC at BNL 3/10 GeV e- 50/250 GeV p L 0.5/2.6 1033
European initiatives
LHeC at CERN (RING-RING or LINAC-RING) 60/140 GeV e- 7000 GeV p L ~1033
ENC at FAIR Ecm ~ 13 GeV L ~1033
TEST facilities TESTBENCHS
2010
2015
2020
2025
2030 v
DAFNE VEPP 2000 BEPC-II TAU-CHARM BINP
DAFNE v
KEKB SUPERKEKB
KEKB DAFNE
v
SUPERB
DAFNE
v
TEVATRON
v
LHC
v
SLHC
v
DLHC
LURP
v
LHeC RHIC eRHIC
RHIC
eLIC
CEBAF
ILC
ATF2-XFEL
CLIC 0.5 GeV
CTF3
v
CLIC 3 GeV
CTF3 CLIC 0.5
v
NEUTRINO FACTORY
MICE MERIT
v
MUON COLLIDER
MICE MERIT mucool EMMA
v
FACET
v
PROJECT X LWFA LC
RDR (CDR) TDR R&D Operation Construction
Proposed
approved